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Abstract. The Service ORiented Computing EnviRonment (SORCER) targets 
service abstractions for transdisciplinary concurrent engineering with support for 
true service-oriented (SO) computing. SORCER's models are expressed in a top-
down Var-oriented Modeling Language (VML) unified with programs in a 
bottom-up Exertion-Oriented Language (EOL). In this paper the basic concepts of 
mogramming are presented. On the one hand, modeling with service variables 
allows for computational fidelity within multiple types of evaluations. On the other 
hand, any combination of local and remote services can be described in EOL as a 
collaborative federation of engineering applications, tools, and utilities. An 
example of aircraft conceptual design application is given to illustrate how 
parametric models can participate in service-oriented engineering analyses. 

Keywords. transdisciplinary concurrent engineering, service-oriented mogramming; 
var-oriented modeling; exertion-oriented programming; SOA; SORCER 

Introduction 

A transdisciplinary computational model [4] requires extensive computational 
resources to study the behavior of a system by computer simulation. The large system 
under study that consists of thousands or millions of variables is often a complex 
adaptive system for which simple, intuitive analytical solutions are not readily 
available. Usually adjusting the parameters of system in the computer network does 
experimentation with the distributed model. The experimentation, for example 
aerospace models with multi-fidelity, involves the best of the breed applications, tools, 
and utilities considered as heterogeneous services of the model. The modeling services 
are used in local/distributed service collaboration to calculate and/or optimize the 
model across multiple disciplines fusing their domain-specific services running on 
laptops, workstations, clusters, and supercomputers. 

An elementary service is the work performed in which a service provider (one that 
serves) exerts acquired abilities to execute a computation. Elementary services are 
autonomous units of functionality and can be either local or distributed. Elementary 
services have no calls to each other embedded in them. By contrast a compound service 
is a composition of elementary and other compound services that exerts acquired 
abilities of collaborating service providers. Each elementary service implements 
multiple actions of a cohesive (well integrated) service type, usually defined by an 
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interface type in an underlying programming language, e.g. a Java interface. A service 
provider can implement multiple service types, and thus can provide multiple 
elementary services to be offered. An elementary service reference with operation of its 
service type, complemented by its QoS parameters is called a service signature. 
Service signatures are used to reference local or remote service providers. Different 
instances of a service provider are equivalent units of functionality identified by the 
same signature. 

In most service systems the focus is on back-end aggregation of services into a 
single provider, thus having more services performed by the same provider or by the 
same provider node, e.g., an application server. In either case theses new services are 
still elementary services to the end user. This type of back-end aggregation, done by 
software developers and deployers, is called service assembly in contrast to the 
aggregation of services at the front-end accomplished by the end user. The front-end 
aggregation is called service composition and requires service-oriented (SO) languages 
to express actualization of compound services. Service compositions are called 
exertions and use service signatures to bind at runtime to corresponding service 
providers. A dynamic collection of service providers requested for the actualization of 
exertion is called a service federation. 

In concurrent engineering computing systems each local or distributed service 
provider in the collaborative federation performs its services in an orchestrated 
interaction of applications, tools, and utilities. Once the service collaboration is 
complete, the federation dissolves and the providers disperse and seek other federations 
to join. These service providers have to be managed by a relevant service-centric 
operating system with programming environment to express complex interactions of 
providers in dynamic virtual federations [1]. 

The SORCER platform [4][5][6] (open source project [7]) introduces front-end 
mogramming languages [3][8] with a modular SO Operating System (SOOS). It adds 
two entirely new layers of abstraction to the practice of SO computing—SO models 
expressed in a Var-oriented Modeling Language (VML) in concert with SO programs 
expressed in an Exertion-Oriented Language (EOL). The unification of VML and EOL 
has been verified and validated in research projects at Air Force Research Lab and 
SORCER Lab at TTU [1][9][11][12][13]. 

The remainder of this paper is organized as follows: Section 1 describes briefly 
var-oriented modeling; Section 2 describes exertion-oriented programming; Section 3 
introduces the SORCER SOOS; Section 4 demonstrates parametric modeling for 
aircraft conceptual design; finally Section 5 concludes with final remarks and 
comments. 

