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Abstract. This work relates to context-awareness of things that belong to IoT net-
works. Preferences understood as a priority in selection are considered, and dy-
namic preference models for such systems are built. Preference models are based
on formal logic, and they are built on-the-fly by software agents observing the be-
havior of users/inhabitants, and gathering knowledge about preferences expressed
in terms of logical specifications. A 3-level structure of agents has been introduced
to support IoT inference. These agents cooperate with each other basing on the
graph representation of the system knowledge. An example of such a system is
presented.
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Introduction

The Internet of Things, or IoT, refers to uniquely identifiable objects able to perform
automatic data transfer over a network and cooperate without any kind of intervention.
Context-awareness is a property related to linking changes in the environment with com-
puter systems, which are otherwise static. Important aspects of context are: where you
are, who you are with, and what resources are nearby [1]. Preferences understood as a
priority in the selecting something over others things are considered.

The contribution of this work is an idea of a smart, i.e. context-aware and pro-active
system, which is built using formal/temporal logic as a method of representing knowl-
edge and reasoning about inhabitants’ behaviors/preferences. This idea is implemented
using a 3-level hierarchy of agents operating in a graph representation of the IoT.

A car park is considered as an example and defines a graph structure for the IoT.
Dynamic preference models are based on temporal logic, and they are built on-the-fly
by software agents sensing and reacting to users/inhabitants and preparing user-oriented
preference decisions. Formal logic allows to register behavior in a precise way, i.e. with-
out any ambiguity typically found in natural languages. “Logic has simple, unambiguous
syntax and semantics. It is thus ideally suited to the task of specifying information sys-
tems” (J. Chomicki, J. Saake). It also allows to perform automatic and trustworthy rea-
soning, e.g. using semantic tableaux, to obtain preference decisions for newly observed

1Corresponding Author: Radosław Klimek: AGH University of Science and Technology, al . Mickiewicza
30, 30-059 Krakow, Poland; E-mail: rklimek@agh.edu.pl.

Workshop Proceedings of the 10th International Conference on Intelligent Environments
J.C. Augusto and T. Zhang (Eds.)
© 2014 The authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-411-4-37

37



users/inhabitants. Logical inference allows to build truth trees, searching for satisfiability
or contradictions. Agents gather basic information in nodes, identify users/inhabitants,
observe their behaviors, build logical specifications, and prepare preference decisions for
users/inhabitants.

1. Context models and preference models

Pervasive computing or ubiquitous computing can be understood as existing or being
everywhere at the same time, assuming the omni-presence of computing which provides
strong support for users/inhabitants and makes the technology effectively invisible to the
user. Context-awareness and context modeling is one of the crucial aspects of pervasive
systems and IoT, which in turn could be understood as a scenario in which objects, users,
inhabitants (or even animals) permanently cooperate.

Context-awareness refers to the interpretation logic that is embedded inside perva-
sive applications. This type of computing assumes transfer of contextual information
among applications in the IoT network. The context includes conditions and circum-
stances that are relevant to the working system. A sample physical world which creates
a context interpreted by context-aware applications is shown in Fig. 1, c.f. also [2]. The
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Figure 1. From physical world to context-aware software systems

physical world and the context-aware software constitute the smart environment. The
context models are created by different types of sensors distributed in the whole consid-
ered physical area. Distributed sensors constitute a kind of eyes for software systems.
It follows that smart applications must both understand the context, (be context-aware),
and be characterized by pro-activity, meaning they must act in advance to deal with an
expected occurrences or situations, especially negative or difficult ones. Context-aware
systems are able to adapt their operations to the current context without explicit user
intervention.

Preference modeling enables customization of software behavior to users’ needs.
The construction of preference models is particularly important in systems of pervasive
computing. Preference modeling needs formalization and it is discussed in some works,
e.g. [3]. The model of preference might be constructed using fuzzy sets, classical logic
and multi-valued logics. Classical logic, and particularly rule-based systems, are espe-
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cially popular. Non-classical logics, especially temporal logic, are less popular. On the
other hand, temporal logic is a well-established formalism for describing reactiveness,
and meanwhile, the typical pervasive application should be characterized by reactivity
and flexibility in adapting to changes on the user side. The variability and change in val-
uation of logical statements are difficult to achieve in classical logic, and that is why tem-
poral logic is proposed. After building a preference model in formal/temporal logic, one
can analyze it using a deductive approach. The goal is searching for any contradictions
in a model or analyzing its satisfiability.

