
Comparing Models for Spreadsheet Fault Localization
Birgit Hofer and Franz Wotawa1

Abstract. Locating faults in spreadsheets can be difficult. There-
fore, tools supporting the localization of faults are needed. This paper
presents a novel dependency-based model that can be used in Model-
based software debugging (MBSD). This model allows improve-
ments of the diagnostic accuracy while keeping the computation
times short. In an empirical evaluation, we show that dependency-
based models of spreadsheets whose value-based models are often
not solvable in an acceptable amount of time can be solved in less
than one second. Furthermore, the amount of diagnoses is reduced
by 15% on average when using the novel instead of the original
dependency-based model.

1 Introduction

Localizing faults in programs is often difficult and time consum-
ing. Model-based software debugging (MBSD) is an automated de-
bugging technique which helps to faster localize faults in software.
MBSD originates from model-based diagnosis [5] and is flexible be-
cause different models can be used. The chosen model influences
the quality of the obtained diagnosis results. The closer the model to
the original program behavior, the better the results. Unfortunately,
precise models (e.g. value-based models) are computationally de-
manding. Abstract models (e.g. dependency-based models) have a
low computational complexity but they compute more diagnoses.
In this paper, we rely on spreadsheets, but the presented ideas

can be easily adapted to functional and procedural languages. Lo-
calizing faulty cells can be demanding because spreadsheets lack
support for abstraction, encapsulation, or structured programming.
Therefore, approaches supporting fault localization in spreadsheets
are needed. Recent work [1, 4] introduced MBSD for spreadsheets
using value-based models. These approaches do not sufficiently sup-
port spreadsheets containing real numbers because of the limitations
of the underlying constraint and SMT solvers [2]. To the best of our
knowledge, dependency-based models [7] have not been used for lo-
calizing faults in spreadsheets, maybe because of their inaccuracy.
In this paper, we show how to improve the diagnostic accuracy of
dependency-based models while keeping the computation time short.
We make use of a running example to demonstrate the differences

between the models. Figure 1(a) shows the normal view of a faulty
spreadsheet, Figure 1(b) the formula view. Input cells are shaded in
light gray, output cells in dark gray. The faulty cell D5 is framed.
The fault manifests in the output cell D6, whose expected value is
12 900. When using any of the discussed models, the faulty cell can
be detected. The value-based model and our novel dependency-based
model identify three cells that could explain the erroneous output, the
original dependency-based model identifies six cells. When using the
constraint solver MINION [3], the dependency-based models require
only one third of the computation time of the value-based model.
1 Graz University of Technology, Austria, {bhofer, wotawa}@ist.tugraz.at

(a) Normal view (b) Formula view

Figure 1. Running example

2 Model-based Software Debugging

In model-based software debugging (MBSD), the spreadsheet’s cells
and the given observations (i.e., the test case2) are converted into con-
straints. As the given test case is a failing test case, this constraint sys-
tem results in a contradiction. To determine which cells could resolve
this contradiction, we use abnormal variables (AB) representing the
“health” state of the cells. If cell c is not abnormal, the formula of c
must be correct:¬AB(c) → constraint(c) (or AB(c)∨constraint(c)).
Having such a constraint system, we are able to use a constraint or
SMT solver to determine which abnormal variables have to be set to
true to eliminate the contradiction. In the following, we discuss the
different types of models. All models can be automatically obtained
from the spreadsheets without human interaction. Since the models
are derived from the faulty spreadsheet, they also contain the fault(s).

Value-based model. When using value-based models, the values
of the cells are propagated. A value-based constraint system contains
(i) the input cells and their values, (ii) the output cells and their ex-
pected values, and (iii) all formulas concatenated with their abnormal
variable. The constraint representation allows us to draw conclusions
on the input from the output of a formula. Such a value-based model
for spreadsheets is proposed by Abreu et al. [1]. The running exam-
ple from Figure 1(b) is converted into the following constraints:

Input:

B2 == 100

C2 == 300

B3 == 20

. . .

Output:

D3 == 35

B6 == 1500

C6 == 12000

D6 == 12900

Formula constraints:

AB(cellD2) ∨D2 == B2 + C2

AB(cellD3) ∨D3 == D4/D2

AB(cellB4) ∨B4 == B3×B2

. . .

Solving this constraint system leads to three possible solutions:
Either cell D5, D6 or D7 must contain the fault.

Original dependency-based model. When using dependency-
based models, only the information about whether the computed val-
ues are correct is propagated. All variables representing input cells
and correct output cells are initialized with true. The variables rep-
resenting erroneous output cells are initialized with false. Instead

2 A test case t is a tuple (I,O), where I are the values for the input
cells and O the expected values for the output cells. t is failing if
at least one computed value differs from the expected value.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1029

1029



of using the concrete formulas in the constraints, only the correctness
relation is modeled. If the formula of cell c is correct and the input
values of a formula are correct then cell c must compute a correct
value: AB(cellc)∨

∧
c′∈ρ(c) c

′
→ c where ρ(c) is the set of all cells

that are referenced in c. Details about this modeling technique can
be found in [7]. The dependency-based constraints for our running
example are as follows:

Input:

B2 == true
C2 == true
B3 == true

. . .

Output:

D3 == true
B6 == true
C6 == true
D6 == false

Formula constraints:

AB(cellD2) ∨ (B2 ∧ C2 → D2)

AB(cellD3) ∨ (D2 ∧D4 → D3)

AB(cellB4) ∨ (B2 ∧B3 → B4)

. . .

