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Abstract. We propose a novel trust model for assessing
the trustworthiness of advice. We say an advice is composed
of a plan to execute and a goal to be fulfilled. The expec-
tation of an advice’s outcome is calculated by assessing the
probabilities of commiting to and executing the plan, and the
probability of the executed plan fulfiling the intended goal.
The probabilities are learned from similar past experiences.

1 The CONSUASOR Model

‘If you go to Ferran Adria’s restaurant you will have the time
of your life!’ ‘If you study daily you will get good marks next
semester.’ These are examples of advice. Advice is what one
relies on to help making decisions. But how can one choose
which advice to follow and which to discard? CONSUASOR
is a trust model that assesses the trustworthiness of advice.

We say an advice has two main components: a plan to exe-
cute and the goal to be achieved. In dynamic logic, an advice
may be formalised as: [Pη]G. That is, if η performs plan P ,
then goal G will be achieved. The question then is: how much
should α trust an advice [Pη]G recommended by ρ?

CONSUASOR is based on the concept that good advice
takes into consideration three issues: (1) the compliance of
the person being advised with following an advice; (2) the
honour of the person being advised with respect to executing
an advice that he has accepted, and (3) the causality describ-
ing whether a given plan can cause the intended goal.

We say a trust measure reflects the expectation about an
advice’s outcome, and we model this expectation as the con-
ditional probability of observing goal G being achieved given
ρ’s advice [Pη]G, which we define accordingly:

p(Observe(α,G) | Commit(ρ,[Pη ]G)) =

∑

P ′,P ′′∈P

p(Observe(α,G) | Observe(β,P ′′
η )) ·

p(Observe(β,P ′′
β ) | Commit(η,P ′

η)) ·
p(Commit(η,P ′

η) | Commit(ρ,[Pη ]G))

(1)

Equation 1 defines this probability as a product of the proba-
bilities of compliance (the probability of η committing to P ′,
given that P was recommended by ρ), honour (the probability
of observing η executing P ′′, given that it committed to P ′),
and causality (the probability of observing the goal G being
achieved, given that the plan P ′′ was executed). An aggrega-
tion is then used for considering all possible plans P that η
may commit to and execute for goal G to be fulfilled.

Of course, different goals may also be achieved. The prob-
ability distribution describing all possible outcomes becomes:

P(Observe(α,X) | Commit(ρ, [Pη ]G)) ={
p(Observe(α,G′) | Commit(ρ, [Pη ]G)),
p(Observe(α,G′′) | Commit(ρ, [Pη ]G)),
. . .

}
(2)
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These probabilities are built by learning from past experi-
ences. We define a single experience μ as follows:

〈Commit(ρ, [Pη ]G), Commit(η, P ′
η), Observe(β, P ′′

η ), Observe(α,G′)〉

Simplification. We will use the notation PC(X|[P ρ
η ]G)

to describe the probability distribution of compli-
ance (P(Commit(η,X)|Commit(ρ, [Pη]G))), PH(X|Pη)
to describe the probability distribution of honour
(P(Observe(β,Xη)|Commit(η, P ))), and PR(X|Pη)
to describe the probability distribution of causality
(P(Observe(α,X)|Observe(β, Pη))). We use the notation
PC|H|R(X| ) to refer to any of those three distributions.

Initialisation. At the initial time tI when no experiences
have been considered yet, we choose the uniform distribution
F to describe ignorance: PtI

C|H|R(X| ) = F. As new experiences
are encountered, the probabilities are modified as follows.

Update. To update a probability distribution P
tI
C|H|R(X| )

with respect to an experience μ, the following is performed:

1. The relevance of the experience μ is calculated accordingly:

• The relevance of an experience μ = 〈Commit(ρ′, [P ′
η]G

′),
Commit(η, P ′′

η ), , 〉 with respect to updating
P
tn
C (X|[P ρ

η ]G) is calculated as Rμ(P
tn
C (X|[P ρ

η ]G)) =
(ζg · Sim(G′, G) + ζp · Emp(P ′, P ))/(ζg + ζp), which
describes that an experience is considered relevant if the
goals are similar (specified by Sim(G′, G)) and the past
plan empowers the newly recommended plan (specified
by Emp(P ′, P )). The similarity between two goals G′

and G is measured as their semantic distance in the
domain ontology. A plan P ′ empowers plan P if the
capabilities required to execute plan P are implied by
the capabilities required for plan P ′. The parameters ζg
and ζp help specify the weight of each these measure.

• The relevance of an experience μ = 〈 , Commit(η, P ′
η),

Observe(β, P ′′
η ), 〉 with respect to updating P

tn
H (X|Pη) is

calculated as Rμ(P
tn
H (X|Pη)) = Emp(P ′, P ). Note that

goals are no longer relevant in this context.

• The relevance of an experience μ = 〈 , , Observe(β, P ′
η′),

Observe(α,G′)〉 with respect to updating P
tn
R (X|Pη) is

calculated as Rμ(P
tn
R (X|Pη)) = Sim(P ′, P ). Note that

plan similarity is used as opposed to plan empowerment
in this context, as peers’ capabilities are not relevant for
assessing causal reltions between plans and goals.

