ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and I1OS Press.

1025

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1025

An Algorithm for the Penalized Multiple Choice
Knapsack Problem

Elizabeth M. Hilliard' and Amy Greenwald? and Victor Naroditskiy>

Abstract.

We present an algorithm for the penalized multiple choice
knapsack problem (PMCKP), a combination of the more com-
mon penalized knapsack problem (PKP) and multiple choice
knapsack problem (MCKP). Our approach is to converts a
PMCKP into a PKP using a previously known transformation
between MCKP and KP, and then solve the PKP greedily. For
PMCKPs with well-behaved penalty functions, our algorithm
is optimal for the linear relaxation of the problem.

1 Introduction

The knapsack problem (KP) is a classic optimization problem. Due to
the large number of real-world problems that can be modeled as KPs,
the problem comes in many flavors. We focus on a problem variation
that combines two previously studied variations: the penalized knap-
sack (PKP) and the multiple choice knapsack (MCKP) problem.

2 Khnapsack Problems, Global Penalty Functions,
and Greedy Algorithms

We begin by presenting various knapsack problems, together with
greedy algorithms that solve their linear relaxations optimally.

In addition to a problem instance defined by a set of items, each
with a weight and value, and a total capacity, our algorithms take
as input a metric m, that describes how to evaluate items (e.g., effi-
ciency), a stopping rule f, that indicates when the algorithm should
stop taking items and an item-taking rule g, which determines the
fraction of the last item considered to take.

Knapsack Problem A KP is defined by a vector of item values,
v > 0, a vector of weights, w > 0 and a hard total capacity, c.
A solution is a vector & indicating the amount of each item taken.
Thus, the objective is max, v - @ subject to w - & < ¢ and each
x; € {0, 1} (for the discrete problem, in which items are indivisible)
or each x; € [0, 1] (for the relaxed problem, R(KP), in which items
may be divisible). (The index ¢ ranges over items.)

GreedyKP (Alg. 1) takes items in order of efficiency until the
knapsack reaches capacity, or there are no more items with positive
efficiencies.

Theorem [4]: GreedyKP, with efficiency as the metric m, the
hard capacity stopping rule (Alg. 2) as f, and the soft taking rule
(Alg. 3) as g, solves R(KP) optimally.

1 Brown University, USA, email: betsy @cs.brown.edu
2 Brown University, USA, email: amy @cs.brown.edu
3 University of Southampton, UK, email: vn@ecs.soton.ac.uk

Algorithm 1 GREEDYKP
Input: v, w,c,m, f, g
Output: x
z=0
for all items 7, CALCMETRIC(Z, v, w, m)
i = BESTUNTAKENITEMINDEX
while ! f (i, ¢, v, w, ¢) and MOREITEMSTOCONSIDER do
T; = 1
i = BESTUNTAKENITEMINDEX
z; = g(i, @, v,w,c)
return

Algorithm 2 HARDSTOPPINGRULE

Input: ¢, x,v,w,c

Output: {boolean indicating whether to stop taking items or not}
return x - w + w; > ¢

Multiple Choice Knapsack Problem An MCKP is defined sim-
ilarly to a KP, with an additional constraint over a set of types 7,
which ensures that only one item s is taken from each type set,
T € T. Thus the objective is max, v - @ subject to w - * < ¢,
Yoeer®s <1, VT € T, and each z; € {0,1}, with R(MCKP)
defined analogously.

Theorem [6]: GreedyMCKP, with efficiency as the metric m,
the hard capacity stopping rule as f, the soft taking rule as g, solves
R(MCKP) optimally.

[6]’s algorithm (Alg. 5) proceeds in three steps: first it transforms
the given instance of MCKP into a KP (Alg. 4); second it solves the
ensuing KP optimally using GreedyKP; third it maps the resulting
KP solution back into an optimal solution to the MCKP (Alg. 6).

Penalized Knapsack Problems A PKP is defined by v and w, and
a penalty function p. The objective is maxq m(x), where 7(x) =
v-x — p(x, v, w) subject to each z; € {0, 1}, with R(PKP) defined
analogously. We refer to the penalty functions studied in [2] as global
because their only input is the knapsack’s total weight Kk = w - @.
In such cases, it suffices to search greedily with efficiency as the
metric; however, for non-global penalty functions, other metrics may
be more sensible.

Theorem [2]: If the penalty function is global and convex, then the
GreedyPKP algorithm, which invokes GreedyKP with efficiency

Algorithm 3 SOFTTAKINGRULE

Input: ¢, x,v,w,c

Output: {fraction of item ¢ to take}
return (c — x - w)/w;

1026 E.M. Hilliard et al. / An Algorithm for the Penalized Multiple Choice Knapsack Problem

Algorithm 4 REDUCEMCKPTOKP

Algorithm 7 PENALIZEDSTOPPINGRULE

Input: v, w, T
Output: v, w
SORTBYWEIGHT(v, w) {Reindex vectors}
forT € 7T do
(v|r, w|r) = REMOVELPDOMINATEDITEMS (v, w)
for: € [1,|T| — 1] do
((@l7)i, (wlr)i) = ((W[T)it1 — (v]T)s,
(w[r)it1) = (wl|7)i)
return v, w

Algorithm 5 GREEDYMCKP
Input: v,w,7,c,m, f, g
Output: x
(v',w') = REDUCEMCKPTOKP(v, w, T)
' = GREEDYKP(v',w',c,m, f, g)
return CONVERTKPSOLTOMCKPSOL(z', v', w’, v, w)

as the metric m, the penalized stopping rule (Alg. 7) as f, and the
penalized taking rule (Alg. 8) as g, solves R(PKP) optimally.

