
Generation of Relevant Spreadsheet Repair Candidates
Birgit Hofer1 and Rui Abreu2 and Alexandre Perez2 and Franz Wotawa1

Abstract. Spreadsheets are amongst the most successful examples
of end user programming. Because of their, still increasing, impor-
tance for companies, spreadsheets have drastic economical and soci-
etal impact. Hence, locating and fixing spreadsheet faults is impor-
tant and deserves attention from the research community. A state-
of-the-art technique uses genetic programming for generating repair
candidates, but a limitation that hinders real-world application is that
it still computes too many repair candidates. In this paper, we discuss
a novel technique based on constraint solving that uses distinguish-
ing test cases to narrow down the number of repair candidates.

1 Introduction
Spreadsheets can be regarded as a highly flexible end-users pro-
gramming environment [11]. These so-called “end-user” program-
mers vastly outnumber professional ones: the US Bureau of Labor
and Statistics estimates that, in 2012, more than 55 million people
used spreadsheets and databases at work on a daily basis [11]. How-
ever, numerous studies have shown that existing spreadsheets contain
errors at an alarmingly high rate, e.g., [4]. These errors may entail
a serious economical impact for the business, causing yearly losses
worth roughly 10 billion dollars [13].

Several researchers have developed methods and techniques for
improving the overall quality of spreadsheets, e.g., [1, 3, 5, 7, 8, 10].
Approaches which not only localize potential faulty cells but also
suggest a repair (e.g., [1, 9]) are particularly interesting. Genetic pro-
gramming [9] generates repair suggestions from a faulty spreadsheet
and a failing test case3 by mutating randomly chosen formula cells.
If the created mutant passes the given test case, a potential repair
candidate is found. Unfortunately, such approaches often generate
too many repair candidates. A large number of repair candidates of-
ten overwhelms the user. To avoid this problem, we propose in this
paper the MUSSCO (Mutation Supported Spreadsheet COrrection)
approach which filters out wrong repair candidates by using distin-
guishing test cases. A test case is a distinguishing test [12] case if
and only if there is at least one output cell where the computed value
of two mutated versions of a spreadsheet differ on the same input.

We use the running example in Figure 1 to illustrate our approach.
Physicians use this spreadsheet to estimate cardiogenic shock. Cells
B2 to B5 need an input from the user. Cell B8 shows the result of the
computation from which physicians derive their conclusions. Cell B6
is faulty because it computes B2/B3 instead of B2-B3. The test case
T (I = {�(B2) = 120, �(B3) = 60, �(B4) = 72, �(B5) = 2}, O =

1 Graz University of Technology, Austria, bhofer@ist.tugraz.at,
wotawa@ist.tugraz.at

2 University of Porto, Portugal, rui@computer.org, alexandre.perez@fe.up.pt
3 A test case is a tuple (I,O), where I are the values for the input cells and
O the expected values for other cells. A test case is a passing test case if
all computed values are equivalent to the expected values. Otherwise, it is
a failing test case.

Figure 1. The Cardiogenic shock estimator spreadsheet

{�(B8) = 2160}), where �(c) represents the value of cell c, is a
failing test case because the computed value for B8 (72) differs from
the expected value (2160). A debugging approach which generates
repair candidates (e.g. [1, 9]) would, for example, return changing
cell B6 to B2 - B3 (mutant Π1) or changing B7 to 30 * B6 *
B4 (mutant Π2) as repair candidates because both make the test case
T a passing one. In contrast, MUSSCO would first generate a dis-
tinguishing test case for Π1 and Π2 so that it yields different output
values for both mutants, e.g.: �(B2) = 30, �(B3) = 30, �(B4) = 30,
�(B5) = 1. Afterwards, MUSSCO asks the user which output is
correct and discards all mutants which fail this new test case.

