206 Workshop Proceedings of the 10th International Conference on Intelligent Environments
J.C. Augusto and T. Zhang (Eds.)

© 2014 The authors.

This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-411-4-206

Towards a Self-Adaptive Deployable
Service Architecture for the Consistent
Resource Management in Ubiquitous
Environments

Gabriel GUERRERO-CONTRERAS !, José Luis GARRIDO,
Kawtar BENGHAZI, Sara BALDERAS-DIAZ and
Carlos RODRIGUEZ-DOMINGUEZ

University of Granada
Software Engineering Department, E.T.S.I.LT.
C/ Periodista Daniel Saucedo Aranda s/n, Granada, Spain
gjquerrero@ugr.es, jgarrido@ugr.es, benghazi@ugr.es, sarabd@correo.ugr.es and
carlosrodriguez@ugr.es

Abstract. Ubiquitous environments present a series of specific challenges
which must be faced in order to obtain the full potential that this kind of
environments can provide to assist human beings in many scenarios. Espe-
cially, it can be challenging to appropriately manage the context changes.
This feature directly affects the availability of the services deployed in the
system, among other quality features, and implies additional development
efforts from software developers. Service replication models and techniques
may help to improve service availability and strengthen the system, e.g.,
against node disconnections. However, it is necessary to provide SOA with
self-adaptive capabilities in order to be able to address a highly dynamic
environment, creating and deploying service replicas at run-time and on
demand. In this work, an analysis of the main elements involved in the dy-
namic deployment of service replicas is presented and how they can be com-
bined to provide a self-adaptive software architecture to properly support
the software development and dynamic service deployment in ubiquitous
environments.

Keywords. Ubiquitous environments, self-adaptation, context-awareness,
Service Oriented Architecture (SOA), Event Driven Architecture (EDA),
SOA 2.0, resource consistency

Introduction

Ubiquitous computing refers to those computing devices which are distributed
in the environment, interconnected, and with which the user interacts uncon-
sciously. In particular, it is conceived as a distributed computing power in the

1 Corresponding Author

G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture 207

environment. To achieve their full potential, new challenges that arising must be
addressed, such as [1]: (1) the uneven conditioning of a ubiquitous environment
must be transparent for the users. It is caused by the heterogeneous nature of
the environment, where different devices with different capabilities exist, and
also, due to the mobility of devices, given that some resources or features may
not be always available; and (2) in order to resolve certain limitations in the use
of resources, localized scalability should be supported, i.e., prevent communica-
tion between distant entities and therefore sending information beyond the local
environment where it makes sense to avoid overload and bottlenecks.

These new computing environments are characterized, among other issues,
by their highly dynamicity, i.e, the existence of frequent changes in the execution
context. Therefore, the software system deployed in these environments needs
to be sufficiently independent to adapt to changes that occur in its context, in
order to maintain or even improve the user’s experience, without his/her explicit
intervention. This feature is known as self-adaptation (one of the areas that make
up autonomic computing [2]). Self-adaptive software architectures can provide
the appropriate support to address system requirements at run-time, due to
changes in the availability of the resources or ongoing needs of the systems users.
This kind of architectures can also improve not just system performance and
efficiency, but also availability, reliability or flexibility.

In this paper, an auto-adaptive approach to support the development and
deployment of software applications is presented. The approach uses and com-
bines two previously developed solutions: the Bluerose middleware [3], an open
source middleware based on event distribution approach, and adaptable services
(monitoring and synchronization) [4], which have been designed to support the
consistent management of shared resources in mobile and ubiquitous systems.
This work intends to take a further step in availability and consistent resource
management, through a self-adaptive approach which will enable a dynamic de-
ployment of service replicas in a ubiquitous environment based on context infor-
mation (context-awareness), in order to reduce the development effort of ubiq-
uitous applications, delegating the responsibility of ensure system availability
and consistent resources management at lower layers, i.e., at the service platform
itself.

