

A Software Architecture to Synchronize
Interactivity of Concurrent Simulations in

Systems Engineering
Christian BARTELTa,1, Volker BÖß

b, Jan BRÜNING
b, Andreas RAUSCHa, Berend

DENKENA
b and Jean Paul TATOUa

a
 Software Systems Engineering (SSE), University of Clausthal, Germany

b Institute of Production Engineering and Machine Tools (IFW), Leibniz Universität
Hannover, Germany

Abstract. Due to distributed development of complex technical systems like
machine tools, different system components are modeled and simulated in
independent program suits. Several standards specify exchange of model data, but
communication during concurrent simulations is not standardized yet. Therefore,
the SimBus (Simulation Bus) was developed to close this gap. This novel software
architecture allows flexible coupling and implementation of existing simulation
software suits.

Keywords. System Simulation, Software Architecture, Machine Tool, Multi
Domain Simulation

Introduction – Integration of Concurrent running Simulations

Nowadays, design and simulation software systems have become an absolutely
essential part in development of complex products. This trend is promoted by concepts
for integrated development processes like concurrent engineering or digital factory
(German Engineers’ guideline VDI 4499) [1]. Established methods like product data
management (PDM) or model data standards like STEP (ISO 10303) [2] are part of
these efforts to realize continuous data exchange.

Problem of Synchronization of Concurrent Interacting Simulations

Engineering modern CNC machine tools with mechanical, electrical and
mechatronic components is a typical example of systems engineering. During the
development of machine tools, several R&D departments and suppliers are involved.
Every participant uses specialized software for his subject and, depending on the
development progress, models with a different degree of detail. To represent the
behavior of the machine tool, all sub-models have to interact with each other in a so-
called all-in-one system simulation scenario.

Due to different complexity and simulation technologies of partial simulations in
such a scenario, it is necessary to represent the system by a distributed simulation.

1 Corresponding Author.

20th ISPE International Conference on Concurrent Engineering
C. Bil et al. (Eds.)
© 2013 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-302-5-19

19

Therefore, definite simulation modules have to represent several physical and logical
system components (Figure 1). The dynamic interaction of modules and the
implementation of basic simulation functions, e.g. job control, need a common
communication interface, which is binding on all attended simulation systems and tools.
In consequence of an integrated development process, it is necessary to realize a
scalable and reconfigurable simulation platform. Due to this, each attended module
type has to act as a black box with unique functions as specialized interfaces.

Figure 1: Physical and logical system components of machine tool

The virtual model of machine tool has to be applicable resp. reusable in different

phases of machine tool’s life cycle like development and process planning. Different
models of predefined system components can be realized with a varying degree of
detail. A library of available system component’s models allows flexible configuration
of simulation scenarios, which are fitted for special use cases. E.g. during dimensioning
of a customized machine tool, simulation will be mainly focused on mechanical
reliability of machine structure and less on precision prediction of tool paths. In this
case the user can choose a detailed FEA model of structure’s mechanical behavior and
a simplified model of numerical control and drive system. In another example,
simulations for process planning will be mainly focused on process stability and quality
of work piece. Therefore, it would be necessary to choose detailed models, which are
able to simulate dynamic behavior of control and drive system to analyze the
compliance with tool path.

Shortcomings of Systems Simulation Infrastructures

Nevertheless typical simulation scenarios are limited to single system components,
which are developed independently by different R&D departments. To realize basic
software communication between (distributed and concurrently running) simulation
components, several open and proprietary standards/architectures existing – generally
by using tailored software interfaces regarding bus software architectures. A common
use case is coupling Finite Element Analysis (FEA) and Multi Body Simulation (MBS)

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations20

systems by using proprietary interfaces of an integrated software suite or by using
commercial Computer Aided Control Engineering (CACE) resp. Digital Block
Simulation (DBS) software, like Matlab/Simulink [3], [4]. Due to the high degree of
specialization, the interaction of these interfaces is mostly limited to bidirectional
communication. Beside the predestined way to connect technically the simulation
software components by a standard middleware platform, there are two further
ambitious challenges – the design of correct interrelations between apriori independent
simulation domain models at first and the synchronization of concurrently clocked
simulations modules secondly.

