
 

 

A Software Architecture to Synchronize 
Interactivity of Concurrent Simulations in 

Systems Engineering 
Christian BARTELTa,1, Volker BÖß 

b, Jan BRÜNING 
b, Andreas RAUSCHa, Berend 

DENKENA 
b and  Jean Paul TATOUa 

a
 Software Systems Engineering (SSE), University of Clausthal, Germany 

b Institute of Production Engineering and Machine Tools (IFW), Leibniz Universität 
Hannover, Germany 

Abstract. Due to distributed development of complex technical systems like 
machine tools, different system components are modeled and simulated in 
independent program suits. Several standards specify exchange of model data, but 
communication during concurrent simulations is not standardized yet. Therefore, 
the SimBus (Simulation Bus) was developed to close this gap. This novel software 
architecture allows flexible coupling and implementation of existing simulation 
software suits.  
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Introduction – Integration of Concurrent running Simulations 

Nowadays, design and simulation software systems have become an absolutely 
essential part in development of complex products. This trend is promoted by concepts 
for integrated development processes like concurrent engineering or digital factory 
(German Engineers’ guideline VDI 4499) [1]. Established methods like product data 
management (PDM) or model data standards like STEP (ISO 10303) [2] are part of 
these efforts to realize continuous data exchange. 

 
Problem of Synchronization of Concurrent Interacting Simulations 

Engineering modern CNC machine tools with mechanical, electrical and 
mechatronic components is a typical example of systems engineering. During the 
development of machine tools, several R&D departments and suppliers are involved. 
Every participant uses specialized software for his subject and, depending on the 
development progress, models with a different degree of detail. To represent the 
behavior of the machine tool, all sub-models have to interact with each other in a so-
called all-in-one system simulation scenario. 

Due to different complexity and simulation technologies of partial simulations in 
such a scenario, it is necessary to represent the system by a distributed simulation. 
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Therefore, definite simulation modules have to represent several physical and logical 
system components (Figure 1). The dynamic interaction of modules and the 
implementation of basic simulation functions, e.g. job control, need a common 
communication interface, which is binding on all attended simulation systems and tools. 
In consequence of an integrated development process, it is necessary to realize a 
scalable and reconfigurable simulation platform. Due to this, each attended module 
type has to act as a black box with unique functions as specialized interfaces. 

 
Figure 1: Physical and logical system components of machine tool 

 
The virtual model of machine tool has to be applicable resp. reusable in different 

phases of machine tool’s life cycle like development and process planning. Different 
models of predefined system components can be realized with a varying degree of 
detail. A library of available system component’s models allows flexible configuration 
of simulation scenarios, which are fitted for special use cases. E.g. during dimensioning 
of a customized machine tool, simulation will be mainly focused on mechanical 
reliability of machine structure and less on precision prediction of tool paths. In this 
case the user can choose a detailed FEA model of structure’s mechanical behavior and 
a simplified model of numerical control and drive system. In another example, 
simulations for process planning will be mainly focused on process stability and quality 
of work piece. Therefore, it would be necessary to choose detailed models, which are 
able to simulate dynamic behavior of control and drive system to analyze the 
compliance with tool path.  

 
Shortcomings of Systems Simulation Infrastructures 

Nevertheless typical simulation scenarios are limited to single system components, 
which are developed independently by different R&D departments. To realize basic 
software communication between (distributed and concurrently running) simulation 
components, several open and proprietary standards/architectures existing – generally 
by using tailored software interfaces regarding bus software architectures. A common 
use case is coupling Finite Element Analysis (FEA) and Multi Body Simulation (MBS) 
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systems by using proprietary interfaces of an integrated software suite or by using 
commercial Computer Aided Control Engineering (CACE) resp. Digital Block 
Simulation (DBS) software, like Matlab/Simulink [3], [4]. Due to the high degree of 
specialization, the interaction of these interfaces is mostly limited to bidirectional 
communication. Beside the predestined way to connect technically the simulation 
software components by a standard middleware platform, there are two further 
ambitious challenges – the design of correct interrelations between apriori independent 
simulation domain models at first and the synchronization of concurrently clocked 
simulations modules secondly. 