Temporal Logic TL is a branch of symbolic logic and focuses on statements whose
valuations depend on time flows. It it strongly applicable in the area of software engi-
neering, and is used for system analysis where behaviors of events are of interest. TL
exists in many varieties; however, considerations in this paper are limited to the Propo-
sitional Linear Temporal Logic PLTL, i.e. logic with the linear time structure, and its
semantics could be found in many works, e.g. [4]. The issue of preference models based
on temporal logic are discussed in some works. For example, in [5] some basic notions
and definitions are introduced. The architecture of an inference system is proposed. The
methodology for gathering information about preferences in the requirements engineer-
ing phase is proposed in [6]. Finally, in [7], it is shown that preference modeling could
reduce the state space of the agent-based world.

Logic and reasoning are cognitive skills. Logical reasoning is the process of using
sound mathematical procedures on given statements to arrive at conclusions. Although
the work is not based on any particular method of reasoning, the method of semantic
tableaux is presented in a more detailed way. The method of semantic tableaux, or truth
tree is well-known in classical logic but it can be applied in modal/temporal logic [8].
The method is based on predefined formula decompositions. At each step of the well-
defined procedure, formulas become simpler as logical connectives are removed. At the
end of the decomposition procedure, all branches of the received tree are searched for
contradictions.When the branch contains a contradiction, it means that it is closed. When
the branch does not contain a contradiction, it means that it is open. When all branches
are closed, it means that the tree is closed. Simple examples of inference trees are shown
in Fig. 4, where the adopted decomposition procedure refers to the first-order predicate
calculus.

The semantic tableaux method can be treated not only as a method for system cor-
rectness analysis [9,10,11] but also as a decision procedure, i.e. an algorithm that can
produce a Yes/No answer as a response to some important questions. Let F be the exam-
ined formula and T is a truth tree build for a formula.

Corollary 1 The semantic tableaux method gives answers to the following questions
related to the satisfiability problem:

• formula F is not satisfied iff the finished T (F) is closed;
• formula F is satisfiable iff the finished T (F) is open;
• formula F is always valid iff finished T (¬F) is closed.

The proof seems relatively easy and it follows from the introduced definitions and rules.
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2. Context-awareness of the IoT

The goal of this approach is building preference models on-the-fly, i.e. preference mod-
els are created during operation of the system, and they are the result of users/inhabi-
tants’ behavior observations. Preference models are expressed in terms of temporal logic
formulas and can be dynamically changed during the system operation.

p018p015
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g1g2

g3

Figure 2. A sample parking space as a graph structure

Let us consider a sample car park, c.f. Fig. 2. It consists of some entrance/exit gates,
and a number of identified parking spaces. To achieve the goal mentioned above, i.e. on-
the-fly preference models, we suggest to implement the following multi-agent system.
The world of things/objects is modeled using a graph structure, that glues the coopera-
tion of three types of agents into one system. Fig. 3 shows the whole agent world, i.e.
agents that operate in the smart environment. Existence of the following types of agents
is assumed:

1. A3 – agents also called decision agents, that permanently exist in the system and
whose primary aim is to prepare/compute preference-based decisions for a new
user/inhabitant entering the car park; these decisions are based on the gathered
knowledge expressed in terms of logical specifications which are prepared by
agents A2, decision agents can also modify knowledge, which is their secondary
aim, when they find that the newly observed behaviors include contradictions in
regard to the old behavior, i.e. knowledge expressed in (old) logical formulas,
and that elimination of the contradiction might be a result of the formal analysis
of logic formulas using, for example, the semantic tableaux method.

2. A2 – agents also called follower agents, that might temporarily exist in the system
and whose aim is to observe objects that appear in the smart environments and
build logical specifications considered as a set of temporal logic formulas that
express behaviors of newly observed users/inhabitants; the logical specification
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constitutes knowledge about user preferences and is built basing on information
form agents A1. They are generated when some event occurs.

