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Abstract. Belief Propagation (BP) applied to cyclic problems is a
well known approximate inference scheme for probabilistic graphi-
cal models. To improve the accuracy of BP, a divide-and-conquer ap-
proach termed Conditioned Belief Propagation (CBP) has been pro-
posed in the literature. It recursively splits a problem by condition-
ing on variables, applies BP to subproblems, and merges the results
to produce an answer to the original problem. In this essay, we pro-
pose a reformulated version of CBP that exhibits anytime behavior,
and allows for more specific tuning by formalizing a further decision
point that decides which subproblem is to be decomposed next. We
propose some simple and easy to compute heuristics, and demon-
strate their performance using an empirical evaluation on randomly
generated problems.

1 Introduction

Belief Propagation (BP) [5] works by sending messages between
variables along the edges of the problem graph. For acyclic problems
the algorithm terminates after a number of message-passing steps
that is linear in the size of the graph, and in these cases BP com-
putes exact results for the marginal probabilities of all variables at
once. But when the graph contains cycles, BP is no longer guaranteed
to converge, and the results produced are no longer exact. With the
knowledge that BP optimizes a certain variational approximation [6],
it is also possible to extract an estimate of the partition function from
the messages.

In this short essay2 we describe a simple method of improving the
approximation quality of BP. The basic idea was already formulated
by Pearl [5], who proposed to condition on variables to break loops.
But instead of aiming to break all loops, we apply BP again to a now
slightly less cyclic problem. This very idea was picked up by Eaton
and Ghahramani [2], who introduced the term Conditioned Belief
Propagation (CBP) for it. They describe a very elaborate method of
picking variables to condition on. In this paper, we formalize a sim-
pler version of CBP with an additional choice point we call “leaf
selection”, together with simpler, well performing heuristics.

Related to CBP are collapsed sampling methods, which sample
assignments to a subset of variables while solving the conditioned
problem exactly (see for example Cycle-Cutset sampling [1]). In con-
trast to this, CBP systematically explores conditions, while solving
the remaining problem approximately. Further, CBP can be regarded
as a mixture model. See for example Jaakkola and Jordan’s work
about using mixtures of Mean field approximations for probabilis-
tic inference [4]. The difference to this approach is mainly that CBP
“ties” the components to certain conditions, and the mixture compo-
nents in CBP are mutually exclusive.
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2 There exists an extended version of this essay [3].

2 CBP

CBP is an inference algorithm for Markov networks that yields an
approximation to the partition function. With slight modifications it
can also produce marginal probabilities for all variables. We denote
sets of variables using bold letters (X,Y, . . . ), and single variables
using normal style (X,Y, . . . ). The set of all variables is X . For a
set of variables X, let V(X) be the set of all its assignments, which
are functions mapping a variable X ∈ X to one of its finitely many
values D(X), and let ˜V(X) be the set of partial assignments to X.
We denote (partial) assignments with lower case (Greek) letters. The
set of all partial assignments is A. A factor φ : V(Xφ) → R

+

over a finite set of variables Xφ maps an assignment to its variables
to the non-negative reals. A Markov network (or problem) Φ over
variables XΦ is the product over a finite number of factors: Φ(x) =
∏

φ∈Φ φ(xφ), mapping assignments x ∈ V(XΦ) to the non-negative
reals. The set of all Markov networks is P . Let ZΦ be the partition
function (or normalizing constant) of a Markov network Φ, defined
by ZΦ =

∑

x Φ(x).
The CBP algorithm decomposes a given problem Φ step by step.

This forms a tree of partial assignments with the empty assignment as
the root. For each inner node ξ ∈ ˜V(XΦ), its children are the assign-
ments obtained by extending ξ by all assignments to some variable
X . Because at each stage of the algorithm only the leaf nodes of this
tree are relevant, we capture the state of the computation by a set of
partial assignments Q ⊆ ˜V(XΦ). Q always implies a partition of all
assignments V(XΦ). The function refL,V : P × 2A → 2A applies
one refinement step to a set of leaves Q, using leaf selection heuristic
L : P × 2A → A and variable selection heuristic V : P ×A → X .
Letting ξ = L(Φ, Q), and X = V (Φ, ξ),

refL,V (Φ, Q) = (Q \ {ξ}) ∪ {{ξ ∪ {X �→ xi}} | xi ∈ D(X)}.
(1)

To obtain an estimate of the partition function, we sum over the
estimates ZBP

Φ[ξ] obtained from applying BP to the problem Φ con-
ditioned on partial assignment ξ. We define the function sum :
P × 2A → R

+ as sum(Φ, Q) =
∑

ξ∈Q ZBP
Φ[ξ]. Then we can de-

fine the estimate of the partition function obtained from n steps of
CBPL,V : P × N

+ → R
+ as

CBPL,V (Φ, n) = sum(refn
L,V (Φ, {∅})). (2)

Here, refn
L,V means the n-fold recursive application of refL,V in

its second argument: refn(Φ, Q) = ref(Φ,refn−1(Φ, Q)) and
ref0(Φ, Q) = ref(Φ, Q). Turning this function into an imperative
algorithm reveals the anytime nature of CBP.

