
Parametric Mogramming with Var-oriented
Modeling and Exertion-Oriented

Programming Languages
Michael Sobolewskia, b, Scott Burtona, c, and Raymond Kolonaya

aAir Force Research Laboratory, WPAFB, Ohio 45433
bPolish Japanese Institute of IT, 02-008 Warsaw, Poland

c American Optimization LLC, Liberty Township, Ohio 45044

Abstract. The Service ORiented Computing EnviRonment (SORCER) targets
service abstractions for transdisciplinary concurrent engineering with support for
true service-oriented (SO) computing. SORCER's models are expressed in a top-
down Var-oriented Modeling Language (VML) unified with programs in a
bottom-up Exertion-Oriented Language (EOL). In this paper the basic concepts of
mogramming are presented. On the one hand, modeling with service variables
allows for computational fidelity within multiple types of evaluations. On the other
hand, any combination of local and remote services can be described in EOL as a
collaborative federation of engineering applications, tools, and utilities. An
example of aircraft conceptual design application is given to illustrate how
parametric models can participate in service-oriented engineering analyses.

Keywords. transdisciplinary concurrent engineering, service-oriented mogramming;
var-oriented modeling; exertion-oriented programming; SOA; SORCER

Introduction

A transdisciplinary computational model [4] requires extensive computational
resources to study the behavior of a system by computer simulation. The large system
under study that consists of thousands or millions of variables is often a complex
adaptive system for which simple, intuitive analytical solutions are not readily
available. Usually adjusting the parameters of system in the computer network does
experimentation with the distributed model. The experimentation, for example
aerospace models with multi-fidelity, involves the best of the breed applications, tools,
and utilities considered as heterogeneous services of the model. The modeling services
are used in local/distributed service collaboration to calculate and/or optimize the
model across multiple disciplines fusing their domain-specific services running on
laptops, workstations, clusters, and supercomputers.

An elementary service is the work performed in which a service provider (one that
serves) exerts acquired abilities to execute a computation. Elementary services are
autonomous units of functionality and can be either local or distributed. Elementary
services have no calls to each other embedded in them. By contrast a compound service
is a composition of elementary and other compound services that exerts acquired
abilities of collaborating service providers. Each elementary service implements
multiple actions of a cohesive (well integrated) service type, usually defined by an

20th ISPE International Conference on Concurrent Engineering
C. Bil et al. (Eds.)
© 2013 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-302-5-381

381

interface type in an underlying programming language, e.g. a Java interface. A service
provider can implement multiple service types, and thus can provide multiple
elementary services to be offered. An elementary service reference with operation of its
service type, complemented by its QoS parameters is called a service signature.
Service signatures are used to reference local or remote service providers. Different
instances of a service provider are equivalent units of functionality identified by the
same signature.

In most service systems the focus is on back-end aggregation of services into a
single provider, thus having more services performed by the same provider or by the
same provider node, e.g., an application server. In either case theses new services are
still elementary services to the end user. This type of back-end aggregation, done by
software developers and deployers, is called service assembly in contrast to the
aggregation of services at the front-end accomplished by the end user. The front-end
aggregation is called service composition and requires service-oriented (SO) languages
to express actualization of compound services. Service compositions are called
exertions and use service signatures to bind at runtime to corresponding service
providers. A dynamic collection of service providers requested for the actualization of
exertion is called a service federation.

In concurrent engineering computing systems each local or distributed service
provider in the collaborative federation performs its services in an orchestrated
interaction of applications, tools, and utilities. Once the service collaboration is
complete, the federation dissolves and the providers disperse and seek other federations
to join. These service providers have to be managed by a relevant service-centric
operating system with programming environment to express complex interactions of
providers in dynamic virtual federations [1].

The SORCER platform [4][5][6] (open source project [7]) introduces front-end
mogramming languages [3][8] with a modular SO Operating System (SOOS). It adds
two entirely new layers of abstraction to the practice of SO computing—SO models
expressed in a Var-oriented Modeling Language (VML) in concert with SO programs
expressed in an Exertion-Oriented Language (EOL). The unification of VML and EOL
has been verified and validated in research projects at Air Force Research Lab and
SORCER Lab at TTU [1][9][11][12][13].