The rest of this paper is structured as follows. In Section 1, main technologies
involved in this research are briefly described. Section 2 presents related work
which have already addressed the dynamic features of these new environments;
Section 3 proposes a service architecture approach to address dynamic service
deployment challenge in ubiquitous environments; and finally, conclusions and
future work are summarized in Section 4.

1. Background

Among the approaches to successfully address the design of software in ubiqui-
tous environments, Service Oriented Architecture (SOA) and middleware tech-
nologies based on event-driven architectures (EDA) can be highlighted. Conse-
quently, a software architecture for this type of environments generally is divided

208 G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture

into three layers: middleware, services and applications [5]. However, recent
trends propose the combination of SOA and EDA paradigms, obtaining what is
called SOA 2.0 [6] (a.k.a. advanced SOA), in which services are not just passive
entities, but also they are able to receive and generate events proactively, thus
getting the benefits of both approaches: interoperability, platform independence,
flexibility and a modular design by SOA, and low coupling between components
of the system, thanks to the distribution of events by EDA.

However, SOA 2.0 is not sufficient and specific aspects in ubiquitous systems
need some kind of additional support. In general, the dynamic nature of this
kind of systems must be also addressed in a very flexible manner, thus com-
plementary techniques and methods to such approaches must be adopted at ar-
chitectural level. To this end, for example, centralized services or static deploy-
ments should be avoided, owing to the network topology may change rapidly
and unpredictably and therefore the service can be easily isolated, with serious
consequences for the system operation. Faced with this problem, ad-hoc solu-
tions are adopted for software development in ubiquitous systems, which, in the
absence of a standardized method, leads to limit the functionality of the appli-
cations developed, (e.g., limit the offline operations) and imposing conditions in
the execution environment to ensure the correct operation of the system (e.g.,
a permanent connection to the Internet). This results in lower availability and
scalability in incorporating new functionality, users and technologies.

Replication services techniques can help to strengthen the system against
node disconnections, improve response time and balance the workload. How-
ever, these replicas should be created and deployed at runtime in response to
specific situations of context [7], in order to respond properly to a dynamic en-
vironment. Moreover, an ubiquitous environment involves some degree of col-
laboration between the different participants of the system, so it is common to
find shared resources, such as files, registers, and knowledge bases, which are
distributed and/or replicated along the system. These resources are modified by
several participants (users, agents or services) frequently and concurrently, which
implies to manage access/modification of these resources consistently in order to
ensure proper system operation. Maintaining the correctness of the shared data
is not a simple task, particularly in environments where network disconnections
are frequent [8].

2. Related Work

Several research works have addressed challenges of dynamic environments
through software adaptation, however, as mentioned earlier, software adaptation
is a wide field of research and although some of these works do not address
the problem entirely, they usually address some issues involved in the dynamic
deployment of services, as mentioned by this section.

In order to avoid that some devices become isolated and can not access a
service, network partitions detection mechanism are useful, this allows deploying
a services replica while it is still possible. In [9], disjoints paths between client
and server are calculated and for each path, robustness of link nodes is estimated.

G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture 209

To this respect, services replicas can be placed to improve the availability of the
service for clients. With the same objective, in [10] TORA routing protocol [11]
is used in combination with a estimation of the residual link lifetime of wireless
links. This residual link lifetime between two devices is calculated using response
time of periodical beacon messages, and when a node predicts a partition, this
node will host a replica of the service.

With the aim of reducing bandwidth consumption and to detect potential
network partitions too, some proposals identify mobility groups and create de-
vices clusters. Dustdar et al. [12] use devices clusters to perform an efficient mon-
itoring. In each cluster only the most powerful device performs an active mon-
itoring. These clusters are created on the basis of the distance between devices.
However, Wang et al. [13] show that travel speed of devices is a better measure
than distance to create clusters. In their work an algorithm, called Reference Ve-
locity Group Mobility (RVGM), to identify the mobility groups is proposed. In
this way, a disconnection between two groups can be predicted, e.g., when two
groups have different directions and/or velocities.