3. A1 – agents also called reactive agents, or node agents, that exist permanently
in the system and whose aim is to operate in an individual node, gathering infor-
mation about users/inhabitants who reach this node in the IoT network; informa-
tion is obtained through sensors and combined with the identification (generally:
RFID, PDA devices, biometric data, image scanning and pattern recognition, and
others) of a user/inhabitant.

Graph layer
A1

A2

A3

Figure 3. The hierarchy of agents in a smart environment

The graph layer is defined as a labelled and attributed graph (abbrev. LA-graph)
defined below.

Definition 1 An LA-graph is a labelled and attributed digraph of the following form
G = (V,E,{labX ,attX}X=V,E), such that:

• V is a finite and nonempty set of vertices;
• E ⊂V ×V is a set of directed edges (arcs);
• labX : X → LX are labeling functions for nodes (X = V ) and edges (X = E)

respectively, where LV ,LE are sets of node and edge labels;
• attX : X → 2AX are attributing functions for nodes (X = V ) and edges (X = E)

respectively, where AV ,AE are sets of node and edge attributes.

The interpretation of labels and attributes in Definition 1 is as follows. A label l ∈ L
unambiguously identifies a given vertex/edge, e.g. by assigning an unique name to an
object; an attribute a ∈ A is some property of a vertex/edge. As stated in Definition 1,
one may assign a set of attributes to a given entity. It should be stressed that an attribute
a must not be confused with its value. Thus the notion of LA-graph may be compared
to a class definition. The graph analog of a class instance is an instantiated LA-graph,
defined below.

Definition 2 Let G = (V,E,{labX ,attX}X=V,E) be an LA-graph. An instantiation of G
is a triple Ĝ = (G,valV ,valE), where valX : X ×AX → ΩX is an instantiating function
for nodes (X = V ) and edges (X = E) respectively. Ĝ will be also referred to as an
instantiated LA-graph (shortly, ILA-graph).

The mentioned idea will be explained using the example of the parking system. The
graph consists of only four types of nodes:

• node labelled by G – that describe a gateway to the parking,
• node labelled by R – that describe an road segment,
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• node labelled by P – that describe a parking space,
• node labelled by C – that describe a car.
In real solutions, we have to also consider a few types of sensors and the area of

their cooperation, but it will only influence more complex behavior of the A1-type agent
(so we will not consider them here). We assume that each node labelled by G, R or P
has associated A1-type agents that discover the appearance of a car in the space which it
describes. A more complex action is associated with the event of a car appearing in the
gateway (coming for outside of the parking); it consist of the sequence of actions:

• a new node labelledC is added to a graph – it is linked with node labeled by G,
• a new agent of type A2 is created, and it communicates with the agent of type

A3 supervising this gateway – asking for the preference of the identified car. This
generates agents which follows the car, observing the driver behavior both while
it travels to the parking space and while it leaves the parking.

• when the car leaves the car park, agent of the A2 type sends the observations to
an agent of type A3, and destroys itself.

Let us consider a simple yet illustrative example for the approach. Let us present
rules for the A1 agents, which are assigned to particular nodes of the parking space/-
graph structure. The basic events that refer to the presence of users/inhabitants are
recorded in nodes. Let O = {o1,o2, ...} is a set of users/inhabitants identified in
the system. Individual users have unique identifiers. Let D = {d 1,d2, ...} is a set of
events, where every di belongs to 〈O,V,T 〉, where O is a set of identified users/in-
habitants, V is a node of a network, and T is a set of time stamps. For example,
di = 〈idOla91, p0018, t2014.01.28.09.30.15〉means that the presence of the idOla91 ob-
ject is observed at the physical point/area p0018 of the parking space, and the timestamp
assigned to this event is t2014.01.28.09.30.15.