1. Var-oriented Modeling 

A computation is a relation between a set of inputs and a set of corresponding outputs. 
There are many ways to describe or represent a computation and a composition of them. 
Two types of computations are considered in this paper: var-oriented and exertion-
oriented. A front-end service composition with its own control strategy created by the 
end user in Exertion-Oriented Language (EOL) is called an exertion. A service variable, 
called a var and var-model are front-end modeling services in the Var-Oriented 
Language (VOL) and the Var-oriented Modeling Language (VML), respectively. 
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The exertions are drawn primarily from the semantics of a routine. The vars and 
var-models are drawn primarily from the semantics of a variable and function 
composition. Either one of these process expressions can be mixed with another 
depending on the direction of the problem being solved: top down or bottom up. The 
top down approach usually starts with var-oriented modeling in the beginning focused 
on relationships of vars in the model with no need to associate them to services. Later 
the var-model may incorporate relevant services (evaluators, getters, and setters) 
including exertions as evaluators. In var-oriented modeling three types of models can 
be defined (response, parametric, and optimization). EOL distinguishes three types of 
exertions: elementary exertions (tasks), batch tasks (batches), and hierarchical 
exertions (jobs). The functional composition notation has been used for expressions in 
VOL, VML, and EOL that is usually complemented with the Java API.  

1.1. Var-Oriented Programing (VOP) 

In every computing process variables represent data elements and the number of 
variables increases with the increased complexity of problems being solved. The value 
of a computing variable is not necessarily part of an equation or formula as in 
mathematics. In computing, a variable may be employed in a repetitive process: 
assigned a value in one place, then used elsewhere, then reassigned a new value and 
used again in the same way. Handling large sets of interconnected variables for 
transdisciplinary computing requires adequate programming methodologies. 

A service variable (var) is a collection of triplets:� { <evaluator, getter, setter> }, 
where: 
1. an evaluator is a service with the argument vars that define the var 

dependency chain;  
2. a getter is a pipeline of filters processing the result of evaluation; and 
3. a setter assigns and returns a value that is a quantity filtered out from the 

output of the current evaluator. 
The var value is invalid when the current evaluator, getter, or setter is changed, current 
evaluator's arguments change, or the value is undefined. VOP is a programming 
paradigm that uses vars to design var-oriented multifidelity compositions. An 
<evaluator, getter, setter> triplet is called a var fidelity. It is based on dataflow 
principles where changing the value of any argument var should automatically force 
recalculation of the var’s value. VOP promotes values defined by selectable var 
fidelities and their dependency chains of argument vars to become the main concept 
behind any processing. 

Evaluators, getters, and setters can be executed locally or remotely. An evaluator 
may use a differentiator to calculate the rates at which the var quantities change with 
respect to the argument vars. Multiple associations of <evaluator, getter, setter> can be 
used with the same var allowing var’s fidelity. The semantics of the value, whether the 
var represents a mathematical function, subroutine, coroutine, or data, depends on the 
evaluator, getter, and setter currently used by the var. The var dependency chaining 
provides the integration framework for all possible kinds of computations represented 
by various types of evaluators including exertions described in Section 2. 
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1.2. Var-Oriented Modeling (VOM) 

Var-Oriented Modeling is a modeling paradigm using vars in a specific way to 
define heterogeneous var-oriented models, in particular large-scale multidisciplinary 
models including response, parametric, and optimization models. The programming 
style of VOM is declarative; models describe the desired results of the output vars 
without explicitly listing instructions or steps that need to be carried out to achieve the 
results. VOM focuses on how vars connect (compose) in the scope of the model, unlike 
imperative programming, which focuses on how evaluators calculate. VOM represents 
models as a series of interdependent var connections, with the evaluators, getters, and 
setters between the connections being of secondary importance.  