Regarding to replication protocols, in [12] a copy-primary replication scheme
for stateful Web services is used, aiming to reduce synchronization messages.
In [14], replicas will be created when too many service requests are made from
nodes that belong to other clusters, and clusters leader will host the replicas,
however, synchronization of replicas is not considered. Hamdy et al. [15] propose
a replication protocol based on the interest of devices in use the service. In [16],
REDMAN middleware for dense MANET is proposed. The replication protocol
of REDMAN is based in a gossip strategy, when a resource or replica must
be replicated, this request is sent to service and it replicates itself between its
neighbors with a r-hop distance previously defined, nevertheless, the replicated
resources are read-only, this is, replicas synchronization is not considered.

In this way, some these works do not take account certain features when
deploying replicas: energy consumption, host device capabilities, network topol-
ogy or replicas synchronization. The aim of this paper is to provide an archi-
tectural approach and a methodological approach to address previous issues,
i.e., the dynamic deployment of service replicas by taking into consideration
synchronization and efficient consumption of resources.

3. A Self-Adaptive Architecture Approach

In this section, an adaptive approach to support the development and deploy-
ment of software applications is presented, in order to reduce the development
effort of ubiquitous applications, delegating the responsibility of ensure system
availability and consistent resource management at lower layers. The software
architecture is based on three main layers: middleware, services and applica-
tions (Figure 1). This solution combines two previously developed proposals:
the Bluerose middleware, an open source middleware that implements both the
Request-Response and the Publish-Subscribe paradigms, and at service level, the
use of adaptable services (monitoring and synchronization), which have been de-
signed to facilitate the consistent management of shared resources in mobile and

210 G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture

Mobile Device

e I L | Server

Service Platform Layer Service Platform Layer

‘Specialized Synchronization ‘Specialized Synchronization
Senvce for Resource R1 Senvce for Resource R1
Monitoring Senvice] A Monitoring Seice
Replica Server Replica
Manager Scheduler Manager

l ‘ Sensor
|

Server
Scheduler

Middleware Layer Middieware Layer

Context

Senice Middleware Layer
Pub/Sub Discovery Discovery
Senice Service Service
Routi Routing
Bt | e s

—

. t
| |

Request-Response and Pubiish-Subscribe communications

Figure 1. Service platform design, layers and main components.

ubiquitous systems. This work intends to take a further step in availability and
consistent resource management, through an self-adaptive approach which aims
to enable a dynamic deployment of service replicas in a ubiquitous environment
based on context information. The following subsections describe in detail the
main features that are required from the middleware layer, the service platform
to be used in order to achieve the objective of this research work, and finally a
case of study where the feasibility of the approach is shown.

3.1. Middleware Layer

The main sought features of a middleware supporting mobile/ubiquitous appli-
cations, and therefore based on EDA, are (Figure 1) [3]: event dissemination, which
allows, through a publish/subscribe communication mechanism, a broadcast and
asynchronous communication with loose coupling between interfaces, what im-
plies to achieve a scalable solution at communication level; dynamic discovery,
in order to know what devices and services are available in a specific moment,
in an automatic and transparent way; context management, the middleware of a
self-adaptive software architecture must also be adaptive, therefore it must man-
age basic context information for its effective functioning. The device resources
(battery or communication capabilities), network topology, available services or
entities, device’s stability and mobility, are cross-cutting properties, that can also
affect to the adaptation of the architecture; devices clustering: in order to facilitate
the monitoring and the deployment of replicas in the network, clustering may
help to split the issue under local areas and facilitate the scalability. This philos-
ophy is already adopted in routing problems (Cluster-based Routing Protocol
[17], “CBRP”); and routing: the possible absence of a predetermined topology or
central control implies that the communication middleware must be prepared to
act in wireless ad-hoc networks, where traditional routing algorithms cannot be
used.

