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Abstract.

We present an algorithm for the penalized multiple choice
knapsack problem (PMCKP), a combination of the more com-
mon penalized knapsack problem (PKP) and multiple choice
knapsack problem (MCKP). Our approach is to converts a
PMCKP into a PKP using a previously known transformation
between MCKP and KP, and then solve the PKP greedily. For
PMCKPs with well-behaved penalty functions, our algorithm
is optimal for the linear relaxation of the problem.

1 Introduction

The knapsack problem (KP) is a classic optimization problem. Due to
the large number of real-world problems that can be modeled as KPs,
the problem comes in many flavors. We focus on a problem variation
that combines two previously studied variations: the penalized knap-
sack (PKP) and the multiple choice knapsack (MCKP) problem.

2 Knapsack Problems, Global Penalty Functions,
and Greedy Algorithms

We begin by presenting various knapsack problems, together with
greedy algorithms that solve their linear relaxations optimally.

In addition to a problem instance defined by a set of items, each
with a weight and value, and a total capacity, our algorithms take
as input a metric m, that describes how to evaluate items (e.g., effi-
ciency), a stopping rule f , that indicates when the algorithm should
stop taking items and an item-taking rule g, which determines the
fraction of the last item considered to take.

Knapsack Problem A KP is defined by a vector of item values,
v ≥ 0, a vector of weights, w ≥ 0 and a hard total capacity, c.
A solution is a vector x indicating the amount of each item taken.
Thus, the objective is maxx v · x subject to w · x ≤ c and each
xi ∈ {0, 1} (for the discrete problem, in which items are indivisible)
or each xi ∈ [0, 1] (for the relaxed problem, R(KP), in which items
may be divisible). (The index i ranges over items.)

GreedyKP (Alg. 1) takes items in order of efficiency until the
knapsack reaches capacity, or there are no more items with positive
efficiencies.

Theorem [4]: GreedyKP, with efficiency as the metric m, the
hard capacity stopping rule (Alg. 2) as f , and the soft taking rule
(Alg. 3) as g, solves R(KP) optimally.
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Algorithm 1 GREEDYKP
Input: v, w, c, m, f , g
Output: x
x = 0
for all items i, CALCMETRIC(i,v,w,m)
i = BESTUNTAKENITEMINDEX

while !f(i,x,v,w, c) and MOREITEMSTOCONSIDER do

xi = 1
i = BESTUNTAKENITEMINDEX

xi = g(i,x,v,w, c)
return x

Algorithm 2 HARDSTOPPINGRULE

Input: i,x,v,w, c
Output: {boolean indicating whether to stop taking items or not}

return x ·w + wi > c

Multiple Choice Knapsack Problem An MCKP is defined sim-
ilarly to a KP, with an additional constraint over a set of types T ,
which ensures that only one item s is taken from each type set,
T ∈ T . Thus the objective is maxx v · x subject to w · x ≤ c,∑

s∈T xs ≤ 1, ∀ T ∈ T , and each xi ∈ {0, 1}, with R(MCKP)
defined analogously.

Theorem [6]: GreedyMCKP, with efficiency as the metric m,
the hard capacity stopping rule as f , the soft taking rule as g, solves
R(MCKP) optimally.

[6]’s algorithm (Alg. 5) proceeds in three steps: first it transforms
the given instance of MCKP into a KP (Alg. 4); second it solves the
ensuing KP optimally using GreedyKP; third it maps the resulting
KP solution back into an optimal solution to the MCKP (Alg. 6).

Penalized Knapsack Problems A PKP is defined by v and w, and
a penalty function p. The objective is maxx π(x), where π(x) ≡
v ·x− p(x,v,w) subject to each xi ∈ {0, 1}, with R(PKP) defined
analogously. We refer to the penalty functions studied in [2] as global
because their only input is the knapsack’s total weight κ ≡ w · x.
In such cases, it suffices to search greedily with efficiency as the
metric; however, for non-global penalty functions, other metrics may
be more sensible.

Theorem [2]: If the penalty function is global and convex, then the
GreedyPKP algorithm, which invokes GreedyKP with efficiency

Algorithm 3 SOFTTAKINGRULE

Input: i,x,v,w, c
Output: {fraction of item i to take}

return (c− x ·w)/wi
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Algorithm 4 REDUCEMCKPTOKP
Input: v,w, T
Output: v,w

SORTBYWEIGHT(v,w) {Reindex vectors}
for T ∈ T do

(v|T ,w|T ) = REMOVELPDOMINATEDITEMS(v,w)
for i ∈ [1, |T | − 1] do

((v|T )i, (w|T )i) = ((v|T )i+1 − (v|T )i,
(w|T )i+1)− (w|T )i)

return v,w

Algorithm 5 GREEDYMCKP
Input: v,w, T , c,m, f, g
Output: x
(v′,w′) = REDUCEMCKPTOKP(v,w, T )
x′ = GREEDYKP(v′,w′, c,m, f, g)
return CONVERTKPSOLTOMCKPSOL(x′,v′,w′,v,w)

as the metric m, the penalized stopping rule (Alg. 7) as f , and the
penalized taking rule (Alg. 8) as g, solves R(PKP) optimally.

