
ADS2 : Anytime Distributed Supervision of Distributed
Systems that Face Unreliable or Costly Communication

Cédric Herpson and Amal El Fallah Seghrouchni and Vincent Corruble1

Abstract. Nowadays industrial process are mainly distributed, and
their supervision systems are still centralized. Consequently, when
communications are disrupted, it slows down or stops the supervision
process. To allow the anytime supervision of such systems, we pro-
pose a distributed approch based on a multi-agent system where each
supervision agent autonomously handles both diagnosis and repair on
a given location. We demonstrate the advantage of our proposal and
evaluates ADS2 using an industrial case-study. Experiments demon-
strate the relevance of our approach with an overall reduction of the
supervised system down-time of 34%.

1 Introduction
As the complexity of industrial systems increases, humans can no
longer process the flow of information arriving at each instant. The
need to minimize the down-time and to improve system effectiveness
requires the delegation of some of the decision-making power to the
supervision system. This requirement has lead to the (re)birth of a
research community around the notions of autonomic computing [3]
and self-* systems [7]. Our work lies within this context.

Centralized supervision systems are currently the standard in in-
dustry. However, they do not perform well in asynchronous contexts
[4]. Indeed, communication malfunctions between the supervision
system and the different regions of the supervised system delay the
repair and do not allow to quickly return to normalcy.

To overcome this lack of robustness when facing unreliable com-
munications and to reduce the supervised system down-time, we
present in this article ADS2 : a multi-agent architecture where each
supervision agent autonomously handles both diagnosis and repair
on a given location. To our knowledge, the work of Nejdl et al [5] is
the only one that addresses the distribution of these two phases. How-
ever, they assume communications at no cost. Our proposal does not
make such assumptions. The proposed architecture is composed of
two mechanisms: A decision mechanism and a coordination and con-
sistency recovery mechanism. The decision mechanism tackles the
dynamicity of the information available to an agent in order to make
a diagnosis. The coordination and consistency mechanism deals with
the problem of reaching a consensus between several agents on a
global diagnosis (or repair) in an asynchronous context.

2 A Multi-Agent Architecture for the Supervision
of Distributed Systems

Our architecture comes within the scope of fault-based model2 ap-
proaches with spatially distributed knowledge [6]. The supervision
1 University of Pierre and Marie Curie, France, email: first-

name.lastname@lip6.fr
2 The system can only use faults model, a priori known or dynamically

learned from the system observation.

process is distributed among several autonomous agents having each
a local view of the system to be supervised, and endowed with diag-
nosis and repair capabilities. The supervised system is partitioned
into regions, each one supervised by one agent. The supervision
agents exchange information in order to establish a diagnosis and
a repair consistent with the alarm they get from the various units of
the supervised system.

We consider that communications are asynchronous and that there
is no upper bound on transmission delay. We assume that the mes-
sages exchanged between supervised units may be lost or corrupted,
and that the observations and the messages between agents can be
lost but not corrupted. The agents are supposed to be reliable.

To be able to represent any temporal dependencies, each fault is
modeled as a t-temporised Petri net. Each fault is supposed to be re-
pairable, that is to say that there exists at least one partially ordered
sequence of atomic repairs rk that repairs it (a repair plan). Finally,
each fault f (respectively each repair plan rp(f)) is associated with a
cost of malfunction which depends of the fault duration Ctdysf (f, t)
(resp a cost of execution CtEx(rp(f))). The cost of a diagnosis dg
for the supervision system is the result of the aggregation of the re-
spective costs of the faults that compose it. Similarly, the execution
cost of a repair plan rp associated to a given diagnosis depends on
the aggregation of the respective costs of the repairs that compose it.

2.1 Agent Decision Model

We consider highly dynamic systems. Consequently, information
available to an agent at a given time can be insufficient to determine
with certainty which action to select. A supervision agent has thus to
determine the optimal decision (Dopt) between the immediate trig-
gering of the plan made under uncertainty (Dimmopt), and a de-
layed action (Ddelayopt) which lets him to wait and communicate
with other supervisor agents during k time steps. This waiting time
can yield information that reduces uncertainty and thereby improve
decision-making. The counterpart is that the elapsed time may have
a significant negative impact on the system. The expected potential
gain in terms of accuracy must be balanced with the risks taken.

Let Ct(x) the cost of an action x and Ctwait(k) the cost related to
the extra time k before selecting a repair plan. The decision-making
process of each supervision agent works as follows :

1. Observation gathering
2. Computation of the different sets of faults that can explain the

current observations : Dg (set of diagnosis)
3. Determination of the immediate repair Dimmopt based on avail-

able information and on the constraints we chose to focus on
(Most Probable Explanation, Law of parsimony, Worst case,...)
and computation of its estimated cost Ct(Dimmopt)

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1023

1023



4. A time t, an agent knows the set of the faults that may be occurring
in the region it supervises fpAi(t,Δt). Knowing theirs signatures
the agent is able to predict, for each fault of fpAi(t,Δt), the set of
observables that can be expected to appear during the time interval
[t, t+ k], with k an a priori fixed parameter. The agent uses these
information to compute the waiting cost Ctwait(k), the expected
potential gain of a delayed repair Ddelayopt and its associated
cost Ct(Ddelayopt).

5. Choice between the immediate repair and the delayed one.

This algorithm is executed at each time-step and by each agent
when faults occur. The value k represents an upper bound delay as
an agents’ decision is updated each time an observation is received.