The remainder of this paper is organized as follows: Section 1 describes briefly
var-oriented modeling; Section 2 describes exertion-oriented programming; Section 3
introduces the SORCER SOOS; Section 4 demonstrates parametric modeling for
aircraft conceptual design; finally Section 5 concludes with final remarks and
comments.

1. Var-oriented Modeling

A computation is a relation between a set of inputs and a set of corresponding outputs.
There are many ways to describe or represent a computation and a composition of them.
Two types of computations are considered in this paper: var-oriented and exertion-
oriented. A front-end service composition with its own control strategy created by the
end user in Exertion-Oriented Language (EOL) is called an exertion. A service variable,
called a var and var-model are front-end modeling services in the Var-Oriented
Language (VOL) and the Var-oriented Modeling Language (VML), respectively.

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages382

The exertions are drawn primarily from the semantics of a routine. The vars and
var-models are drawn primarily from the semantics of a variable and function
composition. Either one of these process expressions can be mixed with another
depending on the direction of the problem being solved: top down or bottom up. The
top down approach usually starts with var-oriented modeling in the beginning focused
on relationships of vars in the model with no need to associate them to services. Later
the var-model may incorporate relevant services (evaluators, getters, and setters)
including exertions as evaluators. In var-oriented modeling three types of models can
be defined (response, parametric, and optimization). EOL distinguishes three types of
exertions: elementary exertions (tasks), batch tasks (batches), and hierarchical
exertions (jobs). The functional composition notation has been used for expressions in
VOL, VML, and EOL that is usually complemented with the Java API.

1.1. Var-Oriented Programing (VOP)

In every computing process variables represent data elements and the number of
variables increases with the increased complexity of problems being solved. The value
of a computing variable is not necessarily part of an equation or formula as in
mathematics. In computing, a variable may be employed in a repetitive process:
assigned a value in one place, then used elsewhere, then reassigned a new value and
used again in the same way. Handling large sets of interconnected variables for
transdisciplinary computing requires adequate programming methodologies.

A service variable (var) is a collection of triplets:� { <evaluator, getter, setter> },
where:
1. an evaluator is a service with the argument vars that define the var

dependency chain;
2. a getter is a pipeline of filters processing the result of evaluation; and
3. a setter assigns and returns a value that is a quantity filtered out from the

output of the current evaluator.
The var value is invalid when the current evaluator, getter, or setter is changed, current
evaluator's arguments change, or the value is undefined. VOP is a programming
paradigm that uses vars to design var-oriented multifidelity compositions. An
<evaluator, getter, setter> triplet is called a var fidelity. It is based on dataflow
principles where changing the value of any argument var should automatically force
recalculation of the var’s value. VOP promotes values defined by selectable var
fidelities and their dependency chains of argument vars to become the main concept
behind any processing.

Evaluators, getters, and setters can be executed locally or remotely. An evaluator
may use a differentiator to calculate the rates at which the var quantities change with
respect to the argument vars. Multiple associations of <evaluator, getter, setter> can be
used with the same var allowing var’s fidelity. The semantics of the value, whether the
var represents a mathematical function, subroutine, coroutine, or data, depends on the
evaluator, getter, and setter currently used by the var. The var dependency chaining
provides the integration framework for all possible kinds of computations represented
by various types of evaluators including exertions described in Section 2.

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages 383

1.2. Var-Oriented Modeling (VOM)

Var-Oriented Modeling is a modeling paradigm using vars in a specific way to
define heterogeneous var-oriented models, in particular large-scale multidisciplinary
models including response, parametric, and optimization models. The programming
style of VOM is declarative; models describe the desired results of the output vars
without explicitly listing instructions or steps that need to be carried out to achieve the
results. VOM focuses on how vars connect (compose) in the scope of the model, unlike
imperative programming, which focuses on how evaluators calculate. VOM represents
models as a series of interdependent var connections, with the evaluators, getters, and
setters between the connections being of secondary importance.

