
Utility-Based HTN Planning

Ilche Georgievski and Alexander Lazovik 1

Abstract. We propose the use of HTN planning for risk-sensitive
planning domains. We suggest utility functions that reflect the risk
attitude of compound tasks, and adapt a best-first search algorithm to
take such utilities into account.

1 INTRODUCTION

Hierarchical Task Network (HTN) planning [3] is successfully used
in solving problems of various modern applications, for instance,
Web services [9] and ubiquitous computing [1, 2]. Real-world do-
mains are characterised with unpredictability of alternatives encoun-
tered during planning which relates to risk. The sensitivity of plan-
ning techniques to risk is especially useful for applications with large
wins or loses of resources, such as money, power, equipment, time
and even humans. If a planning technique takes indifferent attitude
towards risk, the result may be an undesirable outcome. Consider
the following example. A smart building is confronted with an emer-
gency situation due to fire. The building needs to react in such a way
that all its occupants will be rescued in as short a time as possible.
Let us assume that the building can accomplish the deliverance in
two ways. One way involves guiding occupants through a very fast
track but with a high risk to encounter flames on the route to the exit.
Otherwise, the planner may choose a longer track: through this track
occupants can be guided to escape the building with a lesser change
of danger of fire breaking out. Which track to decide on?

We propose a framework based on HTN planning that takes task
utilities into account, where a utility is a function of a profit and may
determine the attitude towards risk. We assume that a primitive task is
associated with a function of consumption that expresses a single or
combination of properties, such as failure rate and energy use. Thus,
the possible runtime failures are not modelled directly, but we assume
that some tasks are more likely to show unpredictable behaviour. Un-
der the assumption that a compound task may have a large number
of methods and many of them applicable, we use a utility to express
the level of preference of the compound task, and a utility function
to calculate the perceived utility of the task. The algorithm selects
the best task network to work with, that is, the one with the lowest
estimated value.

Related Work. To the best of our knowledge, risk sensitivity and
utilities have not been addressed in HTN planning yet, but they have
been investigated in other planning models that are naturally and con-
ceptually different than HTN planning (e.g., [4]). However, preferred
plans have been a point of interest in HTN planning. In [10], a set
of user preferences and incremental best-first search is used to find
the most preferred plan. Nau et al. [7] require costs to be associ-
ated to operators and use rather limited branch-and-bound optimi-
sation to search the best plan. Luo et al. [6] use utility functions of

1 University of Groningen, The Netherlands, email: initial.surname@rug.nl

operators and a messy genetic algorithm to search for the best solu-
tion. In [1], context-aware adaptations seem to take specific resource-
related properties into account. Finally, Kuter and Golbeck [5] use
user ratings and trust in services to find the most trustful service com-
position in social environments. The studies that take operator costs
into account to search for the “best” solution neglect the utilities of
compound tasks. In the studies where the costs of compound tasks
is supposed to have some decision-making role (e.g., [1]), such costs
are encoded manually into the domain knowledge without formal
groundings of the meaning and calculation. The closest approach to
ours is [5] where user ratings of atomic services are used to calculate
backwards the trust of composite services.

2 PRELIMINARIES

Our formalism of HTN planning adopts many definitions from [3]. A
state is a set of ground predicates. A primitive task is an expression
of the form pt(τ), where pt is a primitive-task symbol, and τ =
τ1, . . . , τn are terms. A compound task is defined similarly. The set
of primitive and compound tasks is a finite set of task names TN .

An operator o is a triple 〈pt(o), pre(o), eff(o)〉, where pt(o) is
a primitive task, pre(o) and eff(o) are precondition and effect, re-
spectively. An operator o is applicable in a state s iff pre(o) ⊆ s.
Applying o to s results into a new state s[o] = s ∪ eff(o).

A task t is a pair 〈ct(t),Mt〉, where ct(t) is a compound task, and
Mt is a set of methods. A method m is a pair 〈pre(m), tn(m)〉,
where pre(m) is a precondition and tn(m) is a task network. A
method m is applicable in a state s iff pre(m) ⊆ s. Given a task
t such that m ∈ Mt, applying m to s results into a task network
tn(m) = (s[m], t). A task network tn is a pair 〈Tn,≺〉, where
Tn ⊆ TN , and ≺ is a partial order on Tn.

Definition 1 (HTN Planning Problem). An HTN planning problem
P is a tuple 〈s0, tn0, O, T 〉, where s0 is an initial state, tn0 is an
initial task network, O and T are sets of operators and tasks, respec-
tively.

Definition 2 (Solution). A sequence of operators o1, . . . , on is a
solution to P , if and only if there exists a task t ∈ T0, where
tn0 = 〈To,≺0〉, such that (t, t′) ∈ ≺0 for all t′ ∈ T0 and

1. t (or o1) is primitive and applicable in s0 such that o2, . . . , on is a
solution to P = 〈s0[o1], tn0 \ {o1}, O,M〉; or

2. t is compound and there exists an applicable method m such that
tn(m) = (s0[m], t), tn′ = tn0 \ {t} ∪ tn(m), and o1, . . . , on is
a solution to P = 〈s0, tn′, O, T 〉.