Penalized Multiple Choice Knapsack Problem A PMCKP is
defined by v, w, T, and a penalty function, p. The objective is
maxg 7(x) subject to >, xs < 1, VT € T and each z; €
{0, 1}, with R(PMCKP) defined analogously.

Theorem 1. If the penalty function is global, monotonic, non-
increasing, and convex, then the GreedyPMCKP algorithm, which
invokes GreedyMCKP with efficiency as the metric m, the penal-
ized stopping rule as f, and the penalized taking rule as g, solves
R(PMCKP) optimally.

Lemma 1. Let ™ denote an optimal solution to R(PMCKP) with
penalty function p, and let K* and ©* denote the total weight and
total value of x*, respectively. If p is global, monotonic, and non-
decreasing, then ™ is also an optimal solution to the corresponding
R(MCKP) with capacity k*. Furthermore, v - €* = 7 + p(k™).

Proof. Suppose not: i.e., suppose ™ is not an optimal solution to
the corresponding R(IMCKP) with capacity ™. Instead, suppose @ is
optimal, with total weight « and total value 7. Thenv - & > v - ™
and k < k™. Now, because the penalty function is global, monotonic,
and non-decreasing, p(k) < p(k*). Butthen 7 = v - & — p(k) >
v-x—p(k") >v-x" —p(k") = 7" But this is a contradiction,
since ™ is optimal. O

Proof of Theorem 1. The proof relies on two observations:

1. Let x denote an optimal solution to R(PMCKP), and let x* and
7* denote the total weight and total value of z. = is an optimal

Algorithm 6 CONVERTKPSOLTOMCKPSOL
Input: ', v, w’, v, w
Output: x
=0
forT € 7 do
(v, w") = ((v'|r) - (&|r), (w'|r) - (2| 1))
leti* € T be the greatest i s.t. (’|r); > 0 (or NULL)
if i* # NULL then
(z|r)ir = (v]7)e /0"

return x©

Input: ¢, z,v,w,p

Output: {boolean indicating whether or not to stop taking items}
x’ = x + e {e' is a vector of Os, except the ith entry isa 1}
return (7(x') < 7(x))

Algorithm 8 PENALIZEDTAKINGRULE
Input: ¢, ¢, v, w
Output: {fraction of z; to take}
return arg max, v - (¢ + ae’) — p(x + ae’, v, w)

solution to R(IMCKP) with capacity «”. The value of the optimal
solution to RIMCKP) is 7 + p(k®). (Lemma 1.)

2. Lety denote a feasible solution to R(KP), and let ¥ and 7¥ denote
the total weight and total value of y. y is a feasible solution to
R(PKP) with total value 7% — p(x¥).

Consider an instance of R(PMCKP). Let x denote an optimal so-
lution to this problem, with total weight x* and total value 7. Con-
sider, as well, a corresponding instance of R(PKP) constructed via
Zemel’s transformation. Let y denote an optimal solution to this
problem, with total value 7¥.

We claim that 7¥ > 7. Suppose not: i.e., suppose 7% < 7. By
Fact 1, x is an optimal solution to R(MCKP) with capacity * and
total value w* + p(k”). By Zemel’s theorem, x can be converted into
a solution, 3, to R(KP) with capacity s, such that the total value of
y' is 7 + p(x”®). Finally, by Fact 2, ' is also a feasible solution to
R(PKP) with total value 7® > #¥. This is a contradiction, because y
was assumed to be an optimal solution to R(PKP). O

3 Conclusions and Future Work

PMCKP was originally proposed as a model of bidding in ad auc-
tions [1]—specifically, in the context of the annual Trading Agent
Competition [3]. Indeed, one of the top-scoring TAC AA agents [5]
solved PMCKP using GreedyMCKP as a subroutine inside a search
over capacities, but as the space of possible capacities is enormous,
it is conceivable that GreedyPMCKP or a variant could perform
better. In future work, we plan to investigate the performance of
GreedyPMCKP in an ad auctions context.

4 Acknowledgments
This work was supported by NSF Grant #RI-1217761.

REFERENCES

[1] Jordan Berg, Amy Greenwald, Victor Naroditskiy, and Eric Sodomka,
‘A first approach to bidding in ad auctions’, in TADA ’10: Workshop on
Trading Agent Design and Analysis, (June 2010).

[2] Richard Freling, H. Edwin Romeijn, Dolores Romero Morales, and Al-
bert P. M. Wagelmans, ‘A branch-and-price algorithm for the multiperiod
single-sourcing problem’, Operations Research, 51(6), 922-939, (2003).

[3] PR. Jordan and M.P. Wellman, ‘Designing an ad auctions game for the
trading agent competition’, in Workshop on Trading Agent Design and
Analysis, (July 2009).

[4] Hans Kellerer, Ulrich Pferschy, and David Pisinger, Knapsack problems,
Springer, 2004.

[5] David Pardoe, Doran Chakraborty, and Peter Stone, ‘Tactex09: A cham-
pion bidding agent for ad auctions’, in Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), (May 2010).

[6] Eitan Zemel, ‘The linear multiple choice knapsack problem’, Operations
Research, 28(6), 1412-1423, (1980).