 Related Work – Software Architectures for Integrated Systems Simulations 

Looking for architecture patterns to use as starting point when designing a 
middleware infrastructure for the integration of different concurrently running 
simulations quickly leads to the High Level Architecture (HLA) [5]–[7]. One main 
intention of the HLA is a collaborative interaction simulation of different autonomous 
system simulations (traffic simulation, military tactic simulation etc.). Hence, the HLA 
is an architecture in which the sender of a request does not need to know his receiver. 
The HLA is thereby an event-based architecture that supports the emergent 
interconnectivity of components. For the simulation of machine tool processes, we do 
not have any problem with the emergent interconnectivity – all simulated machine 
modules are hard-wired at simulation start-up time. 

The other approach arising in the last years in the research communities on 
integration technology for simulation software is the use of a unified language for 
system modeling [7], [5]. That means, the description of the whole system could be 
done in one modeling language like Modelica [8], [9]. Thereby, the simulation of the 
whole system in an environment like OpenModelica should not pose a problem of 
models interoperability. Although this approach is ambitious and promising, it remains 
less practicable in the short term, because its success depends largely on the ability of 
the unified language to model all aspects of a system from all systems engineering 
disciplines. However, reducing the need of modeling the whole systems using a unified 
language to the specification of a standard interface for models interchange and co-
simulation between the simulation tools using a unified language seems to be more 
practicable. Examples of such tentative using the XML description language could be 
found in [10]–[12]. As explained in [10], [11] the Functional Mockup Interface (FMI) 
describes a models interchange interface between simulation environments. The intents 
of the FMI are that a modeling and simulation environment (acting as slave) can 
generate C-Code of a system model that can be utilized by other modeling and 
simulation environments (acting as master) either in source or binary form. Therefore, 
the so-called slave components are not directly coupled with each other but only with 
the so-called master simulators. Furthermore, a master algorithm that will coordinate 
all interactions have to be developed. But we are more interested in a system simulation 
environment in which there is not necessary to choose one simulation tool as a master. 

1.
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 A Software Architecture for Coupling Concurrent Heterogeneous System 
Simulations 

The proposed software architecture is driven by a concept for the configuration of 
simulation scenarios. A basic aspect of this concept implies reusability of simulation 
modules regarding the execution in any different simulation scenarios – analogous to 
enabling interconnections between mechatronic modules in the real world. Each 
module realizes a reactive behavior. After the manual configured interconnection of 
modules and their initialization/activation, the modules interact self-managed and 
realize the intended simulation scenario. 

In the following subsection the configuration concept for interacting simulation 
modules is presented in detail. Afterwards the software architecture SimBus that 
realizes the middleware to manage the interaction between several heterogeneous 
simulations is explained. In Subsection .3 the required interaction scheduling is 
described in detail. 

1. Configuration of Simulation Scenarios 

The configuration concept considers three engineering levels, which are depicted in 
Figure 2. At the lowest level generic module interfaces (e.g. controller, integrator, 
mechanical structure etc.) are described by a formal interface description language. 
These interfaces are designed in a simulator-independent manner, that means without 
considering subsequent simulator-specific requirements. Also, modules designed at the 
next higher engineering level with interfaces from the level above have to be suitable to 
use in any simulation scenario.  

Figure 2. Configuration Levels 

 Therefore, one can realize or instantiate concrete modules to use in a specific simulator 
(e.g. Beckhoff controller or Siemens controller with the same generic controller 
interface etc.). All specified modules are collected in a global module library, which 
can be used to define concrete simulation scenarios by interconnecting modules from 
the library. The third engineering level – simulation project definition – is dedicated to 
concrete scenario specification. At this level, the engineer would, accordingly to his 
simulation scenario, select a set of modules from the module library and would 
interconnect them regarding the corresponding interface descriptions from the lowest 
level.  

2.

2.

2
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.2. An Architecture for Integrated Simulation of Mechatronic Components 

Our proposed software architecture describes a virtual communication bus that 
interconnects the different simulation modules (c.f. Figure 3). The virtual bus is 
realized by a middleware, which provides a set of communication management services. 
These services are necessary to coordinate the interactions between the simulation 
modules. Indeed, the simulation modules and their interconnectivity realize the 
container design pattern and are thereby able to concurrently execute simulation tasks 
based on domain specific models. Each of these containers includes one simulator and 
one SimBus Adapter. For the communication between containers, a SimBus Module 
Interface is provided. 