A var-oriented model or simply var-model is an aggregation of related vars. A var-
model defines the lexical scope for var unique names in the model. Three types of
models: response, parametric, and optimization have been studied to date [9]. In the
model hierarchy, optimization models are parametric and response, and parametric are
response ones as well. These models are declared in VML using the functional
composition syntax with VOL and possibly with EOL and the Java API to configure
the vars [3]. Consider the Rosen-Suzuki optimization problem, where:

design variables: x1, x2, x3, x4; response variables: f, g1, g2, g3, and
f = x1^2-5.0*x1+x2^2-5.0*x2+2.0*x3^2-21.0*x3+x4^2+7.0*x4+50.0
g1 = x1^2+x1+x2^2-x2+x3^2+x3+x4^2-x4-8.0
g2 = x1^2-x1+2.0*x2^2+x3^2+2.0*x4^2-x4-10.0
g3 = 2.0*x1^2+2.0*x1+x2^2-x2+x3^2-x4-5.0
The goal is to minimize f subject to g1 <= 0, g2 <= 0, and g3 <= 0.

In VML this problem is expressed by the following var-model:
����������	
�������
�����
������	
�������
�
����������
��
�����������
����������
������
� ��������

��������	
������������ ! ���" ! ��" ! ����
�
��������#����
���������

��
������	
�����"����$����
�
%&�'��(���(����#
����#���)��$��!�������
� '
����������(����$"'����$"���������
�!����� ! ����
 (����$�'����$����������
�!����� ! ���(����$*'����$*���������
�!����� ! ���
�
'
�#�$����
�����
����
�

All vars in the model are configured with needed evaluators, getters, setters, and
differentiators by the method '
�#�$����
���.� Having the ��� model declared and
configured we can set values of input vars: �

�������������+�,�"-��"!"�������+��,��-���!���������+��,�*-��*!*�������+��,��-���!���
�
and get the output value of f: ������./�����(����������,#-�����!"0 1��

or the value of constraint var g2c: ������./�����(����������,$�'-���#������

Var-models with no constraints and objective are parametric models. A parametric
task (see Section 2) allows for specifying a parametric table with rows of values of
input vars and calculate the corresponding output table as illustrated in Fig 1.

Var-models support multidisciplinary and multifidelity traits of transdisciplinary
computing. Var compositions across multiple models define multidisciplinary
problems; multiple evaluators per var and multiple differentiators per evaluator define a
var’s multifidelity. These are called amorphous models. For the same var-model an
alternative triplet <evaluator, getter, setter> (new fidelity) can be selected or added at
runtime to evaluate an updated analysis ("shape") of the model and quickly update the

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages384

related computations in an evolving or new direction. Var-models can be used as local
object models or as network service providers. In either case modeling tasks (exertions)
are used to specify modeling services as illustrated in Section 2.

2. Exertion-oriented Programming

The central exertion principle is that a computation can be expressed and actualized by
the interconnected federation of simple, often uniform, and efficient service providers
that compete with one another to be exerted for their services in the dynamically
created federation. Each service provider implements multiple actions of a cohesive
(well integrated) service type, usually defined by an interface type. A service provider
implementing multiple service types provides multiple services. Its service type
complemented by its QoS parameters can identify functionality of a provider. In an
exertion-oriented language (EOL) a service exertion can be used as a closure over free
variables in the exertion’s data and control contexts. In exertion-oriented programming
everything is a service. Exertions can be used directly as service providers as well.

In EOL service providers are uniformly accessed through two types of references:
class and interface signatures. Class and interface signatures are also called object and
net signatures correspondingly. Exertion-oriented programming (EOP) is a SO
programming paradigm using service providers and exertions. Exertions can be created
with textual language (netlets), API (exertlets), and user agents that behind visual
interactions create exertlets. Netlets are interpreted scripts and executed by the network
shell ��2�of the SORCER Operating System (SOS). Invoking the exert operation on the
exertlet (Java object) returns the collaborative result of the requested service federation.
Netlets are executed with a SORCER network shell (nsh) the same way Unix scripts
are executed with any Unix shell.

Exertions encapsulate explicitly data, operations, and a control strategy for the
collaboration. The SOS dynamically binds the signatures to corresponding service
providers—members of the exerted federation. The exerted members in the federation
collaborate transparently according to the exertion’s control strategy managed by the
SOS. The SOS invocation model is based on the Triple Command Pattern that defines
the federated method invocation (FMI) [5].