 Related Work – Software Architectures for Integrated Systems Simulations

Looking for architecture patterns to use as starting point when designing a
middleware infrastructure for the integration of different concurrently running
simulations quickly leads to the High Level Architecture (HLA) [5]–[7]. One main
intention of the HLA is a collaborative interaction simulation of different autonomous
system simulations (traffic simulation, military tactic simulation etc.). Hence, the HLA
is an architecture in which the sender of a request does not need to know his receiver.
The HLA is thereby an event-based architecture that supports the emergent
interconnectivity of components. For the simulation of machine tool processes, we do
not have any problem with the emergent interconnectivity – all simulated machine
modules are hard-wired at simulation start-up time.

The other approach arising in the last years in the research communities on
integration technology for simulation software is the use of a unified language for
system modeling [7], [5]. That means, the description of the whole system could be
done in one modeling language like Modelica [8], [9]. Thereby, the simulation of the
whole system in an environment like OpenModelica should not pose a problem of
models interoperability. Although this approach is ambitious and promising, it remains
less practicable in the short term, because its success depends largely on the ability of
the unified language to model all aspects of a system from all systems engineering
disciplines. However, reducing the need of modeling the whole systems using a unified
language to the specification of a standard interface for models interchange and co-
simulation between the simulation tools using a unified language seems to be more
practicable. Examples of such tentative using the XML description language could be
found in [10]–[12]. As explained in [10], [11] the Functional Mockup Interface (FMI)
describes a models interchange interface between simulation environments. The intents
of the FMI are that a modeling and simulation environment (acting as slave) can
generate C-Code of a system model that can be utilized by other modeling and
simulation environments (acting as master) either in source or binary form. Therefore,
the so-called slave components are not directly coupled with each other but only with
the so-called master simulators. Furthermore, a master algorithm that will coordinate
all interactions have to be developed. But we are more interested in a system simulation
environment in which there is not necessary to choose one simulation tool as a master.

1.

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations 21

 A Software Architecture for Coupling Concurrent Heterogeneous System
Simulations

The proposed software architecture is driven by a concept for the configuration of
simulation scenarios. A basic aspect of this concept implies reusability of simulation
modules regarding the execution in any different simulation scenarios – analogous to
enabling interconnections between mechatronic modules in the real world. Each
module realizes a reactive behavior. After the manual configured interconnection of
modules and their initialization/activation, the modules interact self-managed and
realize the intended simulation scenario.

In the following subsection the configuration concept for interacting simulation
modules is presented in detail. Afterwards the software architecture SimBus that
realizes the middleware to manage the interaction between several heterogeneous
simulations is explained. In Subsection .3 the required interaction scheduling is
described in detail.

1. Configuration of Simulation Scenarios

The configuration concept considers three engineering levels, which are depicted in
Figure 2. At the lowest level generic module interfaces (e.g. controller, integrator,
mechanical structure etc.) are described by a formal interface description language.
These interfaces are designed in a simulator-independent manner, that means without
considering subsequent simulator-specific requirements. Also, modules designed at the
next higher engineering level with interfaces from the level above have to be suitable to
use in any simulation scenario.

Figure 2. Configuration Levels

 Therefore, one can realize or instantiate concrete modules to use in a specific simulator
(e.g. Beckhoff controller or Siemens controller with the same generic controller
interface etc.). All specified modules are collected in a global module library, which
can be used to define concrete simulation scenarios by interconnecting modules from
the library. The third engineering level – simulation project definition – is dedicated to
concrete scenario specification. At this level, the engineer would, accordingly to his
simulation scenario, select a set of modules from the module library and would
interconnect them regarding the corresponding interface descriptions from the lowest
level.

2.

2.

2

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations22

.2. An Architecture for Integrated Simulation of Mechatronic Components

Our proposed software architecture describes a virtual communication bus that
interconnects the different simulation modules (c.f. Figure 3). The virtual bus is
realized by a middleware, which provides a set of communication management services.
These services are necessary to coordinate the interactions between the simulation
modules. Indeed, the simulation modules and their interconnectivity realize the
container design pattern and are thereby able to concurrently execute simulation tasks
based on domain specific models. Each of these containers includes one simulator and
one SimBus Adapter. For the communication between containers, a SimBus Module
Interface is provided.