 
Figure 3. SimBus Architecture – Simulator Interaction 

 
Let’s consider an example of a simulation involving two simulators (Simulator A 

and B in Figure 3). Normally, simulators are based on tool specific software 
technologies (e.g. Multi Body Simulation, Finite Element Analysis, Digital Block 
Simulation etc.) and are able to simulate domain specific models, each simulator 
having a “provided” and a “required” interface. All providing interface functions are 
implemented by a model (e.g Model X and Y in Figure 3), which is simulated by the 
simulator (e.g. a controller model in Matlab Simulink). Required interfaces describe 
functions that must be called at external modules to execute the model simulation. 

The SimBus Adapters support the communication between modules via the bus 
and schedule the execution of requested functions within the simulator. A SimBus 
Adapter consists of a SimBus Connector and an Execution Thread Scheduler. The 
connector implements a wrapper that requests functions of the simulation model via a 
tool-specific software interface (output) and prepares responds from external modules 
for the executed simulation model (input). The Execution Thread Scheduler manages 

2
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external function requests that are implemented in the simulation model. The 
scheduling mechanism is described in detail in Subsection .3. 

Supported by this architecture, engineers can use independently developed 
simulation models based on heterogeneous software simulators (Simulink, ASCET, 
CAx-tool, CutS [13]) using the same software container. But the connector that wraps 
these simulators is implemented differently due to the fact that simulation tools use 
different simulation models and have different interface for integration (dll, plugins 
etc.). 

In Figure 3 the representative processing of a request is depicted. Module B 
initiates a request towards Module A. In Step 1, the Execution Thread Scheduler 
processes an external request of Function 4 within Module B. It calls the corresponding 
simulator function supported by its tool-specific connector. The implementation of 
Function 4 needs the external service of Function 2 from Module A during its 
execution (Step 2.). Therefore Simulator B calls the function at Module A using the 
input wrapper of its SimBus Connector in Step 3. Then the request of Function 2 is 
queued in the first “Waiting State” of the Execution Thread Scheduler of Module A in 
Step 4. Finally – if the Function-2-request is switched in the third “Running State” – 
the Execution Thread Scheduler calls the corresponding function on Simulator A using 
the output wrapper of its SimBus Connector. 

 
Figure 4. SimBus Architecture - Generic Module Scheduling 

Beside the simulation-model-specific Data Exchange Interface, each module 
realizes the same Execution Management Interface (c.f. Figure 4. SimBus Architecture 
- Generic Module Scheduling). The Execution Thread Scheduler controls the 
processing of requests on the simulator. It synchronizes the processing of asynchronous 
requests between different modules via the bus. Each external request processing by the 
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Execution Thread Scheduler can 
assume one of the three states – 
“Waiting”, “Runnable”, and 
“Running” (c.f. Figure 5). The state 
changing is controlled by the 
SimBus management component 
called SimBus Manager. This 
component triggers the state change 
of all requests by a broadcast signal 
via the bus to all modules. This 
mechanism is further described in 
detail in the following subsection. 

 SimBus –Synchronized 
Interaction between Executed, 
Heterogeneous System Models 

As previously mentioned, the 
SimBus platform provides a master 
component called SimBus Manager, 
which assumes the role of a 
scheduler at the execution time span 
of the simulation modules. In other 
words, the SimBus Manager 
broadcast via the execution 
management interface an activation 
signal to all modules connected on 
the bus (c.f. Figure 4). Receiving 
this signal means for each module 
that it may execute pending jobs. 
The communication between the 
SimBus Manager and the modules 
on the bus corresponds to the 
control flow on the bus. 
We differentiate between the control 
flow and the data flow (data 
exchange between the simulation 
components). This separation is 
useful since we allow the simulation 
components to communicate to each 
other via function calls without 
using the SimBus Manager as 
transfer-buffer and by controlling 
the function execution in 
components with the SimBus 
Manager, we ensure a deadlock free 
execution of the models in a 
distributed environment in that 
remote function calls between 

Figure 5. Processing within Execution Thread Scheduler 
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modules are asynchronous (non-blocking) and each initiated remote function call runs 
in its own thread until the call is completed. Thus, 10 calls of the same functions 
initiate 10 different threads. Processing a remote function call at the receiver side 
assume that the corresponding thread is first send in the state “Waiting”, secondly in 
state “runnable” and finally in the state “running”. The function execution takes place 
only in the running state. If the execution cannot complete because some input data is 
not yet available (according function calls are initiated), the thread is sent in the waiting 
state, meaning that the thread sleeps until its input data is available. Each component 
gets its input data by calling the corresponding producer in an asynchronous manner; it 
may continue its execution or wait for the response if the requested data is needed 
immediately. The main advantage of our proposed software architecture is a 
decentralized data communication between components. Each component requests its 
input data when needed. The progress of the component execution is then control by a 
master component, which assumes the coordination of the concurrent execution. 