2. The experience μ is used to modify the probability of a
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single expectation accordingly:

ptn
C|H|R(X=x| ) =

p
tn′
C|H|R(X=x| )+(1−p

tn′
C|H|R(X=x| ))·ε·Rμ(PC|H|R(X| )) (3)

where the past probability p
tn′
C|H|R(X=x| ) (calculated at

time tn′ <tn) is increased by a fraction (ε·Rμ(PC|H|R(X| )))
of the total amount that the probability is allowed to in-
crease (1 − p

tn′
C|H|R(X = x| )). This fraction is defined by

a fixed percentage that is specified via ε, and it is then
tuned further by the relevance of μ with respect to x
(Rμ(PC|H|R(X| ))). We note that when assessing compli-
ance or honour, x is chosen based on its semantic distance
to what was recommended (P ) such that this distance is
equal to the semantic distance between P ′ and P ′′ of the
experience μ (that is, Sim(P, x) = Sim(P ′, P ′′)). In the
case of assessing causality, x is the observed goal G′ of μ.

3. The probability distribution is updated w.r.t. the experi-
ence μ following the minimum relative entropy approach:

P
tn
C|H|R(X | ) = argmin

P(X | )
KL(P

tn′
C|H|R(X | ),P(X | ))

such that p(X=x | ) = ptn
C|H|R(X=x | )

(4)

where KL calculates the Kullbac-Leibler distance, or the
relative entropy, between P

tn′
C|H|R(X | ) and the argument

P(X | ), and p(X=x | ) = ptnC|H|R(X=x | ) specifies the con-

straint that the argument P(X | ) should satisfy. In other
words, we look for distributions that satisfy the newly cal-
culated point ptnC|H|R(X=x | ) and are at a minimal distance

from the original distribution P
tn′
C|H|R(X | ).

Trust Measure. After calculating Equation 2, which we
refer to as Ptn(X | [P ρ

η ]G) for simplification, the question now
is: How do we calculate a trust measure based on this ex-
pectation that is expressed as a probability distribution?
One proposed approach is to calculate the distance between
the distribution P

tn(X | [P ρ
η ]G) and the distribution repre-

senting ρ’s promised outcome: PP(X | [Pη]G) = {1, if X =
G; 0, otherwise}. The final trust measure is calculated as:

trusttn (α, ρ, [Pη ]G) = 1− emd(PP(X|[Pη ]G),Ptn (X|[Pη ]G)) (5)

where emd measures the earth mover’s distance (with the
range [0, 1]) between two probability distributions.

2 Evaluation

We consider an action meronomy M and a goal ontology O
of 10 terms each. A set of plans P ∈2M and goals G ∈2O. A
causality function f :P→G that describes what goal does each
plan achieve. A single user η by the tuple 〈Gη, cη, hη, d1, d2〉,
where Gη specifies η’s goal, cη :P→P and hη :P→P describe
η’s compliance and honour (when P is recommended to η,
η commits to cη(P ); and when η commits to P , η executes
hη(P )), tuned by distances d1, d2 ∈ [0, 1] such that ∀P ∈ P :
Sim(cη(P ), P ) ≥ 1−d1 and Sim(hη(P ), P ) ≥ 1−d2. And a
set of recommenders, where each recommender ρ is defined
by the tuple 〈{c−1

ρ,η}∀η, {h−1
ρ,η}∀η, f−1

ρ , d3, d4, d5}〉 such that:
∀P ∈P : Sim(c−1

ρ,η(P ), P ′) ≥ 1− d3 and cη(P
′) = P

Sim(h−1
ρ,η(P ), P ′) ≥ 1− d4 and hη(P

′) = P
Sim(f−1

ρ (P ), P ′) ≥ 1− d5 and f(P ′) = P
where d3, d4, d5 ∈ [0, 1] and c−1

ρ,η, h
−1
ρ,η, and f−1

ρ describe what
ρ believes the inverse functions of cη, hη, and f are.

We compare 3 trust strategies: selecting advise randomly,
selecting the advice whose adviser is ranked top by eigen-
trust [1],2 and selecting the advice ranked top by CONSUA-
SOR. Each experiment runs for 100 timesteps, and in each
timestep: (1) η asks for advice for Gη; (2) each recommender
ρ suggests a plan P =c−1

ρ,η(h
−1
ρ,η(f

−1
ρ (G))); (3) η selects an ad-

vice following the experiment’s trust strategy, and (4) the ex-
perience μ=〈P, cη(P ), hη(cη(P )), f(hη(cη(P )))〉 is generated,
the success of [Pη]G is calculated as Sim(G, f(hη(cη(P )))),
and the current success of η (Succtη) is an aggregation of the
success of all its previously adopted advices.

Figure 1 shows results with good users (d1=d2=0) and bad
users (d1=d2=1). For bad users, Succtη remains low because
it is not always possible to find plans that achieve Gη and that
η is willing to commit to or execute. Cases (a) and (c) have
30 recommenders with medium knowledge (d̄ = 0.8, where
d̄=(d1+d2+d3)/3). Cases (b) and (d) have 5 recommenders
ranging from fully knowledgeable (d̄=0.6) to ignorant (d̄=1).
Eigentrust obtains high levels of success when there is at least
one good recommender, but when recommenders are not very
knowledgeable or users are not fully compliant/honorable, its
success diminish. CONSUASOR is able to learn which advices
are trustworthy and always reaches high levels of success.

(a) Good User and d̄ = 0.8 (b) Good User and d̄=1 . . . 0.6

(c) Bad User and d̄ = 0.8 (d) Bad User and d̄ = 1 . . . 0.6

Figure 1. Success over time
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