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Abstract. Active Mining of Big Data requires fast approaches that
ideally select for a user-specified performance measure and arbitrary
classifier the optimal instance for improving the classification per-
formance. Existing generic approaches are either slow, like error re-
duction, or heuristics, like uncertainty sampling. We propose a novel,
fast yet versatile approach that directly optimises any user-specified
performance measure: Probabilistic Active Learning (PAL).

PAL follows a smoothness assumption and models for a candidate
instance both the true posterior in its neighbourhood and its label
as random variables. By computing for each candidate its expected
gain in classification performance over both variables, PAL selects
the candidate for labelling that is optimal in expectation. PAL shows
comparable or better classification performance than error reduction
and uncertainty sampling, has the same asymptotic linear time com-
plexity as uncertainty sampling, and is faster than error reduction.

1 INTRODUCTION

In some applications of machine learning to large data pools and fast
data streams, features are cheap but labels are costly, for example due
to human annotation efforts [5]. This motivates active learning (AL)
[8] approaches that actively select the instance, which –once incor-
porated into the training set– will yield the highest gain in terms of a
classification performance measure. Ideally, such an approach allows
a) optimisation of an arbitrary, user-defined performance measure, b)
is fast and scalable , and c) is usable with any classifier technology.

Each of the existing approaches offers some of the above quali-
ties, but not a combination of them in a single approach. We propose
a novel, probabilistic active learning (PAL) approach2 that fills this
gap. As expected error reduction (ER) [7], PAL is not limited to a
particular classifier technology or performance measure. Like fast
uncertainty sampling (US) [6], PAL requires only linear asymptotic
time for selecting the best instance from a pool of labelling candi-
dates. We will present PAL in the next section 2, before relating it to
existing approaches in section 3 and evaluating it in section 4.

2 PROBABILISTIC ACTIVE LEARNING

We address the pool-based [9] active learning scenario for binary
classifiers, where an active classifier has access to a pool of unla-
belled instances U = {(x, .)}. Repeatedly, the best instance (x∗, .) ∈
U is selected, its label y∗ is requested from an oracle, and it is moved
from U to the set of labelled instanced L.

Following the common smoothness assumption [3], we consider
that an instance x influences the classification the most in its neigh-
bourhood. Thus, the impact of an additional label primarily depends
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2 See the companion website: http://kmd.cs.ovgu.de/res/pal/

on the already obtained labels in its neighbourhood. We summarise
these by their absolute number n, and the share of positives p̂ therein,
yielding the label statistics ls = (n, p̂). Here, n is obtained by count-
ing the similar labelled instances for pre-clustered or categorical data,
or approximated by frequency estimates such as kernel frequency es-
timates for smooth, continuous data. Thus, in x’s neighbourhood, n
expresses the absolute quantity of labelled information, whereas the
density dx of unlabelled instances quantifies the importance of this
neighbourhood, i.e. the share of future classifications that will take
place therein compared to other regions of the feature space.

Given a candidate instance (x, .) with ls and dx, we want to com-
pute the overall gain in classification performance if requesting its
label. This gain depends also on the realisation of the candidate’s
label y, and of the true posterior probability p of the positive class
within the neighbourhood. Both values are unknown, thus we use
a probabilistic approach and model the candidate’s label Y and the
true posterior of the positive class P as random variables. This al-
lows to compute the expected value of the gain in performance over
all different true posteriors and label realisations, which we denote as
probabilistic gain3 (pgain). Weighting the latter with dx, we obtain
an estimate on the impact of x’s label on the overall classification
performance. Subsequently, we select among all instances the one
with highest density-weighted probabilistic gain.

The figure below summarises PAL’s pseudo-code. Iterating over
the candidate pool U (lines 2-6), for each candidate x one computes
its label statistics lsx = (nx, p̂x), its density weight dx, and its prob-
abilistic gain by using numerical integration, which is then weighted
by its density weight to obtain gx. Finally, the candidate with the
highest density-weighted probabilistic gain is selected (line 7).