G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture 211

3.2. Service Layer

At service layer, two issues are addressed: the consistency of shared resources
of the system and the availability of the services. The first issue has been ad-
dressed by defining a methodological approach to develop services. Due to the
synchronization algorithms are dependent of the resource type, it is not possible
to provide a general service for the synchronization. For this reason and with the
goal of providing a reusable service, an abstract service, called Synchronization
Service, is provided. This service must be specialized as required by the specific
resource to be shared. This is intended to provide a service applicable to any type
of shared resource, facilitating the development of application services in ubig-
uitous environments (Figure 1). This abstract service is based on a Monitoring
Service. It is a basic service which stores all kind of information about changes on
shared data, which are represented and managed as events. Regarding synchro-
nization, this information will be required when the synchronization algorithms
will be applied. Additionally, when a disconnection occurs, this information is
fundamental to allow offline operations in the system. The Monitoring Service
supports different configurations in the system, it can be accessed from other
system component to store some event, for example from the Synchronization
Service; or it can work as a subscriber too, following the approach SOA 2.0.
This feature allows an efficient monitoring, due to the monitoring work can be
divided between different replicas of the service, distributing the workload and
improving scalability.

However, this solution is not enough. A service can manage a shared resource
and the synchronization of different changes in the resource is possible, never-
theless, if the user’s device loses its connection, due to user’s mobility, he/she will
not be able to be carried out changes on the shared resource and therefore he/she
cannot continue working. In order to avoid this situation, the availability of the
services is improved through a self-adaptive deployable service architecture. To
this end, adaptation logic is encapsulated in the Replica Manager component
(Figure 1). It is divided into two parts: the Server Scheduler and the Replica
Manager itself. Each instance of the Replica Manager handles the replication
and deployment of only one service, while the Server Scheduler is responsible
of managing the different instances of the Replica Manager. This is a more ef-
ficient and scalable solution than having only one Replica Manager component
to manage the replication and deployment of all services in the system, since
each instance is focused on the requirements of replication and deployment of a
unique service.

The interaction between the platform’s components during the self-
adaptation process is shown using a BPMN diagram in Figure 2. When a ser-
vice wants to be registered in the system, it sends its requirements to the Server
Scheduler. The Server Scheduler creates a new instance of the Replica Manager,
which is associated with the new service registered in the system. This instance of
the Replica Manager processes the requirements of the service and it subscribes
to the corresponding events (e.g., if the service requires a certain free amount
of memory, the Replica Manager will subscribe to events notifying less amount
of memory). When the Replica Manager receives one event it will consult to the

212 G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture

- Senda
[registration Providing service
d reque!l

Application Service

Fequiemens ¢
e m‘g:l‘:z’ Create a new

A li

\J request rep icas manager

Requirements

Server Scheduler

Is it necessary to change

5 the deployment of the

% f hY r \E hY N service?

i A Recelve service Subscribe to ; Query the Yes | Calculate the new Apply the new
(—_—

T requirements events of interest w"::”:::i’:"“ context's state deployment deployment

3 L J 8 L) J

&

T

Pub/Sub Service

Context Management
Service

Figure 2. Collaboration diagram between platforms services in order to provide an adaptive deploy-
ment to application services.

O service =& device

& name & name
& serviceID & deviceID
O requirements = capabilities
O sensors =& sensors
O sensor 2@ sensor
& name

& sensorlID

& resourcelD
& value

& criticalvalue

Figure 3. XML schemas that specify the format for defining service requirements and device capa-
bilities

Context Management Service to check if it is necessary a node change for the
service. For example, if an event informing low battery level is received, this may
indicate that the service must be migrated, however, if the rest of devices have
less battery, migrate the service could make no sense. If it is necessary to change
the deployment of the service, the Replica Manager selects the most adequate
node to deploy the service.