2 Computing distinguishing test cases

For computing distinguishing test cases, we convert mutants into a
constraint satisfaction problem (CSP) [6]. A CSP is a tuple (V,D,C)
where V is a set of variables with a corresponding domain from D,
and C is a set of constraints. Each constraint has a set of variables,
i.e., its scope, and specifies the relation between the variables. A so-
lution of a CSP is an assignment of values to variables such that all
constraints are fulfilled. Algorithm 1 describes the creation of distin-
guishing test cases. This algorithm takes as input two mutated ver-
sions of the same spreadsheet. In lines 1 and 2, the functions GET-
INPUTCELLS and GETOUTPUTCELLS are called. These functions
return the set of input and output cells for the given spreadsheet. An
input cell is a cell that does not reference another cell. Conversely, an
output cell is a cell that is not referenced by another cell. In lines 3
and 4, the mutants are converted into their constraint representation.
This conversion is based on the conversion explained by Abreu et
al. [2]4. The second parameter of the function CONVERT is a con-
stant that acts as postfix for variables. This postfix is necessary to
distinguish the constraint representation of m1 from that of m2: Each
variable in the constraint system for mutant m1 gets the postfix “ 1”,
each variable for mutant m2 gets the postfix “ 2”. In line 5, a con-
straint is created that ensures that the input of m1 is equal to the
input of m2. In line 6, a constraint is created that ensures that at least
one output cell of m1 has a different value than the same output cell
in m2. The function GETSOLUTION calls the constraint solver with

4 [2] focuses on computing diagnoses (i.e. fault localization), while this work
focuses on generating distinguishing test cases. Nevertheless, the conver-
sion into constraints follows principally the same rules.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1027

1027

these constraints (line 8). This function either returns a distinguish-
ing test case, UNSAT (in case of equivalent mutants) or UNKOWN
(in case of undecidability).

Algorithm 1 GETDISTINGUISHINGTESTCASE(m1,m2)
Require: Mutants of a spreadsheet m1,m2

Ensure: A distinguishing test case or UNSAT/UNKOWN
1: inputCells = GETINPUTCELLS(m1)
2: outputCells = GETOUTPUTCELLS(m1)
3: Cons1 =CONVERT(m1 \ inputCells, ” 1”)
4: Cons2 =CONVERT(m2 \ inputCells, ” 2”)
5: inputCon =

∧
c∈inputCells

c 1 = c 2

6: outputCon =
∨

c∈outputCells
c 1 �= c 2

7: Cons = Cons1 ∪ Cons2 ∪ inputCon ∪ outputCon
8: return GETSOLUTION(Cons)

With the automatic generation of distinguishing test cases, we are
now able to narrow down the number of repair candidates that are
presented to the user. MUSSCO takes as input a set of possible re-
pair candidates (mutants). A primitive way to compute mutants is to
clone the spreadsheet and change arbitrary operators and operands in
all formulas of the cells contained in one diagnosis (diagnoses could
be obtained using the approach in [2]). If the created mutant satisfies
the given test case the mutant is presented to the user, otherwise it
is discarded. The problem with this approach is that too many mu-
tants have to be computed until the first mutant passes the given test
case. Therefore, a more sophisticated approach which includes the
mutation creation process in the CSP is used. Instead of only trans-
forming cell formulas into a value-based constraint model, we also
include the information how the cells could be mutated. We are aware
that our approach could not generate mutants for all types of faults,
and a generalization remains for future work.

Algorithm 2 describes the repair filtering phase of our approach,
which is invoked after the set of repair candidates M (mutants)
has been generated. In lines 1 and 2, the sets eqMut and un-
desMut, used to store the pairs of equivalent and undecidable mu-
tants, are initialized. If M contains at least two mutants which

Algorithm 2 Algorithm MUSSCO(M)
Require: A set of repair candidates M
Ensure: A set of possible corrections

1: eqMut =∅
2: undesMut =∅
3: while |M | ≥ 2 ∧ ∃((m1,m2) ∈ M : (m1,m2) /∈ eqMut ∧

(m1,m2) /∈ undesMut) do
4: Select two mutants m1,m2 from M where (m1,m2) /∈

eqMut ∧ (m1,m2) /∈ undesMut
5: T ′ = GETDISTINGUISHINGTESTCASE(m1,m2)
6: if T ′ = UNSAT then
7: eqMut = eqMut ∪ {(m1,m2)}
8: else
9: if T ′ = UNKNOWN then

10: undesMut = undesMut ∪ {(m1,m2)}
11: else
12: T ′ = T ′ ∪ GETEXPECTEDOUTPUT(T)
13: M = FILTER(T ′,M)
14: end if
15: end if
16: end while
17: return M

are not equivalent or undecidable, such a pair of mutants is se-
lected (line 4). In line 5, we call the test case retrieval function
GETDISTINGUISHINGTESTCASE. If this function returns UNSAT,
the pair m1,m2 is added to the set eqMut (line 7). If the function
returns UNKNOWN, the pair m1,m2 is added to the set undesMut
(line 10). Otherwise, the function returns a new test case. The func-
tion GETEXPECTEDOUTPUT is used to determine the expected out-
put for the given test case (line 12). This function either asks the user
or another oracle, e.g. a correct implementation of the spreadsheet.
The function FILTER checks which mutants in M pass the new test
case and returns these mutants (line 13).