In Figure 5 an exemplary extract of request processing within the Execution 
Thread Scheduler is depicted. Following the interaction between modules in Figure 3 
the processing of the Function 4 request is shown. At the initial stage of the figure, the 
execution of Function 4 is in the state “Running”. This means that the processing of 
Function 4 within Simulator A is active. During execution of Function 4, Function 2 of 
Module A is requested (Step 2., 3., 4., 5. in Figure 3). This Function request is queued 
in the “Waiting” state of the Execution Thread Scheduler of Module A as is depicted in 
the second stage of Figure 5. Afterwards the execution of Function 4 is idle until it 
receives the requested data from Module A. When all execution threads in state 
“Running” are terminated or idle, the SimBus Manager sends the state change signal. 
The third and fourth stage show the state changes of Function 2 and 4 execution in both 
modules. At the final fifth stage, the request of Function 2 calls its implementation 
within Simulator A using the SimBus Connector. 

 Evaluation by Machine Tool Simulation 

The developed software architecture was implemented based on a CORBA-like 
platform using [14] ICE. The implementation provides a scheduling service (SimBus 
Manager) and a framework that contains an abstract module container (c.f. Module A, 
B in Figure 3). Furthermore a SimBus Connector was implemented for all required 
simulation tools (Simulink-Connector, CutS-Connector etc.). At runtime each 
instantiated module hosts a certain connector to communicate with the tool-specific 
simulator. Within the abstract module container, the Execution Thread Scheduler and 
the universal Execution Management Interface is implemented. The Data Exchange 
Interface was designed for each module type (lowest level in Figure 2). The design of 
Data Exchange Interfaces is based on the Interface Description Language of ICE. 
Using this interface description, skeleton code to bind the interface on the Execution 
Thread Scheduler resp. the SimBus Connector can be generated automatically by the 
ICE-tools. For the SimBus Manager a user interface was implemented. With this tool 
the user can initiate/start all required modules and can control the simulation step by 
step by broadcasts on the SimBus. To realize the upper level of Figure 2, a scenario 
configuration editor was implemented based on the Graphical Modeling Framework of 
Eclipse/EMF. With this configuration editor the user can create new simulation 
scenarios using a predefined library of simulation modules. 

3.
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The use case “process machine interaction” was built up for evaluation of the 

shown approach. Four modules, based on machine tool sub-systems described in the 
first Section, were defined in this scenario setup. As shown in Figure 6, we have 
separate modules for the physical and logical sub-systems numerical control, a separate 
position controller, a structural model and material removal representing the results of 
machining. Objective of this scenario setup is the simulation of process machine 
interaction based on real tool paths. 
 

Numerical Control Position Controller

Structural Model

Target Axis Value Axis AccelerationTarget Axis Value

Axis Acceleration

Material Removal

Current Axis Value

Current Axis Value

Current Axis Value Process Force

Process Force

 
Figure 6: Use case “process machine interaction” 

The abstract modules were realized in several software implementations resp. models 
with different degrees of detail. Thereby, each module is represented by two or three 
exchangeable models using the common module interfaces. Due to this variety of 
available models in this example, it is possible to configure the shown scenario setup in 
36 different ways without formal restrictions of compatibility. The number of 
alternatives increases with the number of models representing each module. Regarding 
to quality of simulation performance, the user has to ensure that the configuration of 
simulation affords adequate results. 

 Conclusions 

A flexible integrability of several heterogeneous simulators to holistic machine 
simulations requires a suitable middleware platform that manages the interactivity 
between simulated machine modules. But common used (event-based) reference 
architectures for simulator integration (e.g. HLA) are not overcome this challenge. For 
this reason a software architecture which schedules the interactivity between concurrent 
running but pre-connected simulators has to be researched. In the previous sections 
such software architecture – Simulation Bus (SimBus) – was described in detail. This 
architecture was implemented as a middleware platform for a flexible configuration of 
simulation scenarios based on a predefined pool of simulation modules. Subsequently a 
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representative simulation scenario – process machine interaction – was deployed on 
that platform and was successfully evaluated.  
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