Figure 3. SimBus Architecture – Simulator Interaction

Let’s consider an example of a simulation involving two simulators (Simulator A

and B in Figure 3). Normally, simulators are based on tool specific software
technologies (e.g. Multi Body Simulation, Finite Element Analysis, Digital Block
Simulation etc.) and are able to simulate domain specific models, each simulator
having a “provided” and a “required” interface. All providing interface functions are
implemented by a model (e.g Model X and Y in Figure 3), which is simulated by the
simulator (e.g. a controller model in Matlab Simulink). Required interfaces describe
functions that must be called at external modules to execute the model simulation.

The SimBus Adapters support the communication between modules via the bus
and schedule the execution of requested functions within the simulator. A SimBus
Adapter consists of a SimBus Connector and an Execution Thread Scheduler. The
connector implements a wrapper that requests functions of the simulation model via a
tool-specific software interface (output) and prepares responds from external modules
for the executed simulation model (input). The Execution Thread Scheduler manages

2

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations 23

external function requests that are implemented in the simulation model. The
scheduling mechanism is described in detail in Subsection .3.

Supported by this architecture, engineers can use independently developed
simulation models based on heterogeneous software simulators (Simulink, ASCET,
CAx-tool, CutS [13]) using the same software container. But the connector that wraps
these simulators is implemented differently due to the fact that simulation tools use
different simulation models and have different interface for integration (dll, plugins
etc.).

In Figure 3 the representative processing of a request is depicted. Module B
initiates a request towards Module A. In Step 1, the Execution Thread Scheduler
processes an external request of Function 4 within Module B. It calls the corresponding
simulator function supported by its tool-specific connector. The implementation of
Function 4 needs the external service of Function 2 from Module A during its
execution (Step 2.). Therefore Simulator B calls the function at Module A using the
input wrapper of its SimBus Connector in Step 3. Then the request of Function 2 is
queued in the first “Waiting State” of the Execution Thread Scheduler of Module A in
Step 4. Finally – if the Function-2-request is switched in the third “Running State” –
the Execution Thread Scheduler calls the corresponding function on Simulator A using
the output wrapper of its SimBus Connector.

Figure 4. SimBus Architecture - Generic Module Scheduling

Beside the simulation-model-specific Data Exchange Interface, each module
realizes the same Execution Management Interface (c.f. Figure 4. SimBus Architecture
- Generic Module Scheduling). The Execution Thread Scheduler controls the
processing of requests on the simulator. It synchronizes the processing of asynchronous
requests between different modules via the bus. Each external request processing by the

2

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations24

Execution Thread Scheduler can
assume one of the three states –
“Waiting”, “Runnable”, and
“Running” (c.f. Figure 5). The state
changing is controlled by the
SimBus management component
called SimBus Manager. This
component triggers the state change
of all requests by a broadcast signal
via the bus to all modules. This
mechanism is further described in
detail in the following subsection.

 SimBus –Synchronized
Interaction between Executed,
Heterogeneous System Models

As previously mentioned, the
SimBus platform provides a master
component called SimBus Manager,
which assumes the role of a
scheduler at the execution time span
of the simulation modules. In other
words, the SimBus Manager
broadcast via the execution
management interface an activation
signal to all modules connected on
the bus (c.f. Figure 4). Receiving
this signal means for each module
that it may execute pending jobs.
The communication between the
SimBus Manager and the modules
on the bus corresponds to the
control flow on the bus.
We differentiate between the control
flow and the data flow (data
exchange between the simulation
components). This separation is
useful since we allow the simulation
components to communicate to each
other via function calls without
using the SimBus Manager as
transfer-buffer and by controlling
the function execution in
components with the SimBus
Manager, we ensure a deadlock free
execution of the models in a
distributed environment in that
remote function calls between

Figure 5. Processing within Execution Thread Scheduler

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations 25

modules are asynchronous (non-blocking) and each initiated remote function call runs
in its own thread until the call is completed. Thus, 10 calls of the same functions
initiate 10 different threads. Processing a remote function call at the receiver side
assume that the corresponding thread is first send in the state “Waiting”, secondly in
state “runnable” and finally in the state “running”. The function execution takes place
only in the running state. If the execution cannot complete because some input data is
not yet available (according function calls are initiated), the thread is sent in the waiting
state, meaning that the thread sleeps until its input data is available. Each component
gets its input data by calling the corresponding producer in an asynchronous manner; it
may continue its execution or wait for the response if the requested data is needed
immediately. The main advantage of our proposed software architecture is a
decentralized data communication between components. Each component requests its
input data when needed. The progress of the component execution is then control by a
master component, which assumes the coordination of the concurrent execution.