1: function POOLBASEDPAL(U ,L)
2: for x ∈ U do
3: (nx, p̂x) ← labelstatistics(x,L)
4: dx ← densityweight(x,L ∪ U)
5: gx ← pgain((nx, p̂x)) · dx
6: end for
7: return x∗ ← arg maxx∈U (gx)
8: end function

We propose to precompute dx, as U ∪ L is static, and to use
probabilistic classifiers to compute the absolute frequency estimates
needed for ls . Thus, lines 3–4 are constant-time operations, but the
probabilistic gain (pgain) computation deserves further discussion:

pgain(ls) = Ep

[
Ey

[
gainp(ls, y)

] ]
(1)

=

∫ 1

0

Betaα,β(p) ·
∑

y∈{0,1}
Berp(y) · gainp(ls, y) dp (2)

3 We do this to differentiate it from the expected gain as in expected error
reduction methods like [2], where expectation is solely over label outcomes.
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Here, gainp(ls, y) is the candidate’s (x, .) performance gain given its
label realisation y and the neighbourhood’s true posterior p:

gainp(ls, y) = perfp

(
np̂+ y

n+ 1

)
− perfp(p̂) (3)

perfp(p̂) is an arbitrary point-performance measure (e.g. accuracy),
indicating the classification performance within the neighbourhood,
given the true posterior p and a posterior estimate p̂ by the classifier.

Berp(y) is the probability of the Bernoulli-distributed random
variable Y producing the label realisation y ∈ {0, 1} (1 correspond-
ing to a positive label), whose parameter p corresponds to the true
posterior, which itself is the realisation of the Beta-distributed ran-
dom variable P with parameters α = n · p̂+1 and β = n ·(1− p̂)+1
and the resulting probability density function Betaα,β(p). Note that
this Beta-distribution and its particular parameters are the result of
using a Bayesian approach that assumes a uniform prior g(p) for
the true posterior probability and computes the normalised likelihood
ωls(p) of p given the data in ls , that is:

ωls(p) =
L(p|ls)g(p)∫ 1

0
L(ψ|ls)g(ψ)dψ = Betaα,β(p) (4)

Thus the parameters α and β of the normalised likelihood correspond
to the absolute numbers of positive and negative labels (plus one).

3 DISCUSSION AND RELATED WORK

Our approach is related to expected error reduction (ER), first pro-
posed by [4], where for each labelling candidate the expected reduc-
tion in classification error is computed. While in [4] closed-form so-
lutions are derived for optimal data selection for two specific learning
methods, [7] proposed a generic ER approach, both with respect to
arbitrary performance measures and classifiers: using a Monte Carlo
sampling approach, it estimates the performance on a labelled val-
idation sample V , rather than integrating over the full feature dis-
tribution Pr (x) as in [4]. Furthermore, it uses the posterior estimate
p̂ = P̂r (y|x) provided by the current classifier as proxy for the true
posterior Pr (y|x) that is required for the expectation over the label
realisations y. However, [2] noted that this proxy is not reliable if
solely few labels are available (as common in active learning) and
requires regularisation approaches such as using Beta priors.

In contrast to ER, expectation in PAL is also over the true pos-
terior p, and evaluation is done using the label statistics within an
instances neighbourhood, rather than simulating classifier updates
and evaluating them on a validation sample. The latter makes ER
prohibitively slow [8], as even for incremental classifiers its asymp-
totic time complexity is O(|V| · |U|). PAL’s time complexity is
O(|U| · q · 2) = O(|U|), as the probabilistic gain computation for
each candidate in U according to eq. 2 requires a constant number of
q numerical integration steps (q = 50 was used in our experiments),
and summarising over the two potential label outcomes {0, 1}.

This is identical to the asymptotic time complexity of uncertainty
sampling (US), proposed in [6]. US uses simple uncertainty mea-
sures [9], like sample margin, confidence, or entropy as proxies for
a candidate’s value, and selects the candidate with maximal uncer-
tainty. However, these proxies do not consider the number of similar
instances, neither does US directly optimise a performance measure.

4 EXPERIMENTAL EVALUATION

We compare PAL to the error reduction approach proposed in [2],
to uncertainty sampling proposed in [6] (using confidence [9]), and

to random sampling. We use the synthetic Checkerboard dataset
from [2], the Mammographic mass dataset from [1], and a synthetic
dataset consisting of a Gaussian mixture model in 2d with varying
training set sizes for speed-testing. For comparison with [2], we use
a Parzen Window classifier with pre-tuned bandwidth (0.1, 0.1, and
0.08, resp.). Evaluation was done by averaging the performance over
100 randomly generated partitionings in training and test subsets.

The results are shown in the figure below, where a) and b) are plots
of the approaches’ learning curves, and c) is a plot of the execution
time relative to the pool size. Overall, PAL yields superior classifica-
tion performance than all other approaches, while its runtime solely
increases linearly in the pool size.
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top left and right (a,b):

Learning curves on two
datasets, early convergence to
high values is favourable.

bottom left (c):

PAL’s runtimes on a synthetic
data set show a linear increase
with dataset size.
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