To achieve this task, the decision of the Replica Manager is based on two
kinds of information: service requirements and cross-cutting features. While ser-
vice requirements are features that affect specifically to a service, the cross-cutting

G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture 213

features affect to any service deployed in the system. On the one hand, regard-
ing the requirements of a service, these must be clearly specified. The service
developer indicates which capabilities must provide the devices in which the
service could be deployed. These capabilities affect to services differently, one
service could need processing power and another high storage capacities, for
this reason the services must specify its requirements independently through
the XML schema defined in Figure 3 (left side). In this schema should be given:
service name and ID, sensors required (e.g., GPS or camera) and computational
resources (e.g., CPU or memory), which should further indicate optimal, normal
and critical value (e.g., Memory: 0.2GB critical, 1GB normal and 2GB optimal).
Moreover, each device must specify through a similar XML schema Figure 3
(right) its current available resources. On the other hand, in this work the fol-
lowing main cross-cutting features have been identified: battery, position within
network topology and distance to service’s clients. The Replica Manager, through
an evaluation function which encapsulates the above information (Algorithm 1),
can evaluate the nodes and deducts if another node can be a better candidate for
hosting, in which case the service will be migrated to the new node host, or if a
new replica is necessary, it can select the more suitable node to place it.

Algorithm 1 Calculate node ranking to host a service’s replica

nodeRanking < 0
for all sensorRequired € service.sensorsRequired do
if sensorRequired ¢ node.sensors then
return 0
end if
end for
for all RRequired € service.resourcesRequired do
if RRequired.criticalVal > node.resource.value then
return 0
else if RRequired.criticalVal < node.resource.value < RRequired.normalVal then
nodeRanking < nodeRanking + 0.2
else if RRequired.normalVal < node.resource.value < RRequired.optimumVal then
nodeRanking « nodeRanking + 1
else
nodeRanking « nodeRanking +1.2
end if
end for
nodeRanking < nodeRanking + node.batteryLevel /100 + W1
nodeRanking < nodeRanking + node.directConnections/node.maxConnections + W2
nodeRanking < nodeRanking + node.averageDistance/node. furthestClient + W3
return nodeRanking

3.3. Case Study

The case of a Mobile Forensic Workspace [18] is of interest to show the feasibility
of the approach. There are different scenarios: natural disasters, accidents, ter-
rorist attacks, murders, etc., where security forces apply protocols of action in-
tended to support victim identification. In order to support data sharing between

214 G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture

O™ Jol

O -
=N =l

Figure 4. Example scenario of the case study. Circles 1, 2 and 3 are devices of the members of the
forensic team. The highlighted devices (e.g., 3 in step A) are devices which host a replica of the
service. The dashed circles indicate the coverage of devices, the black arrows the direction of users’
movement, and the white ones the client-server relations.

forensic experts, the forensic support system must allow exchange information
with nearby applications, devices, etc. However, the consistency of this infor-
mation can be compromised owing to in some scenarios (e.g., natural disasters
or rural environments) common network infrastructures may not be available
and the users are moving around the scene, which implies unstable connections
(disconnections and network partitions). This makes collaboration more difficult
and therefore techniques must be applied to ensure the availability of the system
and the consistency of the shared resources.

Suppose for example the scenario depicted in the Figure 4. There are three
mobile devices, each belonging to a member of the forensic team. These users
are making collaborative annotations about a accident scene through a service,
called Annotation Repository Service. This service is a specialization of Synchro-
nization Service (Figure 1) and it ensures the consistent management of the an-
notations performed by the forensic team. The service is initially deployed in
the device 3 (Figure 4.A) and provides service to devices 1 and 2. This service is
registered through the Server Scheduler by sending its requirements, which has
been specified through XML scheme proposed:

<service name="annotationsRespository” servicelD="servicel30563">
<requirements>
<computingResources>
<resource name="CPU” resourcelD="#CR01” optimumValue="1.4 GHz”
normalValue="1.2 GHz” criticalValue="1 GHz” />
<resource name="Memory” resourcelD="#CR02” optimumValue="2GB”
normalValue="1GB” criticalValue="0.5GB” />
<resource name="Storage” resourcelD="#CR04” optimumValue="4GB”
normalValue="2GB” criticalValue="1GB” />
</computingResources>
</requirements>
</service>

