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Abstract. The detection of ATM fraud is a key concern for both
financial institutes and bank customers but also for ATM suppliers.
This paper deals with the algorithmic learning of an ATM’s behavior
model given the data stream of status information produced by stan-
dard mechatronic devices embedded in modern ATMs. During oper-
ation, the observed status information is compared with the learned
reference model to detect abnormal behavior—assuming that a sig-
nificant anomaly is a strong indicator of a fraud attempt. In contrast
to previous work on automatic ATM fraud detection, we apply a
class of models that also capture the timing behavior, thus covering a
broader range of fraud and manipulation. In particular, we present an
approach to learn a tailored behavior model, called Probabilistic De-
terministic Timed-Transition Automaton, in order to enable the detec-
tion of time-based anomalies. We also report on preliminary results
of an empirical evaluation using a real-world data set recorded on a
public ATM, indicating the practical applicability of our approach.

1 Introduction

Automated teller machines (ATMs) are subject to various kinds of
attacks and fraud. Common types of ATM fraud include skimming,
card- or cash trapping, the installation of malicious software, and also
various physical attacks. The automated detection of ATM fraud to
prevent loss or damage is a relevant research topic. Previous stud-
ies only target single aspects like optical protection [6], image-based
fraudster identification [8], and card fraud detection [7]. To the best
of our knowledge, our prior study [1] is the first that endeavors to pro-
vide a holistic approach for the automatic detection of ATM fraud.

In our previous work, we defined ATM fraud detection as a
sequence-based anomaly detection problem, and we utilized machine
learning techniques to identify abnormal patterns in the discrete se-
quence of status events that is produced inside an ATM [1]. Although
the anomaly detection effectiveness is quite promising, this approach
is only able to detect a limited number of possible attacks because
the time intervals between subsequent status events are disregarded.
In practice, however, several types of attacks manifest themselves
solely in an abnormal time behavior. Consider for example a skim-
ming device mounted on the card reader that results in a slower card
insertion process. This paper tries to close this gap by proposing a
model-based anomaly detection approach that is able to detect not
only sequence-based anomalies but also time-based anomalies.

2 Problem Formulation

We interpret an ATM as a discrete-state, event-driven system [3]. I.e.
events occur at various time instants and cause transitions between
system state. Events can be triggered by internal components, like

1 Department of Computer Science, University of Paderborn, Germany,
email: {timo.klerx, maik.anderka, kbcsl}@uni-paderborn.de

Idle
Awaiting

PIN
Amount
selection

card
insertion

PIN
entry

time

pr
ob

ab
ili

ty

time

pr
ob

ab
ili

ty

p = 0.95 p = 0.7

Figure 1. Example of a Probabilistic Deterministic Timed-Transition
Automaton (PDTTA).

sensors and actuators of mechatronic devices, or by customer input,
like inserting the card and entering the PIN. This interpretation is in
line with the observable system behavior in a practical application,
where the ATM’s Diagnosis and Serviceability module provides a
timed sequence of status events that comprehensively describes the
ATM’s real-time behavior (for further information, refer to [1]).

Given a timed event sequence of normal observations, the task
is to learn a behavior model of an ATM that can be used to de-
tect both sequence-based anomalies as well as time-based anomalies.
To achieve this, we propose a tailored behavior model that explic-
itly capture the timing behavior, called Probabilistic Deterministic
Timed-Transition Automaton (PDTTA). Figure 1 shows an example
of a PDTTA. For each transition a probability p for taking the tran-
sition is given. Additionally, a probability density function describes
the relative likelihood for the event’s timing (e.g. the time it takes to
enter the PIN). In the following, a PDTTA is formally defined:

Definition 1 A Probabilistic Deterministic Timed-Transition Au-
tomaton is a tuple A = (S, so,Σ, T, ξ, τ), where

• S is a finite set of states, with s0 ∈ S the start state.
• Σ is a finite alphabet comprising all relevant events.
• T ⊆ S ×Σ× S is a finite set of transitions. E.g. 〈s, e, s′〉 ∈ T is

the transition between states s, s′ ∈ S triggered by event e ∈ Σ.
• ξ:T �→ [0, 1] is a transition probability function, which assigns

each transition a probability value p.
• τ :T �→ Θ is a time probability function, which assigns each tran-

sition a probability distribution θ ∈ Θ, with Θ being the set of all
possible probability distributions. Every θ ∈ Θ has the signature
θ: I �→ [0, 1] with I ⊆ N a set of time values.

Note that this model is similar to a probabilistic deterministic
timed automaton (PDTA). But in contrast to a PDTA, the future
execution in a PDTTA only depends on the events—the timing is
inferred afterwards. Moreover, no specific acceptance states are re-
quired because for a given input sequence the automaton is used to
compute the likelihood that the sequence is generated by the model.
This likelihood is then interpreted as the sequence’s anomaly score.