A var-oriented model or simply var-model is an aggregation of related vars. A var-
model defines the lexical scope for var unique names in the model. Three types of 
models: response, parametric, and optimization have been studied to date [9]. In the 
model hierarchy, optimization models are parametric and response, and parametric are 
response ones as well. These models are declared in VML using the functional 
composition syntax with VOL and possibly with EOL and the Java API to configure 
the vars [3]. Consider the Rosen-Suzuki optimization problem, where: 

design variables: x1, x2, x3, x4; response variables: f, g1, g2, g3, and
f = x1^2-5.0*x1+x2^2-5.0*x2+2.0*x3^2-21.0*x3+x4^2+7.0*x4+50.0 
g1 = x1^2+x1+x2^2-x2+x3^2+x3+x4^2-x4-8.0  
g2 = x1^2-x1+2.0*x2^2+x3^2+2.0*x4^2-x4-10.0 
g3 = 2.0*x1^2+2.0*x1+x2^2-x2+x3^2-x4-5.0 
The goal is to minimize f subject to g1 <= 0, g2 <= 0, and g3 <= 0. 

In VML this problem is expressed by the following var-model: 
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All vars in the model are configured with needed evaluators, getters, setters, and 
differentiators by the method '
�#�$����
���.� Having the ��� model declared and 
configured we can set values of input vars: �

�������������+�,�"-��"!"�������+��,��-���!���������+��,�*-��*!*�������+��,��-���!���
�
and get the output value of f: ������./�����(����������,#-�����!"0            1��

or the value of constraint var g2c: ������./�����(����������,$�'-���#������


Var-models with no constraints and objective are parametric models. A parametric 
task (see Section 2) allows for specifying a parametric table with rows of values of 
input vars and calculate the corresponding output table as illustrated in Fig 1. 

Var-models support multidisciplinary and multifidelity traits of transdisciplinary 
computing. Var compositions across multiple models define multidisciplinary 
problems; multiple evaluators per var and multiple differentiators per evaluator define a 
var’s multifidelity. These are called amorphous models. For the same var-model an 
alternative triplet <evaluator, getter, setter> (new fidelity) can be selected or added at 
runtime to evaluate an updated analysis ("shape") of the model and quickly update the 
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related computations in an evolving or new direction. Var-models can be used as local 
object models or as network service providers. In either case modeling tasks (exertions) 
are used to specify modeling services as illustrated in Section 2.  

2. Exertion-oriented Programming 

The central exertion principle is that a computation can be expressed and actualized by 
the interconnected federation of simple, often uniform, and efficient service providers 
that compete with one another to be exerted for their services in the dynamically 
created federation. Each service provider implements multiple actions of a cohesive 
(well integrated) service type, usually defined by an interface type. A service provider 
implementing multiple service types provides multiple services. Its service type 
complemented by its QoS parameters can identify functionality of a provider. In an 
exertion-oriented language (EOL) a service exertion can be used as a closure over free 
variables in the exertion’s data and control contexts. In exertion-oriented programming 
everything is a service. Exertions can be used directly as service providers as well. 

In EOL service providers are uniformly accessed through two types of references: 
class and interface signatures. Class and interface signatures are also called object and 
net signatures correspondingly. Exertion-oriented programming (EOP) is a SO 
programming paradigm using service providers and exertions. Exertions can be created 
with textual language (netlets), API (exertlets), and user agents that behind visual 
interactions create exertlets. Netlets are interpreted scripts and executed by the network 
shell ��2�of the SORCER Operating System (SOS). Invoking the exert operation on the 
exertlet (Java object) returns the collaborative result of the requested service federation. 
Netlets are executed with a SORCER network shell (nsh) the same way Unix scripts 
are executed with any Unix shell. 

Exertions encapsulate explicitly data, operations, and a control strategy for the 
collaboration. The SOS dynamically binds the signatures to corresponding service 
providers—members of the exerted federation. The exerted members in the federation 
collaborate transparently according to the exertion’s control strategy managed by the 
SOS. The SOS invocation model is based on the Triple Command Pattern that defines 
the federated method invocation (FMI) [5].  

Three types of service exertions are distinguished: tasks, batches and jobs. The ��(
operator defines service exertions as follows: 
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For convenience tasks, batches, and jobs are also defined with the ���8, %��'2, and &
%
EOL operators as follows: 
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Consider a parametric task ��� that specifies a parametric model in the network by a 
service type <��������'�
�����$!'���� named ��
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The returned output� ��%��� is specified in the task according to a structure shown in Fig. 
1 and it is calculated by calling: (��������. At the same time the output table is written 
into 
��=�>. 