G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture 215

And, therefore, an instance of the Replica Manager has been created and
assigned to this service. However, the users of devices 1 and 2 are moving to
another location of the scenario, therefore an event of a possible disconnection is
published. The Replica Manager, which is associated with the service, receives
this event and searches an adequate device, on the basis of the service require-
ments, to deploy a service replica and thus ensuring the availability of the ser-
vice. To this end, the Replica Manager queries the Context Management Ser-
vice the information about the devices which form the group and receives its
specifications:

<device name="Device0l” devicelD="01">
<capabilities >
<sensors>
<sensor name="Camera” sensorID="#S511"/>
<sensor name="GPS” sensorID="#512"/>
<sensor name="Accelerometer” sensorID="#513"/>
<sensor name="Light Sensor” sensorID="#514"/>
</sensors>
<computingResources>
<resource name="CPU” resourcelD="#CR01” value="1.2 GHz"/>
<resource name="Memory” resourcelD="#CR02” value="1 GB”/>
<resource name="Storage” resourcelD="#CR04” value="4 GB"/>
</computingResources>
</capabilities >
</device>

<device name="Device02” devicelD="02">
<capabilities >
<sensors>
<sensor name="Camera” sensorID="#S511"/>
<sensor name="GPS” sensorID="#512"/>
<sensor name="Accelerometer” sensorID="#S513"/>
</sensors>
<computingResources>
<resource name="CPU” resourcelD="#CR01” value="1.7 GHz"/>
<resource name="Memory” resourcelD="#CR02” value="2 GB"/>
<resource name="Storage” resourcelD="#CR04” value="1 GB"/>
</computingResources>
</capabilities >
</device>

The Replica Manager through the evaluation function can deduct that device
1, in current situation is most suitable device to host a replica of the service.
The position in the network topology and distance to services clients of the
service are equal in this scenario, and we can assume the same level of battery,
then in this case only service requirements make the difference in the choice.
Therefore, device 1 obtains 3.2 scoring and the device obtains 2.6 (when applying
Algorithm 1). This is because although the device 2 is more powerful (better CPU
and memory) the storage capacity is in a critical level taking into account the
Annotation Repository Service requirements. This may be because to the device
2 has other components which make use of storage capacity too. Therefore, a
replica is deployed in the device 1 to ensure the availability of the service.

216 G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture

Later, when the user of device 3 has finished working in his/her area, meets
with the rest of the team (Figure 4.C). First, when a connection is established
between the two replicas, a process of synchronization occurs. When the two
replicas are correctly synchronized and the shared annotations are in a consistent
state, due to it is a small team, one replica will be turned off by the Replica
Manager in order to save resources (Figure 4.D).

4. Conclusions and Future Work

In this work, some of the main challenges associated to the software develop-
ment for ubiquitous environments have been identified. The approach is based
on the dynamic deployment of service replicas in ubiquitous environments, also
describing how the replication may help to address the identified challenges. The
different responsibilities of middleware and service layers have been exposed.
The foundations have been laid to provide a self-adaptive architecture to reduce
the efforts of developers in the development and deployment of software appli-
cations in ubiquitous environments, and thus increasing service availability and
consistent management of shared resources. The solution proposed also helps to
make transparent the uneven conditioning, due to the developer only describes
the requirements of the service and does not need to be worried about the envi-
ronmental characteristics; and it also addresses localized scalability, through the
self-adaptive replication of the services, communication between distant entities
is avoided, since services can be carried to areas where are the users who are
using them. It should be noted that this solution is independent of the services
technology used (e.g., SOAP or REST), and an approach based on events would
be only needed. Moreover, contrary to related works, this solution takes into ac-
count both the synchronization of the shared resources and cross-cutting context
features, such as network topology, to place replicas, not only the device’s re-
sources. Finally the requirements of the service can be adapted to each particular
service, providing a flexible solution.

In the future work, the final implementation of the platform, currently un-
der development, is intended, in order to perform a study about the different
configuration parameters, such as monitoring intervals, and to compare in an
empirical way the behavior and the performance of different approaches, such
as different services replication techniques. In this way, a more comprehensive
study of behavior adaptation for a wider range of complex context situations is
expected to be obtained.