Penalized Multiple Choice Knapsack Problem A PMCKP is
defined by v, w, T , and a penalty function, p. The objective is
maxx π(x) subject to

∑
s∈T xs ≤ 1, ∀ T ∈ T and each xi ∈

{0, 1}, with R(PMCKP) defined analogously.

Theorem 1. If the penalty function is global, monotonic, non-
increasing, and convex, then the GreedyPMCKP algorithm, which
invokes GreedyMCKP with efficiency as the metric m, the penal-
ized stopping rule as f , and the penalized taking rule as g, solves
R(PMCKP) optimally.

Lemma 1. Let x∗ denote an optimal solution to R(PMCKP) with
penalty function p, and let κ∗ and π∗ denote the total weight and
total value of x∗, respectively. If p is global, monotonic, and non-
decreasing, then x∗ is also an optimal solution to the corresponding
R(MCKP) with capacity κ∗. Furthermore, v · x∗ = π∗ + p(κ∗).

Proof. Suppose not: i.e., suppose x∗ is not an optimal solution to
the corresponding R(MCKP) with capacity κ∗. Instead, suppose x is
optimal, with total weight κ and total value π. Then v · x > v · x∗

and κ ≤ κ∗. Now, because the penalty function is global, monotonic,
and non-decreasing, p(κ) ≤ p(κ∗). But then π = v · x − p(κ) ≥
v · x − p(κ∗) > v · x∗ − p(κ∗) = π∗. But this is a contradiction,
since x∗ is optimal.

Proof of Theorem 1. The proof relies on two observations:

1. Let x denote an optimal solution to R(PMCKP), and let κx and
πx denote the total weight and total value of x. x is an optimal

Algorithm 6 CONVERTKPSOLTOMCKPSOL

Input: x′,v′,w′,v,w
Output: x
x = 0
for T ∈ T do

(v∗, w∗) = ((v′|T ) · (x′|T ), (w′|T ) · (x′|T ))
let i∗ ∈ T be the greatest i s.t. (x′|T )i > 0 (or NULL)
if i∗ �= NULL then

(x|T )i∗ = (v|T )i∗/v∗
return x

Algorithm 7 PENALIZEDSTOPPINGRULE

Input: i,x,v,w, p
Output: {boolean indicating whether or not to stop taking items}
x′ = x+ ei {ei is a vector of 0s, except the ith entry is a 1}
return (π(x′) < π(x))

Algorithm 8 PENALIZEDTAKINGRULE

Input: i,x,v,w
Output: {fraction of xi to take}

return argmaxα v · (x+ αei)− p(x+ αei,v,w)

solution to R(MCKP) with capacity κx. The value of the optimal
solution to R(MCKP) is πx + p(κx). (Lemma 1.)

2. Let y denote a feasible solution to R(KP), and let κy and πy denote
the total weight and total value of y. y is a feasible solution to
R(PKP) with total value πy − p(κy).

Consider an instance of R(PMCKP). Let x denote an optimal so-
lution to this problem, with total weight κx and total value πx. Con-
sider, as well, a corresponding instance of R(PKP) constructed via
Zemel’s transformation. Let y denote an optimal solution to this
problem, with total value πy .

We claim that πy ≥ πx. Suppose not: i.e., suppose πy < πx. By
Fact 1, x is an optimal solution to R(MCKP) with capacity κx and
total value πx+p(κx). By Zemel’s theorem, x can be converted into
a solution, y′, to R(KP) with capacity κx, such that the total value of
y′ is πx + p(κx). Finally, by Fact 2, y′ is also a feasible solution to
R(PKP) with total value πx > πy . This is a contradiction, because y
was assumed to be an optimal solution to R(PKP).

3 Conclusions and Future Work

PMCKP was originally proposed as a model of bidding in ad auc-
tions [1]—specifically, in the context of the annual Trading Agent
Competition [3]. Indeed, one of the top-scoring TAC AA agents [5]
solved PMCKP using GreedyMCKP as a subroutine inside a search
over capacities, but as the space of possible capacities is enormous,
it is conceivable that GreedyPMCKP or a variant could perform
better. In future work, we plan to investigate the performance of
GreedyPMCKP in an ad auctions context.
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