For this particular model class, model learning is still a chal-
lenge [5]. To the best of our knowledge, there are only two ap-
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proaches that address the learning of PDTAs [9, 4]. However, both
do not cover all types of anomalies because they model the timing
behavior by rigid intervals instead of probability distributions.

3 Method

We propose a two-step approach to learn the model specified in
Definition 1, given a set X that comprises timed event sequences
x = 〈e1, i1〉, 〈e2, i2〉, . . . , 〈en, in〉 of variable length:

Step 1. Learn an initial generative model. When omitting τ in Def-
inition 1, the resulting automaton corresponds to a probabilistic de-
terministic finite automaton (PDFA). We take advantage of the fact
that the learning of PDFAs can be considered as being state-of-the-
art [5]. Hence, in this first step, a PDFA A′ is learned from X using
the well-known ALERGIA algorithm, described in [2]. ALERGIA is
a state merging algorithm that first builds a prefix tree acceptor and
then merges compatible states recursively.

Step 2. Learn the timing behavior and augment the initial model.
For every timed sequence x ∈ X we traverse A′ from the initial
state s0 and whenever we take a transition t = 〈s, ek, s′〉 ∈ T ,
we add the associated time interval ik to the set of intervals It that
belongs to t. For every such It we fit a probability distribution θt
that models the occurrences of time intervals in It. θt is associated
with τ so that τ(t) = θt. We tested various approaches, e.g. we
fitted common distributions (like normal, exponential, etc.) or first
clustered the intervals i ∈ I to find different modes and then fitted
a common distribution to every cluster. Finally, we decided to use
kernel density estimators with a Gaussian kernel because they lead
to better results. Combining A′ and τ gives us a PDTTA A.

Given the learned model A, the anomaly score pA(x) for an in-
put sequence x is computed as follows: Analogous to step 2, we
traverse A starting in s0. For every tuple 〈ek, ik〉 ∈ x we take the
transition t = 〈s, ek, s′〉 ∈ T . Additionally, we store all event prob-
abilities pe(t) = ξ(t) that indicate how likely it is to traverse t in s,
and the time probabilities pi(t) = τ(t)(i) that indicate how likely
it is that traversing t takes i time units. Then, we aggregate all event
and time probabilities to pA(x), which is the probability of x being
generated by A. Finally, pA(x) is compared to a threshold c. If pA(x)
is lower than c we classify x as anomaly, otherwise as normal.

4 Analysis and Results

To evaluate the anomaly detection effectiveness of our approach, we
use a data set that has been recorded on a Wincor Nixdorf ATM in a
ten month period comprising timed sequences of more than 15 mil-
lion status events in total. In the recorded period no attacks were
registered, so we consider the monitored behavior as normal. We
perform the evaluation on a weekly basis to account for seasonal-
ity effect: The data of an individual week is used for model learning
(training) and the data of the respective subsequent week is used for
evaluation (testing). To assess the anomaly detection effectiveness,
data of normal and abnormal behavior is required. Note that, in our
use case, data of monitored attacks on ATMs is in general not avail-
able for reasons of security and secrecy. We therefore intersperse ar-
tificial anomalies in the testing data by randomly choosing a certain
proportion of sequences and multiplying a random subset of time in-
tervals in each sequence by a given factor. 2

2 Part of our current research is to investigate different strategies to derive
anomaly examples, which includes the generation of uniformly distributed
outliers and the explicit specification of known attacks by domain experts.

0

0.2

0.4

0.6

0.8

1

10-45 10-35 10-30 10-25 10-20

P
re

ci
si

on
 / 

R
ec

al
l

10-40 10-15

Recall
Precision

Threshold c

Figure 2. Anomaly detection effectiveness in terms of precision and recall
over the anomaly threshold c. The x-axis is in log scale since the probability
of traversing a particular path in the PDTTA can become considerably small.

We can only give a glimpse of the results here. Figure 2 shows
the performance in terms of precision and recall using data with a
proportion of 1% of artificial anomalies (note that attacks on ATMs
are expected to be rare). The precision is the ratio between correctly
detected anomalies and all detected anomalies. The recall is the ra-
tio between detected anomalies and all anomalies. The threshold c
allows for controlling the precision/recall tradeoff: For higher values
of c more anomalies are detected (increasing recall), but also more
normal sequences are falsely labeled as anomaly (decreasing preci-
sion). Altogether, the results show that, for small values of c, a preci-
sion close to 1 can be achieved while maintaining a reasonable recall
(≈ 0.75), which indicates the practical applicability of our approach.

Although this paper focuses on ATM fraud detection, our approach
can by applied to detect anomalies in other technical system, such as
production plants, communication networks, or software systems.
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