Acknowledgment

This research has been partially supported by the Spanish Ministry of Economy
and Competitiveness with European Regional Development Funds (FEDER) un-
der the research project TIN2012-38600.

G. Guerrero-Contreras et al. / Towards a Self-Adaptive Deployable Service Architecture 217

References

(10]

(11]

[12]

(13]
[14]
[15]
(16]

[17]

(18]

M. Satyanarayanan, Pervasive computing: Vision and challenges, Personal Communications,
IEEE 8 (2001), 10-17.

J. Kephart and D. M. Chess, The vision of autonomic computing, Computer 38 (2003), 41-50.
C. Rodriguez-Dominguez, T. Ruiz-Lépez, K. Benghazi and J. L. Garrido, Designing a
middleware-based framework to support multiparadigm communications in ubiquitous sys-
tems, Advances in Intelligent and Soft Computing 153 (2012), 163-170.

G. Guerrero-Contreras, J. L. Garrido, C. Rodriguez-Dominguez, M. Noguera, and K. Benghazi,
Designing a service platform for sharing internet resources in MANETSs, Advances in Service-
Oriented and Cloud Computing 393 (2013), 331-345.

C.Machado, E. Silva, T. Batista, J. Leite, and E. Yumi Nakagawa, Architectural elements of ubiq-
uitous systems: A systematic review, International Conference on Software Engineering Advances
8 (2013) 208-213.

P. Krill, Make way for soa 2.0, http:/fwwuw.infoworld.com/t/architecture/make-way-soa-20-420 (2006).
K. Kakousis, N. Paspallis, and G. A. Papadopoulos, A survey of software adaptation in mobile
and ubiquitous computing, Enterprise Information Systems 4 (2010) 355-389.

S.B. Davidson, H. Garcia-Molina, and D. Skeen, Consistency in a partitioned network: a survey,
ACM Computing Surveys (CSUR) 17 (1985) 341-370.

M. Hauspie,]. Carle, D. Simplot, Partition detection in mobile ad-hoc networks using multiple
disjoint paths set, International Workshop on Objects models and Multimedia technologies 15 (2003)
1-15.

A. Derhab, N. Badache, and A. Bouabdallah, A partition prediction algorithm for service
replication in mobile ad hoc networks, Wireless On-demand Network Systems and Services (2005)
236-245.

V.D.Parkand M. S. Corson, A highly adaptive distributed routing algorithm for mobile wireless
networks, Conference of the IEEE Computer and Communications Societies 3 (1997) 1405-1413.

S. Dustdar and L. Juszczyk, Dynamic replication and synchronization of web services for
high availability in mobile ad-hoc networks, Annual Joint Conference of the IEEE Computer and
Communications Societies 1 (1997) 19-33.

K. H. Wang and B. Li, Efficient and guaranteed service coverage in partitionable mobile ad-hoc
networks, Service Oriented Computing and Applications 2 (2002) 1089-1098.

A. Ahmed, K. Yasumoto, N. Shibata, and T. Kitani, Hdar: Highly distributed adaptive service
replication for MANETS, IEICE transactions on information and systems 94 (2011) 91-103.

M. Hamdy and B. Konig-Ries, A service distribution protocol for mobile ad hoc networks,
Proceedings of the 5th international conference on Pervasive services (2008) 141-146.

P. Bellavista, A. Corradi, and E. Magistretti, Redman: An optimistic replication middleware for
read-only resources in dense MANETS, Pervasive and Mobile Computing 1 (2005) 279-310.

L. E. Quispe and L. M. Galan, Behavior of ad hoc routing protocols, analyzed for emergency
and rescue scenarios, on a real urban area, IEICE transactions on information and systems 41 (2014)
2565-2573.

C. Rodriguez-Dominguez, K. Benghazi,]. L. Garrido, and A. V. Garach, Designing a commu-
nication platform for ubiquitous systems: The case study of a mobile forensic workspace, New
Trends in Interaction, Virtual Reality and Modeling 41 (2013) 97-111.