3 UTILITIES

We require a primitive task to be provided with some function of con-
sumption that expresses the cost of the operator as a non-negative

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1013

1013

value, that is, c(o) ∈ R≥0. We estimate the utility of a compound
task t based on its risk or consumption attitude. The following func-
tion represents a template formula for calculating the utility value of
t. The definition of the estimation factor E gives a concrete utility
function. We assume that each t is acyclic, that is, t can be decom-
posed only to a finite depth. Figure 1 serves as a demonstrating ex-
ample of such a task, where the leaf tasks are operators associated
with non-negative costs.

U(t) =

⎧
⎨

⎩

c(o), if t is primitive;
min
m∈Mt

E(m), otherwise.

��

���
��� ��

��

��
��

�
��

��
��� �	

�
�

��

��� �	�

��

��
��

�
��
�	

��

��

Figure 1. Example of a task

Risk-averse utility. A task is risk-averse if and only if it min-
imises the maximum expected utility value of its methods’ sub-
tasks. A risk-averse task shows pessimistic behaviour towards risk,
that is, it represents the safest possible decision by using E(m) =
max

t′∈tn(m)
U(t′). Applying this risk-averse attitude on our example re-

sults in U(t) = 3.

Risk-seeking utility. A task is risk-seeking if and only if it min-
imises the minimum expected utility value of its methods’ sub-
tasks. A risk-seeking task shows optimistic behaviour towards risk,
that is, it takes the highest risk to gain the best outcome by using
E(m) = min

t′∈tn(m)
U(t′). Considering risk-seeking attitude of the

task in our example, then U(t) = 1.

Risk-neutral utility. A task is risk-neutral if and only if it min-
imises the average expected utility value of all subtasks for a given

task’s method, that is, E(m) =
∑

t′∈tn(m) u3(t
′)

|tn(m)| . Applying the risk-
neutral attitude on our demonstrating example gives U(t) = 2.

Consumption-aware utility. A task is consumption-aware if and
only if it minimises the sums of utility values of its methods, that is,
E(m) =

∑
t′∈tn(m) U(t′). Considering such consumption-aware

attitude of the task in the demonstrating example, then U(t) = 5.

3.1 Algorithm

We take a node n to be a three-element structure 〈s, tn, π〉, where s
is a state, tn is a task network, and π is a partial plan. A node n is se-
lected for expansion based on one of the utility functions that can be
seen as a heuristic function. The utility-based best-first search algo-
rithm (Algorithm 1) takes an HTN planning problem, some resource
value and a utility function, and starts by initialising the frontier. The
nodes whose utility value is greater than the amount of resource are
pruned from the search space. If the node has no more tasks to be

decomposed, and the utility of its partial plan is less than the util-
ity of the best plan found so far, then we consider the current one
as the best plan. The function in line 10 is a decomposition method,
such as the partially ordered decomposition in [3], which considers
the applicability of operators and methods in the state of the current
node.

Theorem 1 (Optimality). Given an HTN planning problem P , a util-
ity function U , and a resource value, if the termination of the algo-
rithm returns a plan, then the plan is an optimal solution to P .

The proof of the theorem follows from the definition and proper-
ties of the best-first search algorithm [8].

Algorithm 1 Find a sequence of operators
1: currentUtility ← ∞
2: frontier ← 〈s0, tn0, ∅〉
3: while frontier �= ∅ do

4: best ← POP (frontier)
5: if resource > U(best.tn) then

6: if best.tn = ∅ and E(best.π) < currentUtility then

7: print best.π
8: currentUtility ← E(best.π)
9: end if

10: decompositions ← DECOMPOSE(best)
11: frontier ← MERGE(decompositions, frontier, U))
12: end if

13: end while

4 CONCLUSION

We have introduced a framework for utility-based HTN planning and
utilities of compound tasks based on their risk attitude to find optimal
solutions. We will further extend the framework (e.g., the case of
cyclic tasks), and we will demonstrate the benefits of utility-based
HTN planning in the domain of smart buildings.

ACKNOWLEDGEMENTS

The work is supported by the Dutch National Research Council under
the NWO Smart Energy Systems program, contract no. 647.000.004.

REFERENCES

[1] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri, ‘What Planner for
Ambient Intelligence Applications?’, SMC, Part A, 35(1), 7–21, (2005).

[2] I. Georgievski, T. A. Nguyen, and M. Aiello, ‘Combining Activity
Recognition and AI Planning for Energy-Saving Offices’, in UIC, pp.
238–245, (2013).

[3] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: Theory
& Practice, Morgan Kaufmann, 2004.

[4] S. Koenig and R. G. Simmons, ‘Risk-sensitive planning with proba-
bilistic decision graphs’, in KR, pp. 363–373, (1994).

[5] U. Kuter and J. Golbeck, ‘Semantic Web Service Composition in Social
Environments’, in ISWC, pp. 344–358, (2009).

[6] J. Luo, C. Zhu, W. Zhang, and Z. Liu, ‘Messy Genetic Algorithm for
Optimum Solution Search of HTN Planning’, JICS, 10(5), 1303–1313,
(2013).

[7] D. S. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman,
‘SHOP2: An HTN Planning System’, JAIR, 20(1), 379–404, (2003).

[8] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach, Pearson Education, 2003.

[9] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. S. Nau, ‘HTN Planning
for Web Service Composition Using SHOP2’, WS, 1, 377–396, (2004).

[10] S. Sohrabi, J. A. Baier, and S. A. McIlraith, ‘HTN Planning with Pref-
erences’, in IJCAI, pp. 1790–1797, (2009).

I. Georgievski and A. Lazovik / Utility-Based HTN Planning1014