Three types of service exertions are distinguished: tasks, batches and jobs. The ��(
operator defines service exertions as follows:

��(�3����4�5��3��$������4�6���3'
�����4�5��3������
�4�6�7)�3)���������.�����
�4�
For convenience tasks, batches, and jobs are also defined with the ���8, %��'2, and &
%
EOL operators as follows:

���8�3����4��3��$������4��3'
�����4�7)��8�
%��'2�3����4��5�3��$������4�6��3'
�����4�7)��8�
&
%�3����4�9��3��$������4�:��3'
�����4��3������
�4�5��3������
�4�6��3������$+4�7;
%�

Consider a parametric task ��� that specifies a parametric model in the network by a
service type <��������'�
�����$!'���� named ��
��������8���
�����with a parametric
and response tables indicated by���=�>�and�
��=�>�correspondingly.
�
���)��8���������������')��8��
� ��$���(����������
���)�%�����<��������'�
�����$!'��������
��������8���
��������
� '
����������
���)�%���
��=�>������
������#����$"����$�������
� � ���������')�%�����=�>���
?��""��"@����������������"������������

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages 385

� � #��������������+��#����A���#������������������%��B
�������������

The returned output� ��%��� is specified in the task according to a structure shown in Fig.
1 and it is calculated by calling: (��������. At the same time the output table is written
into
��=�>.

3. The SORCER Operating System (SOS)

In SORCER the provider container (���(�'�)��8��) is responsible for deploying
services in the network, publishing their proxies to one or more registries, and allowing
requestors to access its proxies. Providers advertise their availability in the network;
registries intercept these announcements and cache proxy objects to the provider
services. The SOS looks up proxies by sending queries to registries and making
selections from the available service types. Queries generally contain search criteria
related to the type and quality of service. Registries facilitate searching by storing
proxy objects of services and making them available to the SOS. Providers use
discovery/join protocols [2] to publish services in the network and the SOS uses
discovery/join protocols to obtain service proxies in the network. While an exertion
defines the orchestration of its service federation, the SOS implements the service
choreography in the federation defined by its FMI [5].

The SOS allows execution of netlets (interpreted mograms) by exerting the
specified federation of service providers. The overlay network of the service providers
defining the functionality of SOS is called the sos-cloud and the overlay network of
application providers is called the app-cloud—service processor [4]. The instruction set
of the SOS service processor consists of all operations offered by all service providers
in the app-cloud. Thus, an exertion is composed of instructions specified by service

Figure 1. Output table of parametric analysis with configurable parameters and responses.

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages386

signatures with its own control strategy per service composition and data context
representing the shared data for the underlying federation. The signatures (instances of
��$������ type specify participants of collaboration in the app-cloud.

Both sos-providers and app-providers do not have mutual associations prior to the
execution of an exertion; they come together dynamically (federate) for all nested tasks
and jobs in the exertion. Domain specific servicers within the app-cloud—taskers—
execute task exertions. Rendezvous peers (jobbers—synchronous service coordination,
spacers—asynchronous service coordination [10], and catalogers—dynamic network
service catalogs) manage service collaborations. Providers of the)��8��, ;
%%��, and
���'�� type are basic service containers.

4. Aircraft Conceptual Design Application using SORCER

The Air Force Research Lab’s (AFRL) Multidisciplinary Science and Technology
Center (MSTC) is investigating conceptual design processes and computing
frameworks that could significantly impact the design of the next generation efficient
supersonic air vehicle (ESAV). To make the technological advancements required of a
new ESAV, the conceptual design process must accommodate both low- and high-
fidelity multidisciplinary engineering analyses. These analyses may be coupled and
computationally expensive, which poses a challenge since a large number of
configurations must be analyzed. In light of these observations, the ESAV design
process was implemented using the SORCER Operating System (SOS) to combine
propulsion, structures, aerodynamics, performance, and aeroelasticity in a
multidisciplinary analysis (MDA). The SORCER platform provides the MDA
automation and tight integration to distributed computing resources necessary to
achieve the volume of analyses required for conceptual design.