3 Conclusions
The number of repair candidates produced by current debug-
ging techniques for spreadsheets often overwhelms the user.
To overcome this major drawback, we propose the MUSSCO
approach which narrows down the number of repair candi-
dates by using distinguishing test cases. We performed an
initial case study on the publicly available Integer Spread-
sheet Corpus (https://dl.dropbox.com/u/38372651/
Spreadsheets/Integer_Spreadsheets.zip). The results
of this preliminary evaluation show that on average 3.1 distinguish-
ing test cases are generated and 3.2 mutants are reported as possible
fixes. On average, the generation of the mutants and distinguishing
test cases requires 47.9 seconds in total (on an Intel Core i7-3770K
CPU and 16GB RAM). These results are promising as the required
user interaction is low, but these results also indicate that further ef-
forts should be spent to minimize the computation time.

REFERENCES
[1] Robin Abraham and Martin Erwig, ‘GoalDebug: A spreadsheet debug-

ger for end users’, in Proc. ICSE ’07, pp. 251–260, (2007).
[2] Rui Abreu, Birgit Hofer, Alexandre Perez, and Franz Wotawa, ‘Using

constraints to diagnose faulty spreadsheets’, Software Quality Journal,
1–26, (2014).

[3] Yanif Ahmad, Tudor Antoniu, Sharon Goldwater, and Shriram Krish-
namurthi, ‘A type system for statically detecting spreadsheet errors’, in
Proc. ASE ’03, pp. 174–183, (2003).

[4] David Chadwick, Brian Knight, and Kamalasen Rajalingham, ‘Qual-
ity control in spreadsheets: A visual approach using color codings to
reduce errors in formulae’, Software Quality Control, 9(2), 133–143,
(2001).

[5] Jácome Cunha, João Paulo Fernandes, Jorge Mendes, and João Saraiva,
‘MDSheet: A framework for model-driven spreadsheet engineering’, in
Proc. ICSE ’12, pp. 1395–1398, (2012).

[6] Rina Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[7] Felienne Hermans, Martin Pinzger, and Arie van Deursen, ‘Detect-

ing and visualizing inter-worksheet smells in spreadsheets’, in Proc.
ICSE ’12, pp. 441–451, (2012).

[8] Birgit Hofer, André Riboira, Franz Wotawa, Rui Abreu, and Elisabeth
Getzner, ‘On the empirical evaluation of fault localization techniques
for spreadsheets’, in Proc. FASE 2013, (2013).

[9] Birgit Hofer and Franz Wotawa, ‘Mutation-based spreadsheet debug-
ging’, in Proc. IWPD ’13, pp. 132–137. IEEE, (2013).

[10] Dietmar Jannach and Ulrich Engler, ‘Toward model-based debugging
of spreadsheet programs’, in Proc. JCKBSE ’10, pp. 252–264, (2010).

[11] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-
garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary
Shaw, and Susan Wiedenbeck, ‘The state of the art in end-user software
engineering’, ACM Comput. Surv., 43(3), 21:1–21:44, (April 2011).

[12] Mihai Nica, Simona Nica, and Franz Wotawa, ‘On the use of mutations
and testing for debugging’, Software : Practice & Experience, (2012).

[13] Raymond R. Panko, ‘Applying code inspection to spreadsheet testing’,
J. of Management Information Systems, 16, 159–176, (Sept. 1999).

B. Hofer et al. / Generation of Relevant Spreadsheet Repair Candidates1028

https://dl.dropbox.com/u/38372651/Spreadsheets/Integer_Spreadsheets.zip
https://dl.dropbox.com/u/38372651/Spreadsheets/Integer_Spreadsheets.zip