Let us present rules for the A2 agents, which occupy the middle level in the entire
hierarchy of the agent activities. Agents gather knowledge about preferences of users/in-
habitants in the considered area. Preferences are expressed in terms of temporal logic
formulas. To obtain such logical specifications, the information produced by agents A1,
i.e. events registered in particular nodes are processed. The A2 agents translate physical
events to logical specifications. The main idea for this is to analyze timestamps of events;
however, the detailed algorithm will be the goal of separate work, and here only brief
information is presented. The input for this translation are events d i as defined above.
The output are logical formulas understood as triples of the form l i = 〈id, f ,r〉, where
id is an identifier an object that operates in the parking space/IoT, f is a temporal logic
formula, and r is the number of occurrences of this formula as a result of a user behav-
ior. The entire logical specification is a set of these triples, i.e. S = {l i : i ≥ 0}. The in-
troduced notion requires some explanation. The system stores information about differ-
ent users and the id allows to differentiate formulas intended for a particular user. The
meaning of f is obvious, i.e. it is a syntactically-correct temporal logic formula. The r
element, where r > 0, is a kind of counter and it means multiple occurrences of a given
formula as a result of multiple observations of the same behavior in the past. For exam-
ple, 〈idOla91,g2⇒�p018,7〉 and 〈idOla91,g2⇒�p015,2〉means that user idOla91
enters gate g2 and sometimes reaches the parking area p018 (seven times in the past),
and sometimes reaches the parking area p015 (two times in the past). When the prefer-
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ence decision is taken, and if p018 is free, then this parking area is suggested as the most
preferred one, otherwise p015 is suggested or, if it is not free, no suggestion is made.

Let us present rules for the A3 agents, which occupy the highest level in the hier-
archy of the agent activities, and whose purpose is to prepare preference decisions for a
user/inhabitant. Agents analyze knowledge about preferences expressed in terms of log-
ical formulas, which are produced by agents A2. The input for this analysis are logical
specification. The output are preference decisions prepared for a particular user/inhabi-
tant.

�¬(g3)∧g3

1.[x] : ¬g3

g3
×

(a) g2∧ (g2⇒�p010)

g2

¬g2 1.[a] : p010
◦

(b)

g1∧ ((g1⇒�p018)∨ (g1⇒�p015))

g1

(g1⇒�p018)

¬g1 1.[a] : p018
◦

(g1⇒�p015)

¬g1 1.[b] : p015
◦

(c)

Figure 4. The sample truth trees
Let us consider some cases to explain the presented ideas. Assume that the logical

specification for user oi contains a logical formula �¬(g3), which means that the user
never entered gate g3. However, when at a certain time point user o i appears at g3, then
it provides the logical formula �¬(g3)∧g3 which might give the reasoning tree for the
semantic tableaux method shown in Fig. 4.a, c.f. closed branch (×), i.e. a contradiction.
Of course, this tree could be a part of a larger truth tree, which is omitted here to simplify
considerations. It follows that the logical specification should be modified by removing
formula �¬(g3) from the initial specification, then a new formula which results from a
new event, entering gate g3, is to be added to the specification. Another case could refer
to a situation when user enters gate g2 and the logical specification contains formula
g2⇒ �p010, which means that if g2 is reached then sometime area p010 is reached. It
leads to the following formulas: g2∧ (g2⇒�p010) =⇒�p010, or using the truth tree
Fig. 4.b, c.f. the open branch (◦). The preference decision is the sample p010 parking
space, if it is free. The last case is the situation when a gate is reached and there exist
two (or more) different (sub-)formulas, i.e. g1∧ ((g1⇒�p018)∨ (g1⇒�p015)) =⇒
�p018∨�p015, or using the truth tree Fig. 4.c, c.f. the open branches (◦). It means that
both p018 and p015 are areas of preference. It also means that the last element of the
li triple, which is frequency r of a particular formula determining which parking area is
chosen as a preferred one, if it is free, i.e. the r element does not influence the formal
inference process but it supports the choice between open branches which are result of
an inference.

3. Conclusions

In this work we present an example of application of the IoT concept in a multi-agent
environment where the external knowledge is represented by a graph and the preference
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model is represented by formal logic. In case of a real system, such a graph should be
divided into smaller parts that will cooperate with each other (with an explicit synchro-
nization mechanism). Such an environment called Replicated Complementary graphs is
supported by the GRADIS [12] multi-agent framework, where each agent controls one
local graph Gi. Following the FIPA [13] specification [14], we assume a very simple
functionality of a multi-agent environment, reduced to a message transport and a broker
system. This approach is similar to those applied in popular frameworks like JADE [15]
or Retsina [16].
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