The MDA is a blend of conceptual and preliminary design methods from
propulsion, structures, aerodynamics, performance, and aeroelasticity disciplines. The
analysis process and data flow is shown in the ESAV N2 diagram in Fig. 2. The process
begins by parametrically generating discretized geometry suitable for several different
analyses at varying fidelities. The geometry is used as input to compute several figures
of merit of the aircraft, which include the aircraft drag polars, design mass, range, and
aeroelastic performance. The different responses are evaluated for several flight
conditions and maneuvers. These responses are then used to construct the objective and
constraints of the multidisciplinary optimization (MDO) problem.

MDO generally require a large number of MDAs be performed. This significant
computational burden is addressed by using the SORCER platform. The network-
centric approach of SORCER enables the use of heterogeneous computing resources,
including a variety of operating systems, hardware, and software. Specifically, the
ESAV studies performed herein use SORCER in conjunction with a mix of Linux-
based cluster computers, desktop Linux-based PCs, Windows PCs, and Macintosh PCs.
The ability of SORCER to leverage these resources is significant to MDO applications
in two ways: 1) it supports platform-specific executable codes that may be required by
an MDA; and 2) it enables a variety of computing resources to be used as one entity
(including stand-alone PCs, computing clusters, and high-performance computing
facilities). The main requirements for using a computational resource in SORCER are
network connectivity and Java platform compatibility. SORCER also supports load

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages 387

balancing across computational resources using space computing, making the
evaluation of MDO objective and constraint functions in parallel a simple and a
dynamically scalable process.

 SORCER employs Jini [1] technology with its JavaSpaces service [14] to
implement loosely coupled space-based service federations. The SOS via its Spacer
providers [10] enables different processes on different computers to communicate
asynchronously in a reliable manner. Using Spacer services, SOS implements a self-
load balancing service cloud that can dynamically grow and shrink during the course of
an optimization study, see Fig 3-left.

An exertion space—or “space”—is a exertion storage in the network that is
managed by SOS (its Spacer providers). The space provides a type of shared memory
where requestors, e.g., vars, can put exertions they wish to be processed by service
providers. Service providers, in turn, find spaces in the network and monitor them for
exertion tasks with their service type. If a service provider sees a task it can operate on
in a space, and the task has a flag indicating it has not been processed, the provider
takes the task from the space. The provider then performs the requested service and
returns the task to the space with a flag indicating the task has been processed. Once
the task has been returned to the space, the Spacer that initially wrote the task to the
space detects the returned task and checks to see if it has been processed. If the task
indicates it has been processed, the Spacer removes the task from the space and returns
it to the submitting service requestor.

To achieve the load balancing across multiple computers, a service provider may
be configured to have a fixed number of worker threads. The number of worker threads
determines the number of tasks from the space a provider can process in parallel. By
configuring the number of worker threads for a specific service provider on a specific
computer, the provider can self-load balance the computer it is hosted on.

The SORCER platform is then used with an external optimization program to
optimize an ESAV for range. The results from the optimization are shown in Fig 3-

Figure 2. The ESAV MDA N2 diagram includes geometry generation, aerodynamic analysis,
aeroelastic analysis, and performance analysis. (Each box in the figure represents a SORCER
Provider).

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages388

right. The optimized design has a higher aspect ratio than the baseline design. This
feature is consistent with historical aircraft design trends for long-range aircraft. The
results provide a degree of validation of the implementation of the optimization code,
the SORCER ESAV parametric model, the SORCER providers, and the SOS.

The use of the space computing proved reliable and efficient. It was a
straightforward process to add computers to the SORCER service cloud as needed
during the course of the two-optimization studies. This flexibility proved valuable as
the number of computers available varied from day-to-day.

5. Conclusions

As we move from computing of the information era to advanced computing of the
service era, it is becoming evident that new SO mogramming languages are required.
By higher-level abstractions, these languages reduce the complexity of
transdisciplinary designs performed by hundreds of people working together and using
thousands of services (programs) written already in legacy languages that are
dislocated in the global network. Domain specific SO languages are for humans, unlike
software languages for computers, intended to express domain specific complex
processes and related solutions. Three programming languages for SO computing are
described in this paper: VOL, VML, and EOL. The network shell (nsh) interprets
netlets in these languages and the SOS manages corresponding service federations.