3. The SORCER Operating System (SOS ) 

In SORCER the provider container (���(�'�)��8��) is responsible for deploying 
services in the network, publishing their proxies to one or more registries, and allowing 
requestors to access its proxies. Providers advertise their availability in the network; 
registries intercept these announcements and cache proxy objects to the provider 
services. The SOS looks up proxies by sending queries to registries and making 
selections from the available service types. Queries generally contain search criteria 
related to the type and quality of service. Registries facilitate searching by storing 
proxy objects of services and making them available to the SOS. Providers use 
discovery/join protocols [2] to publish services in the network and the SOS uses 
discovery/join protocols to obtain service proxies in the network. While an exertion 
defines the orchestration of its service federation, the SOS implements the service 
choreography in the federation defined by its FMI [5].  

The SOS allows execution of netlets (interpreted mograms) by exerting the 
specified federation of service providers. The overlay network of the service providers 
defining the functionality of SOS is called the sos-cloud and the overlay network of 
application providers is called the app-cloud—service processor [4]. The instruction set
of the SOS service processor consists of all operations offered by all service providers 
in the app-cloud. Thus, an exertion is composed of instructions specified by service 

Figure 1. Output table of parametric analysis with configurable parameters and responses.

M. Sobolewski et al. / Parametric Mogramming with VOM and EOP Languages386



signatures with its own control strategy per service composition and data context 
representing the shared data for the underlying federation. The signatures (instances of 
��$������ type specify participants of collaboration in the app-cloud. 

Both sos-providers and app-providers do not have mutual associations prior to the 
execution of an exertion; they come together dynamically (federate) for all nested tasks 
and jobs in the exertion. Domain specific servicers within the app-cloud—taskers—
execute task exertions. Rendezvous peers (jobbers—synchronous service coordination, 
spacers—asynchronous service coordination [10], and catalogers—dynamic network 
service catalogs) manage service collaborations. Providers of the )��8��, ;
%%��, and 
���'�� type are basic service containers.  

4. Aircraft Conceptual Design Application using SORCER

The Air Force Research Lab’s (AFRL) Multidisciplinary Science and Technology 
Center (MSTC) is investigating conceptual design processes and computing 
frameworks that could significantly impact the design of the next generation efficient 
supersonic air vehicle (ESAV). To make the technological advancements required of a 
new ESAV, the conceptual design process must accommodate both low- and high-
fidelity multidisciplinary engineering analyses. These analyses may be coupled and 
computationally expensive, which poses a challenge since a large number of 
configurations must be analyzed. In light of these observations, the ESAV design 
process was implemented using the SORCER Operating System (SOS) to combine 
propulsion, structures, aerodynamics, performance, and aeroelasticity in a 
multidisciplinary analysis (MDA). The SORCER platform provides the MDA 
automation and tight integration to distributed computing resources necessary to 
achieve the volume of analyses required for conceptual design. 

The MDA is a blend of conceptual and preliminary design methods from 
propulsion, structures, aerodynamics, performance, and aeroelasticity disciplines. The 
analysis process and data flow is shown in the ESAV N2 diagram in Fig. 2. The process 
begins by parametrically generating discretized geometry suitable for several different 
analyses at varying fidelities. The geometry is used as input to compute several figures 
of merit of the aircraft, which include the aircraft drag polars, design mass, range, and 
aeroelastic performance. The different responses are evaluated for several flight 
conditions and maneuvers. These responses are then used to construct the objective and 
constraints of the multidisciplinary optimization (MDO) problem. 

MDO generally require a large number of MDAs be performed. This significant 
computational burden is addressed by using the SORCER platform. The network-
centric approach of SORCER enables the use of heterogeneous computing resources, 
including a variety of operating systems, hardware, and software. Specifically, the 
ESAV studies performed herein use SORCER in conjunction with a mix of Linux-
based cluster computers, desktop Linux-based PCs, Windows PCs, and Macintosh PCs. 
The ability of SORCER to leverage these resources is significant to MDO applications 
in two ways: 1) it supports platform-specific executable codes that may be required by 
an MDA; and 2) it enables a variety of computing resources to be used as one entity 
(including stand-alone PCs, computing clusters, and high-performance computing 
facilities). The main requirements for using a computational resource in SORCER are 
network connectivity and Java platform compatibility. SORCER also supports load 
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balancing across computational resources using space computing, making the 
evaluation of MDO objective and constraint functions in parallel a simple and a 
dynamically scalable process.  