In Figure 5 an exemplary extract of request processing within the Execution
Thread Scheduler is depicted. Following the interaction between modules in Figure 3
the processing of the Function 4 request is shown. At the initial stage of the figure, the
execution of Function 4 is in the state “Running”. This means that the processing of
Function 4 within Simulator A is active. During execution of Function 4, Function 2 of
Module A is requested (Step 2., 3., 4., 5. in Figure 3). This Function request is queued
in the “Waiting” state of the Execution Thread Scheduler of Module A as is depicted in
the second stage of Figure 5. Afterwards the execution of Function 4 is idle until it
receives the requested data from Module A. When all execution threads in state
“Running” are terminated or idle, the SimBus Manager sends the state change signal.
The third and fourth stage show the state changes of Function 2 and 4 execution in both
modules. At the final fifth stage, the request of Function 2 calls its implementation
within Simulator A using the SimBus Connector.

 Evaluation by Machine Tool Simulation

The developed software architecture was implemented based on a CORBA-like
platform using [14] ICE. The implementation provides a scheduling service (SimBus
Manager) and a framework that contains an abstract module container (c.f. Module A,
B in Figure 3). Furthermore a SimBus Connector was implemented for all required
simulation tools (Simulink-Connector, CutS-Connector etc.). At runtime each
instantiated module hosts a certain connector to communicate with the tool-specific
simulator. Within the abstract module container, the Execution Thread Scheduler and
the universal Execution Management Interface is implemented. The Data Exchange
Interface was designed for each module type (lowest level in Figure 2). The design of
Data Exchange Interfaces is based on the Interface Description Language of ICE.
Using this interface description, skeleton code to bind the interface on the Execution
Thread Scheduler resp. the SimBus Connector can be generated automatically by the
ICE-tools. For the SimBus Manager a user interface was implemented. With this tool
the user can initiate/start all required modules and can control the simulation step by
step by broadcasts on the SimBus. To realize the upper level of Figure 2, a scenario
configuration editor was implemented based on the Graphical Modeling Framework of
Eclipse/EMF. With this configuration editor the user can create new simulation
scenarios using a predefined library of simulation modules.

3.

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations26

The use case “process machine interaction” was built up for evaluation of the

shown approach. Four modules, based on machine tool sub-systems described in the
first Section, were defined in this scenario setup. As shown in Figure 6, we have
separate modules for the physical and logical sub-systems numerical control, a separate
position controller, a structural model and material removal representing the results of
machining. Objective of this scenario setup is the simulation of process machine
interaction based on real tool paths.

Numerical Control Position Controller

Structural Model

Target Axis Value Axis AccelerationTarget Axis Value

Axis Acceleration

Material Removal

Current Axis Value

Current Axis Value

Current Axis Value Process Force

Process Force

Figure 6: Use case “process machine interaction”

The abstract modules were realized in several software implementations resp. models
with different degrees of detail. Thereby, each module is represented by two or three
exchangeable models using the common module interfaces. Due to this variety of
available models in this example, it is possible to configure the shown scenario setup in
36 different ways without formal restrictions of compatibility. The number of
alternatives increases with the number of models representing each module. Regarding
to quality of simulation performance, the user has to ensure that the configuration of
simulation affords adequate results.

 Conclusions

A flexible integrability of several heterogeneous simulators to holistic machine
simulations requires a suitable middleware platform that manages the interactivity
between simulated machine modules. But common used (event-based) reference
architectures for simulator integration (e.g. HLA) are not overcome this challenge. For
this reason a software architecture which schedules the interactivity between concurrent
running but pre-connected simulators has to be researched. In the previous sections
such software architecture – Simulation Bus (SimBus) – was described in detail. This
architecture was implemented as a middleware platform for a flexible configuration of
simulation scenarios based on a predefined pool of simulation modules. Subsequently a

4.