2.2 Consensus and System Consistency
In the previous section, we addressed the problem of one agent mak-
ing a decision. However, as each agent has a local view of the sys-
tem, a decision frequently requires information and knowledge from
other supervision agents. It therefore becomes necessary to reach a
consensus on the decision to make. In a context of asynchronous and
unbounded communication the theorem of Fisher-Lynch-Paterson[2]
states the impossibility of guaranteeing the achievement of a consen-
sus between different components. Thus, the supervision system can
only offer a guarantee of “best-effort”. i.e, to assure that the consen-
sus can be reached, but only if the system is stable on a sufficiently
important period of time. The multi-Paxos algorithm [1]falls into this
category. Using it, each agent is thus able to initiate, integrate or leave
a coalition.

Algorithm 1 Check consistency
Require: Pattern observer on Finc
1: if Finc �= ∅ then
2: Try to contact Finc.getF irst().getCoalition()
3: if contact successful then
4: Send Finc.getF irst()
5: Receive other agents decision context
6: Make pairing between local decision context and others.
7: if pairing is ok then
8: Finc.removeF irst()
9: else

10: start new paxos instance
11: end if
12: end if
13: end if

The fact that there is no upper bound on the time needed to reach
a consensus will inexorably lead to some unilateral decision-making
by agents or agent groups in case of communication disruption. This
feature of our system guarantees the avoidance of deadlock situa-
tions when communications are too unstable to let the agents reach a
consensus. However, this ability requires the introduction of an algo-
rithm to restore a consistent view of the system state by all agents.

Algorithm 1 works in the manner of producer-consumer with the
decision-making process introduced in section 2.1. The two algo-
rithms share, within an agent, a common inconsistency queue Finc.
When a coalition is left by at least one agent before reaching a con-
sensus (due to a communication breakdown or to an agent’s deci-
sion), the members of the coalition store their respective decision-
making context into their own potential inconsistency queue Finc.

This algorithm lets each agent find a match between its actions and
those selected by the other members of the coalition. Thus, in case of
faults due to past inconsistency decisions taken by the agents, they
are able to trigger a sequential diagnosis and to discriminate initials
disturbances from the consequences of their decisions.

3 Experimentals Results and Conclusion

Figure 1. Average response time to a malfunction.

Fig. 1 presents the evolution of the behaviour of our supervision
systems ADS2 and of a centralised one (SC) regarding the average
response time to a malfunction in the case of homogeneous (Ho) and
heterogeneous (He) communication links. We used a real data-set
provided by our partners to generate the faults and a random gener-
ator to affect a transmission time (between 0 to 30 units of time) to
each transmission link for each time unit of the simulation. We arbi-
trarily set at 10% the probability of a link to get a transmission time
greater than 1.

The vertical bar at t=15ut is the horizon considered by the agents
of ADS2 for the computation of the delayed decision. Results shows
that our architecture is very robust, allowing the supervised system
to rapidly recover from failures. This is due to the fact that the agents
of ADS2 can decide to act without waiting for the reception of all
the messages that come from the units of the supervised system.
With our industrial fault models data-set, the overall gain regarding
the supervised system down-time reach 34%.

In conclusion, we presented the first anytime multi-agent architec-
ture for the supervision of distributed systems able to dynamically
adapt its behaviour to the current state of the supervised system. In
particular, the decision model allows each supervision agent to find a
balance between a quick local diagnosis and repair under uncertainty,
and a delayed, systemic one, based on the respective costs of misdi-
agnosis and communication. The distributed consistency algorithm
allows each agent to form a coalition to reduce its uncertainty or to
restore a consistent view of the system state in case some had to act
locally with incomplete information at an earlier stage. The reduction
of 34% of our partners system down-time demonstrates that ADS2
efficiently supervises complex systems under real-life assumptions.

REFERENCES
[1] R. De Prisco, B. Lampson, and N. Lynch, ‘Revisiting the paxos algo-

rithm’, Distributed Algorithms, 111–125, (2000).
[2] M.J. Fischer, N.A. Lynch, and M.S. Paterson, ‘Impossibility of dis-

tributed consensus with one faulty process’, Journal of the ACM (JACM),
32(2), 374–382, (1985).

[3] J. O. Kephart and D. M. Chess, ‘The vision of autonomic computing’,
Computer, 36(1), 41–50, (2003).

[4] S. Lafortune, D. Teneketzis, M. Sampath, R. Sengupta, and K. Sinnamo-
hideen, ‘Failure diagnosis of dynamic systems: an approach based on
discrete event systems’, in Proc. American Control Conference, vol-
ume 3, pp. 2058–2071, (June 25–27, 2001).

[5] W. Nejdl and M. Werner, ‘Distributed intelligent agents for control, di-
agnosis and repair.’, RWTH Aachen, Informatik, Tech. Rep, (1994).

[6] N. Roos, A.T. Teije, A. Bos, and C. Witteveen, ‘An analysis of multi-
agent diagnosis’, in Proceedings of the first international joint confer-
ence on Autonomous agents and multiagent systems: part 2, pp. 986–
987. ACM, (2002).

[7] M. Salehie and L. Tahvildari, ‘Self-adaptive software: Landscape and re-
search challenges’, ACM Trans. Auton. Adapt. Syst., 4(2), 1–42, (2009).

C. Herpson et al. / ADS2: Anytime Distributed Supervision of Distributed Systems that Face Unreliable or Costly Communication1024