 SORCER employs Jini [1] technology with its JavaSpaces service [14] to 
implement loosely coupled space-based service federations. The SOS via its Spacer 
providers [10] enables different processes on different computers to communicate 
asynchronously in a reliable manner. Using Spacer services, SOS implements a self-
load balancing service cloud that can dynamically grow and shrink during the course of 
an optimization study, see Fig 3-left.  

An exertion space—or “space”—is a exertion storage in the network that is 
managed by SOS (its Spacer providers). The space provides a type of shared memory 
where requestors, e.g., vars, can put exertions they wish to be processed by service 
providers. Service providers, in turn, find spaces in the network and monitor them for 
exertion tasks with their service type. If a service provider sees a task it can operate on 
in a space, and the task has a flag indicating it has not been processed, the provider 
takes the task from the space. The provider then performs the requested service and 
returns the task to the space with a flag indicating the task has been processed. Once 
the task has been returned to the space, the Spacer that initially wrote the task to the 
space detects the returned task and checks to see if it has been processed. If the task 
indicates it has been processed, the Spacer removes the task from the space and returns 
it to the submitting service requestor. 

To achieve the load balancing across multiple computers, a service provider may 
be configured to have a fixed number of worker threads. The number of worker threads 
determines the number of tasks from the space a provider can process in parallel. By 
configuring the number of worker threads for a specific service provider on a specific 
computer, the provider can self-load balance the computer it is hosted on. 

The SORCER platform is then used with an external optimization program to 
optimize an ESAV for range. The results from the optimization are shown in Fig 3-

Figure 2. The ESAV MDA N2 diagram includes geometry generation, aerodynamic analysis, 
aeroelastic analysis, and performance analysis. (Each box in the figure represents a SORCER 
Provider).
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right. The optimized design has a higher aspect ratio than the baseline design. This 
feature is consistent with historical aircraft design trends for long-range aircraft. The 
results provide a degree of validation of the implementation of the optimization code, 
the SORCER ESAV parametric model, the SORCER providers, and the SOS.  

The use of the space computing proved reliable and efficient. It was a 
straightforward process to add computers to the SORCER service cloud as needed 
during the course of the two-optimization studies. This flexibility proved valuable as 
the number of computers available varied from day-to-day.  

5. Conclusions 

As we move from computing of the information era to advanced computing of the 
service era, it is becoming evident that new SO mogramming languages are required. 
By higher-level abstractions, these languages reduce the complexity of 
transdisciplinary designs performed by hundreds of people working together and using 
thousands of services (programs) written already in legacy languages that are 
dislocated in the global network. Domain specific SO languages are for humans, unlike 
software languages for computers, intended to express domain specific complex 
processes and related solutions. Three programming languages for SO computing are 
described in this paper: VOL, VML, and EOL. The network shell (nsh) interprets 
netlets in these languages and the SOS manages corresponding service federations.  

The concept of the var fidelities in the EGS framework combined with exertions 
provides the uniform modeling technique for SO interoperability and integration with 
various applications, tools, utilities, and data formats. The SORCER operating system 
supports the two-way convergence of modeling and programming for SO computing as 

Figure 3. Left: SORCER uses Exertion Space to provide a flexible, dynamic space computing facility for
ESAV optimization studies. Right: the ESAV optimization result half-span planforms: baseline 1550 mi
range (top); optimized 2500 mi range (bottom).
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presented in the ESAV parametric model. On one hand, EOP is uniformly converged 
with VOM to express a front-end SO procedural federation. On the other hand, VOM is 
uniformly converged with EOP to express a front-end declarative SO modeling. Both 
front-end exertions and var-models can be used as service providers directly. The 
evolving SORCER platform (open source project [7]) with its SO computational model 
has been successfully verified and validated in ESAV and other concurrent engineering 
distributed applications [1][9][11][12] [13]. 
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