Solving this constraint system leads to six possible solutions: Ei-
ther cell B4, C4, D4, D5, D6 or D7 must contain the fault. This
dependency-based model computes more diagnoses because of the
implication. In the value-based model, the cells B4, C4, and D4 can
be excluded from the set of possible diagnoses because B4 and C4
are used to compute D4, and D4 is used to compute D3, which is
known to compute the correct result. Unfortunately, this information
gets lost when using the implication because the implication allows
conclusions only from the input to the output but not vice versa.

Novel dependency-based model. The novel dependency-based
model uses bi-implication instead of the implication in order to elim-
inate the previously described weakness. The rationale here is that if
a cell value is correct also the contributing parts have to be correct.
For example, the constraint for cell D2 from our running example is
AB(cellD2) ∨ (B2 ∧ C2 ↔ D2). Solving the constraint system of
the running example leads to the same three diagnoses as when using
a value-based model. The bi-implication cannot be used in case of
coincidental correctness [6]. In case of coincidental correctness, an
output value could be correct even when not all of its input values are
correct (fault masking). Coincidental correctness might occur for ex-
ample when using conditional functions (e.g., IF), abstraction func-
tions (e.g., MIN, MAX, COUNT), Booleans, multiplications with
zero, or power with zero or one as base number or zero as exponent.
Depending on the concrete functions supported by the used spread-
sheet environment (e.g. Microsoft Excel, iWorks’Number, OpenOf-
fice’s Calc) this list has to be extended. All formulas where coinci-
dental correctness might happen still have to be modeled with the
implication instead of the bi-implication.

3 Empirical Evaluation

We developed a prototype in Java which uses MINION [3] as a con-
straint solver. We evaluated the models using the 94 single fault
spreadsheets from the publicly available Integer spreadsheet cor-
pus [2]. The spreadsheets are divided into two sub-groups: spread-
sheets whose value-based models are solved by MINION in less than
20 minutes and spreadsheets whose value-based models could not
be solved within 20 minutes (i.e. 31 from 94 spreadsheets). Table 1
compares the three types of models with respect to fault localization
capabilities and runtimes for these spreadsheets. The fault localiza-
tion capabilities are expressed by means of the number of cells that
are single fault diagnoses. Considering the diagnostic accuracy, the
value-based model yields better results. The improved dependency-
based model decreases the number of computed diagnoses by 15%
compared to the original dependency-based model. The reduction in-
dicates the average percentage of formula cells that are contained in

the set of diagnoses. The runtime is measured by means of MIN-
ION’s average solving time over 10 runs. For the 31 spreadsheets
whose value-based models could not be solved within 20 minutes,
the dependency-based models are solved in less than one second.

Table 1. Evaluation results

Model Single fault Reduction Solving time
diagnoses in % (in ms)

63 spreadsheets
Value-based 4.0 53.5 56818.8
Original dep.-based 13.2 40.0 32.0
Novel dep.-based 11.0 46.0 31.6
31 spreadsheets
Value-based - - > 20 minutes
Original dep.-based 45.0 40.0 187.4
Novel dep.-based 38.6 58.8 164.8

4 Discussion and Conclusions

This paper addresses the fault localization problem by means of
model-based diagnosis. Our most important contribution is the in-
troduction of a novel dependency-based model. This model im-
proves previous work in two ways: (1) Compared to the original
dependency-based model, it reduces the amount of diagnoses that
have to be manually investigated by 15%. (2) Compared to the value-
based model, it reduces the required solving time and allows the
computation of diagnoses in real-time where the value-based model
cannot compute solutions within 20 minutes. The savings in com-
putation time can be explained by the reduction of the domain: The
dependency-based model requires only Boolean variables instead of
Integers and Real numbers. The reduction of the domain comes with
additional advantages: (1) An arbitrary solver can be used, because
all solvers support at least Boolean variables. (2) Spreadsheets con-
taining Real numbers can be debugged. (3) The user does not need to
indicate concrete values for the erroneous output variables. The in-
formation that an output cell computes the wrong value is sufficient.

Acknowledgments

The research herein is partially conducted within the competence
network Softnet Austria II (www.soft-net.at, COMET K-Projekt)
and funded by the Austrian Federal Ministry of Economy, Fam-
ily and Youth (bmwfj), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vi-
enna in terms of the center for innovation and technology (ZIT).

REFERENCES
[1] Rui Abreu, Andre Riboira, and Franz Wotawa, ‘Constraint-based debug-

ging of spreadsheets’, in CibSE’12, pp. 1–14, (2012).
[2] Simon Außerlechner, Sandra Fruhmann, Wolfgang Wieser, Birgit Hofer,

Raphael Spörk, Clemens Mühlbacher, and Franz Wotawa, ‘The right
choice matters! SMT solving substantially improves model-based debug-
ging of spreadsheets’, in QSIC’13, pp. 139–148. IEEE, (2013).

[3] Ian P. Gent, Chris Jefferson, and Ian Miguel, ‘Minion: A fast, scalable,
constraint solver’, in ECAI 2006, pp. 98–102, (2006).

[4] Dietmar Jannach and Thomas Schmitz, ‘Model-based diagnosis of
spreadsheet programs: a constraint-based debugging approach’, Auto-
mated Software Engineering, 1–40, (2014).

[5] Raymond Reiter, ‘A Theory of Diagnosis from First Principles’, Artifi-
cial Intelligence, 32(1), 57–95, (1987).

[6] Xinming Wang, Shing-Chi Cheung, Wing Kwong Chan, and Zhenyu
Zhang, ‘Taming coincidental correctness: Coverage refinement with con-
text patterns to improve fault localization’, in ICSE, pp. 45–55, (2009).

[7] Franz Wotawa, ‘On the Relationship between Model-Based Debugging
and Program Slicing’, Artif. Intelligence, 135, 125–143, (Feb. 2002).

B. Hofer and F. Wotawa / Comparing Models for Spreadsheet Fault Localization1030