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations 27

representative simulation scenario – process machine interaction – was deployed on
that platform and was successfully evaluated.

. Acknowledgments

This research work was supported by “Niedersächsisches Ministerium für
Wissenschaft und Kultur” (NMWK) within the Project “Pro³gression – Diligent
Production”, subproject “FleXimPro – Flexible software architecture for the integrated
simulation of manufacturing processes of hybrid machine tools”.

References

[1] O. Sauer, M. Schleipen, und C. Ammermann, „Digitaler Fabrikbetrieb. Virtual
Manufacturing“, in 4. ASIM Fachtagung: Simulation in Produktion und Logistik,
Integrationsaspekte der Simulation: Technik, Organisation und Personal, 7. und 8.
Oktober 2010, Karlsruhe, 2010.

[2] ISO10303-1:1994, „Industrial automation systems and integration—product
data representation and exchange - Part 1: overview and fundamental principles.
International Organization for Standardization“, 1994.

[3] M. Zaeh und M. Hennauer, „Prediction of the dynamic behaviour of machine
tools during the design process using mechatronic simulation models based on finite
element analysis“, Production Engineering - Research and Development, Bd. 5, S.
315–320, 2011.

[4] C. Brecher und S. Witt, „Simulation of machine process interaction with
flexible mulit-body simulation“, in Proceedings of the 9. CIRP Intenational Workshop
on Modeling of Machining Operations, 2006, S. 171–178.

[5] D. Chen, L. Wang, und J. Chen, Large-Scale Simulation: Models, Algorithms,
and Applications, 1. Aufl. CRC Press, 2012.

[6] J. S. Dahmann, F. Kuhl, und R. Weatherly, „Standards for Simulation: As
Simple As Possible But Not Simpler The High Level Architecture For Simulation“,
SIMULATION, Bd. 71, Nr. 6, S. 378–387, Jan. 1998.

[7] „Pitch - HLA Tutorial“. [Online]. Available: http://www.pitch.se/hlatutorial.
[Accessed: 14-März-2013].

[8] „Modelica and the Modelica Association — Modelica Association“. [Online].
Available: https://www.modelica.org/. [Accessed: 21-März-2013].

[9] R. Kossel, W. Tegethoff, M. Bodmann, und N. Lemke, „Simulation of
complex systems using Modelica and tool coupling“, in The 5th International Modelica
Conference, 2006, S. 485–490.

[10] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß, H. Elmqvist, M.
Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, und others, „Functional Mockup
Interface 2.0: The Standard for Tool independent Exchange of Simulation Models“, in
9th International Modelica Conference, Munich, 2012.

[11] O. Enge-Rosenblatt, C. Clauß, A. Schneider, P. Schneider, und O. Enge,
„Functional Digital Mockup and the Functional Mock-up Interface–Two
Complementary Approaches for a Comprehensive Investigation of Heterogeneous
Systems“, in 8th International Modelica Conference, Dresden, 2011.

[12] V. Böß, J. Brüning, und B. Denkena, „Standardized Communication in

5

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations28

Simulation of Interacting Machine Tool Components“, in Concurrent Engineering
Approaches for Sustainable Product Development in a Multi-Disciplinary
Environment: Proceedings of the 19th ISPE International Conference on Concurrent
Engineering, 2012, S. 825–836.

[13] B. Denkena und V. Böß, „Technological NC Simulation for Grinding and
Cutting Processes Using CutS“, in Proceedings of the 12th CIRP Conference on
Modelling of Machining Operations, Donostia-San Sebastián, Spain, 2009, Bd. II, S. S.
563–566.

[14] ZeroC, Inc., „Internet Communications Engine (Ice)“, Welcome to ZeroC, the
Home of Ice, 2013. [Online]. Available: http://www.zeroc.com/. [Accessed: 10-Apr-
2013].

C. Bartelt et al. / A Software Architecture to Synchronize Interactivity of Concurrent Simulations 29

