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(Co)evolution Leads towards ROMASs

Jan Paredis !

Abstract. This paper investigates the dynamics of a simple coevo-
lutionary system. It consists of a predator-prey system in which one
population maximizes its distance to the members of the other popu-
lation, while the second population tries to minimize the distance to
the first population. This results in a coevolutionary pursuer-evader
(PE) system whose dynamics can easily be visualised and studied.

Next, a simple genotype-phenotype mapping is added to the sys-
tem. This mapping - as well as other sources of increased selection
- push the system towards regions of maximum adaptability (RO-
MAs). These ROMAS are a generalization of the concept “evolution
to the edge of chaos”.

1 Introduction

Three concepts are central in this paper: evolution to the edge of
chaos, Genotype Phenotype Mappings (GPMs), and coevolution.
Each of these concepts is briefly introduced in the long version of
this paper [2].

In the past, the coevolutionary algorithm (CGA) has mainly been
used as a tool for optimalisation. Here, the dynamics of a CGA is
studied. The coevolutionary interactions in nature are often complex.
The goal of this paper consists of the design of a simple coevolu-
tionary application and GPM which - despite their simplicity - still
exhibits realistic, complex dynamics.

The structure of this article is as follows. First, the simple appli-
cation which results in Pursuer Evader (PE) dynamics is described.
Next, the genotype-phenotype mapping is introduced. The fourth
section describes the empirical results associated with the GPM.
Next, the relation between ROMAS and evolution to the edge of
chaos is discussed. The sixth section discusses the model used and
its relation to the real world. Finally, conclusions are given.

2 Pursuer-Evader Dynamics

Here, the CGA introduced in [1] is used. In the current paper, all
parameter settings are identical to those described in [1] unless men-
tioned otherwise. For more detail, including prseudo-code of the ba-
sic cycle of the CGA, the reader is referred to [1] or [2].

In this particular application, each individual consists of two
genes: real numbers in the interval [0,1]. The first population max-
imizes the cartesian distance to the individuals of the other popula-
tion, the members of the second population minimize the distance
to the individuals of the first population. This is achieved through
inverse (predator-prey) fitness interaction between both populations.
The fitness of an individual is calculated by sampling its (negative)
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distance to members of the other population. Each individual repre-
sents one point in the plane [0,1] x [0,1]. Furthermore, in order to al-
low for an unbounded evolution, this plane is considered to be a torus.
Hence, the distance is the minimum of the two possible distances
(one crossing (an) “edge(s)”). Furthermore, mutation can cross the
“edges” as easy as it can move in the plane. Or, in other words, 0.95
is equally likely to be mutated into, for example, 0.085 or 0.05. Fi-
nally, a standard uniform crossover is used: new offspring receives
each gene from one of its parents randomly and independently.It is
worth noting that both populations reproduce at the same rate.

The dynamics of this application is fairly simple. The initial (ran-
dom) populations are scattered randomly over the plane. Equal pop-
ulation sizes are assumed (50 individuals each). Fairly soon (typi-
cally in less than thousand cycles) during evolution two clusters ap-
pear (one for each population) where one cluster chases (pursuer)
the other (evader). From time to time different behavior is observed.
Sometimes the pursuers catch up on the evaders. At this moment
the cluster of evaders breaks up. Most of the time the evader cluster
breaks up in two or four sub clusters, which are located symmetri-
cally with respect to the pursuers. These sub clusters virtually immo-
bilize the pursuers while the evader sub clusters move radially and
finally become one cluster again. Due to sampling errors and finite
population sizes the evaders cluster (i.e. unite) again before the sub
clusters have gone all the way. Once the evaders are clustered again,
the ”standard” pursuing of two clusters continues.

When the two populations have different population sizes then
their respective speed changes. This is because both populations re-
produce at the same rate. Hence, the smaller population evolves the
fastest, i.e. moves faster on the plane. In case the pursuer population
is smaller, the pursuers regularly catch up with the evaders. When
this happens the evaders split up, again immobilizing the pursuers
until the evaders form one cluster again. Then the chase resumes. In
the other case, the evader population is the smallest population. Here,
the evader population successfully keeps ahead of the pursuer pop-
ulation. Occasionally, the evaders even have to slow down in order
not to get too close to the pursuers (remember the world consists of
a torus).

3 Introducing a Genotype-Phenotype Mapping

In this section, the PE-model is extended with a simple GPM in or-
der to study its contribution to the dynamics. This is achieved by
adding two real numbers from the interval [0,1] to the gene string.
This string then takes the following form: (x y 71 72). The two first
parameters are as before. The last two define the GPM for each of
the two parameters independently. Hence, the GPM is under evolu-
tionary control.

Each time a new individual is born the GPM functions as follows.
The two iterative mappings, equations (1), and (2), are applied on x
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and y, respectively, a fixed number of times. This number is called
“pregtime”. Here, in all expermiments, « is set to 0.001. After this,
the individual’s fitness (by sampling its distance to members of the
other population) is calculated and if this individual is fit enough it
is inserted in the population. Note that the GPM changes the original
x and y genes. Or, more precisely, the genotype remains the same,
the phenotype - which is originally a copy of the genotype - changes.
Also the GPM considers the genes to live on a torus: if it becomes
larger than 1, 1 is subtracted from it, if it becomes negative - which
is not possible here - it is replaced by 1 plus that (negative) value.