Since BP yields exact results on tree-structured problems, one can
stop the decomposition of a leaf once it contains no loops, or use
other exact methods to solve the leaf earlier. But anyway CBP con-
verges to the exact solution, since it becomes equivalent to summing
over all assignments once all variables are conditioned in all leaves.
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Note that this formalization is agnostic to the used inference algo-
rithm, and every other way of calculating an approximate partition
function can be used.

3 Heuristics

We discuss two simple leaf selection heuristics. The first is mini-
mum depth (MIN DEPTH) which grows the tree in a breadth-first
like manner, and resembles CBP as described in [2]. The second is
maximum weight (MAX Z) which expands the leaf with the highest
estimated partition function. The reasoning behind MAX Z is to fo-
cus effort on the most important regions of the probability space, and
to find leaves early where BP overestimates the true partition func-
tion. On the downside it fails to expand leaves that are undervalued.

As discussed, the reasons for BP yielding wrong results are con-
vergence to local optimum (or total failure to converge), and error
contributions from cycles. Since cycles are also the cause of bad con-
vergence, it is reasonable to aim at using conditioning to break these
influential cycles. We propose a variable selection heuristic called
Time To Converge (TTC). It selects a variable that is adjacent to the
edge for which the maximum of convergence time over the messages
in both directions is the highest. The idea is to identify parts of the
problem where BP has trouble converging. For a more detailed dis-
cussion, and more heuristics see the extended version [3].

4 Evaluation

We evaluated CBP with the proposed heuristics on randomly gener-
ated problems. An excerpt of the results is given in Figure 1. Con-
cerning the leaf selection heuristics, we found that MAX Z domi-
nates MIN DEPTH in all cases. We assume that MAX Z can still be
improved by incorporating some estimate of the approximation error.
Looking at the variable selection heuristics, we found that TTC per-
forms very well — in particular on grid-structured problems. Its per-
formance appears to be similar to the BBP heuristic from [2] on grid
problems, and it exceeds the performance of BBP on randomly struc-
tured problems. This is the case despite TTC being much simpler and
faster to compute than BBP. For problems with random structure,
graph-oriented variable selection heuristics like MAX DEGREE per-
form well (not shown). We conclude that it is important to choose the
heuristic with regard to the characteristics of the problem, and simple
heuristics can practically perform well.

5 Discussion

CBP offers a simple means to improve the accuracy of BP. Our for-
mulation can be cast as an anytime algorithm, and allows to trade
in time and space for improved accuracy. Since CBP solves partially
conditioned problems, it is also able to reveal and exploit context-
specific independence. Further, it can exploit deterministic depen-
dencies when those become inconsistent with the current condition.
Then it is possible to evaluate the current leaf to zero. In this way
CBP is an algorithm that has facilities to solve both high entropy
parts of problems (BP), as well as low entropy parts (conditioning).
This is a perfect combination, as BP is weak on low entropy prob-
lems (i.e. problems with very strong dependencies), and conditioning
fails under the presence of many equal choices.

Despite the apparent benefits of CBP, we would also like to point
out a major short-coming that has to be solved before CBP can be
used as a true general-purpose inference algorithm. If one takes a
close look at the plots in Figure 1, one will notice that the accuracy
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Figure 1. These plots show the median of the relative error over 500
random problems (grids are 8×8, and random problems have 25 variables

and 50 factors; factor values S1 are drawn from exponentiated normal
distribution exp(N ), C1 factors are single features). Color encodes the

variable selection heuristic, while line type represents leaf selection
heuristic. The variable selection heuristic BBP shows results obtained from
the heuristic in [2], whose implementation is fixed to MIN DEPTH. On the
x-axis we print the number of iterations of CBP; iteration 1 corresponds to

ordinary BP. The y-axis shows the relative error in logZ.

improves only with the logarithm of the number of iterations. This is
intuitive, since with the progression of CBP the error contribution of
each leaf decreases with its weight, and thus each further decompo-
sition step has a lesser effect. In addition, the relative improvement
per step will be much smaller for problems with more variables, as
the absolute improvement that can be gained by conditioning on one
variable stays the same. This means that the computational cost of
CBP required to achieve the same relative improvement grows ex-
ponentially with the problem size. This is clearly impractical. Thus,
to make CBP a viable choice, we have to develop a way to exploit
the independence between the conditioning effects of variables that
are largely unrelated to each other. In summary, CBP appears to of-
fer many desirable features, but it falls short of becoming practically
interesting unless a way is found to make it scale to large problem
instances.
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