The concept of the var fidelities in the EGS framework combined with exertions
provides the uniform modeling technique for SO interoperability and integration with
various applications, tools, utilities, and data formats. The SORCER operating system
supports the two-way convergence of modeling and programming for SO computing as

Figure 3. Left: SORCER uses Exertion Space to provide a flexible, dynamic space computing facility for
ESAV optimization studies. Right: the ESAV optimization result half-span planforms: baseline 1550 mi
range (top); optimized 2500 mi range (bottom).

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages 389

presented in the ESAV parametric model. On one hand, EOP is uniformly converged
with VOM to express a front-end SO procedural federation. On the other hand, VOM is
uniformly converged with EOP to express a front-end declarative SO modeling. Both
front-end exertions and var-models can be used as service providers directly. The
evolving SORCER platform (open source project [7]) with its SO computational model
has been successfully verified and validated in ESAV and other concurrent engineering
distributed applications [1][9][11][12] [13].

6. Acknowledgements

This work was partially supported by Air Force Research Lab, Aerospace Systems
Directorate, Multidisciplinary Science and Technology Center, the contract number
F33615-03-D-3307, Algorithms for Federated High Fidelity Engineering Design
Optimization and by SMT Software S.A., the contract number POIG.01.04.00-14-
062/12 Engineering Toolkit.

References

[1] Burton, S.A., Alyanak, E.J., and Kolonay, R.M. (2012). Efficient Supersonic Air Vehicle Analysis and
Optimization Implementation using SORCER, 12th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSM AIAA 2012-5520

[2] Jini Network Technology Specifications v2.1. Available at: http://www.jiniworld.com/doc/ spec-
index.html. Accessed 5 June 2013

[3] Sobolewski, M. and Kolonay, R., 2012. Unified Mogramming with Var-Oriented Modeling and
Exertion-Oriented Programming Languages, Int. J. Communications, Network and System Sciences,
2012, 5, 9. Published online http://www.scirp.org/journal/PaperInformation.aspx?paperID=22393

[4] Sobolewski, M., 2012, Object-Oriented Service Clouds for Transdisciplinary Computing, in I. Ivanov et
al. (eds.), Cloud Computing and Services Science, DOI 10.1007/978-1-4614-2326-3_1, Springer
Science + Business Media New York 2012

[5] Sobolewski, M., 2010. Object-Oriented Metacomputing with Exertions, Handbook On Business
Information Systems, A. Gunasekaran, M. Sandhu (Eds.), World Scientific Publishing Co. Pte. Ltd,
ISBN: 978–981–283–605–2

[6] SORCERsoft.org. Available at: http://sorcersoft.org. Accessed 5 June 2013
[7] SORCER Project. Available at: http://sorcersoft.github.io. Accessed 5 June 2013
[8] Kleppe A., 2009. Software Language Engineering, Pearson Education, ISBN: 978–0–321– 55345–4
[9] Kolonay, R. M. and Sobolewski M., 2011. Service ORiented Computing EnviRonment (SORCER) for

Large Scale, Distributed, Dynamic Fidelity Aeroelastic Analysis & Optimization, International Forum
on Aeroelasticity and Structural Dynamics,IFASD2011, 26–30 June, Paris, France

[10] Sobolewski, M., 2008. Federated Collaborations with Exertions, 17h IEEE International Workshop on
Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE), pp.127–132

[11] Goel, S.; Talya, S. S. and Sobolewski, M., 2008. Mapping Engineering Design Processes onto a
Service-Grid: Turbine Design Optimization, International Journal of Concurrent Engineering:
Research & Applications, Concurrent Engineering, Vol.16, pp 139–147

[12] Kolonay, R. M., Thompson, E. D., Camberos, J. A. and Eastep, F., 2007. Active Control of
Transpiration Boundary Conditions for Drag Minimization with an Euler CFD Solver, AIAA-2007–
1891, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Honolulu, Hawaii

[13] Xu, W., Cha, J., Sobolewski, M., 2008. A Service-Oriented Collaborative Design Platform for
Concurrent Engineering, Advanced Materials Research, Vols. 44–46 (2008) pp. 717–7224

[14] Freeman, E., Hupfer, S., and Arnold, K., 1999. JavaSpaces Principles, Patterns, and Practice, Addison
Wesley Longman, Inc.

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages390