Tnil = Tn + QT1Tn (D

Yn+1l = Yn + QT2Yn 2)

After birth, these iterative functions are applied once during each
cycle of the CGA and that during a fixed number of cycles. This
constant is called ”growtime”. Both processes are simple models of
a PGM operating in two phases. The first phase represents develop-
ment during pregnancy, during which no interaction with the world
occurs. The second one represents further development after birth,
i.e. growth, during which the phenotype interacts with the world.
Here, pregnancy as well as growth are represented by small positive
increments of the phenotype.

4 Empirical Results

Given the PE behavior of the standard CGA described above, the
question now is: How do the r’s evolve in various settings? In order
to study this, 100 runs (of 20000 cycles) of the PE CGA with PGM
were run. At the end of each run all r’s belonging to one population
are printed on a [0,1] x [0,1] plane. Hence, at the end of the 100
runs, all final values of r per run are listed per population. Here, these
results are described verbally. The actual figures can be found in [2].
Each experiment will be described by a quadruple: the first element
is the size of the evader population, the second the size of the pursuer
population, the third the pregtime, and, finally, the growtime.

In the first experiment pregtime and growtime are both zero,
Hence, the r’s play no (evolutionary) role and they will be distributed
(uniformly) random over the [0,1] x [0,1] plane. This experiment is
represented by the quadruple 50-50-0-0: both population sizes are
50 and no GPM is used. Any pattern in the distribution of the r’s is
due to random drift, small population size, and the relatively small
number of runs (100).

In the next experiment, 50-50-80-20, pregtime is set to 80 and
growtime to 20. Now, structure appears in the distribution of the r’s:
the r’s concentrate around the “edges”. They even seem to concen-
trate most at the “corners”. The explanation why this happens is de-
ceivingly simple: at these places mutation results in the largest varia-
tion of change (i.e. change of movement of the X,y genes on the [0,1]
x [0,1] torus). At these edges, it switches from maximal movement
to zero movement along any of the two axes. This allows the indi-
viduals of each population to out-manoeuvre the individuals of the
other population. The term regions of maximum adaptability (RO-
MAs) is coined here to define these regions where the r’s (and hence
the GPM) evolve to. In terms of dynamic systems, these ROMAs
are attractors and the density of the r’s give an indication of their
strength. Again, due to symmetry (same population size, and same
amount of GPM), the distribution of the 1’s of the pursuers is similar
to the distribution of the r’s of the evaders.

In the first two experiments the distribution of the r’s of evaders
and pursuers was similar to each other. Now, the influence of differ-
ences in population size is investigated, again pregtime is set to 80,
and growtime is 20. In this experiment, 20-50-80-20, the population
size of the evaders is set to 20, the pursuers are still with 50. In this
experiment, there is no strong pressure on the r’s of the evaders to-
wards the edges (or corners). This in contrast with the distribution
of r’s of the pursuers: for the largest population (that is the pursuers)
the pressure towards ROMAs is the strongest. The larger populations
move slower. Hence, it is more important, for their survival, that they
have access (genetically and / or through the GPM) to a wide vari-
ety of behavior. Such that they can out-manoevre the smaller, faster
population.

The same phenomenon is observed when the population of pur-
suers is smaller (20) than the evader population (50). Now, the r’s of
the evaders are pushed more towards the ROMAs. Clearly, the effect
of the GPM, pushing the r’s to the ROMA:, is enforced by the added
pressure on the largest population.

5 ROMAs and ”Evolution to the Edge of Chaos”

This paper provides a simple and general explanation for evolution
to the edge of chaos: in a dynamic world, evolution leads towards
ROMAS. In these regions, a maximum repertoire of behaviors is eas-
ily accessible through the application of genetic operators and / or
the GPM. This is exactly what happens near the edge of chaos: it is
there that the most diverse behaviors are situated. Hence, ROMASs
generalize this concept of evolution to the edge of chaos.

6 Discussion

The fact that a very simple model is used here, can give raise to ques-
tions like: How realistic is this model? How do the results carry-over
to the real world? Are the results not mere artefacts of the model
chosen?

The experiments in the long version of this paper [2] clearly in-
dicate the impact of non-toroidal mutation versus the toroidal muta-
tion used earlier. Whereas increased selection pressure pushes the 1’s
to the edges and corners in case of toroidal mutation, non-toroidal
mutaion results in a pressure towards the centre. Summarizing, the
toroidal nature of mutation, might seem artificial, but it compensates
for the lack of epistasis in this simple PE model.

7 Conclusion

This paper studies the dynamics of a coevolutionary (predator-prey)
algorithm by means of a simple pursuer evader application on a
torus. This application allows for easy visual inspection of the dy-
namics. Next, a simple phenotype-genotype mapping (GPM) was in-
troduced. This mapping is under evolutionary control as well. As se-
lection pressure increases the GPM evolves towards regions of max-
imal adaptability (ROMAs). From these regions the GPM can easily
change its behavior, and has access to a large repertoire of different
behaviors. These ROMAs are a generalization of the concept “evolu-
tion to the edge of chaos”. Or, in other words, the ROMA s are regions
with high evolvability.
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