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Abstract

We introduce an automated pathology classification system 
for medical volumetric brain image slices. Existing work often 
relies on handcrafted features extracted from automatic image 
segmentation. This is not only a challenging and time-
consuming process, but it may also limit the adaptability and 
robustness of the system. We propose a novel approach to
combine sparse Gabor-feature based classifiers in an ensem-
ble classification framework. The unsupervised nature of this 
non-parametric technique can significantly reduce the time 
and effort for system calibration. In particular, classification 
of medical images in this framework does not rely on segmen-
tation, nor semantic-based or annotation-based feature selec-
tion. Our experiments show very promising results in classify-
ing computer tomography image slices into pathological clas-
ses for traumatic brain injury patients.
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Introduction

Large numbers of medical images are being generated every 
day. These images contain valuable information that might be 
useful for medical diagnosis, treatment, research, and educa-
tion. Automatic image annotation attempts to extract symbolic 
knowledge from images to facilitate text-based retrieval of the 
relevant images pertaining specific abnormalities or diseases.
Image-based computer aided diagnosis (CAD) systems can 
thus make use of such images and serve as a second source of 
opinion for clinicians on abnormality detection and pathologi-
cal classification. The general task of automated knowledge 
extraction from medical image databases, however, remains a 
significant technological challenge. 

In this paper we study automated knowledge extraction based 
on the images of traumatic brain injury (TBI). This is one of 
the major causes of death and disability in the world. Comput-
ed tomography (CT) images of the brain are widely used for 
the clinical diagnosis of TBI. Automatic classification of TBI 
brain images could help training radiologists assess clinical 
prognosis and pose content-based queries to image reposito-
ries. Recently, many image classification methods have been 
proposed to address this problem [1-3]. These methods usually 
consist of a feature selection phase in which the areas of inter-
est are first detected from the image.Discriminative features of 
these segments are then extracted and selected for building a 
classification rule that is capable of labeling any image (or 
image segment) with one of the predefined labels.

Most current research has focused on inducing the classifica-
tion rule from a finite sample of manually labeled training 
data. However, it is generally acknowledged that the quality of 
the segmented images and the relevance of the extracted fea-
tures are critical factors in building a high quality classifier. 
Hence, constructing the classifier usually requires considera-
ble amount of manual work. Automated segmentation is con-
sidered one of the most challenging tasks in medical imaging,
and manually devising highly sensitive and accurate segmen-
tation requires a lot of time and effort. The skills of a radiolo-
gist appear to be tacit knowledge, which makes it hard to ex-
plicate specific sets of useful features in analyzing different 
medical images. On the other hand, automatic feature selec-
tion is also non-trivial. To start with, it is hard to even estab-
lish a space of relevant feature candidates. Furthermore, the 
set of relevant features may well vary from case to case de-
pending on context and the particular image, so that no single 
set of selected features is optimal for all images.

We propose a brain image classification architecture that does 
not rely on segmentation, nor semantic- or annotation-based 
feature selection. Consequently, the knowledge in the image 
databases can be extracted automatically and efficiently. The 
proposed system is case-based (or non-parametric). Thus,
classification is performed directly on previously seen data 
without an intermediate modeling phase. Such methods are 
not new. However, recent advances in inducing sparsity have 
provided principled ways to regularize these methods. Recent-
ly, they have been successfully used for various classification 
problems such as robust face recognition [4].

Naturally, the images still have to be represented in some 
meaningful manner. For this purpose we deploy Gabor-filters 
that extract localized, low level features from the image. 
These “what and where”-features are known to resemble the 
primitive features extracted by the human visual cortex. How-
ever, with such a low level feature space, selection of a small 
set of significant features appears counterintuitive. We there-
fore borrow the idea of ensemble learning and form a collec-
tion of weak classifiers that specialize on different random 
subsets of the features. The final classification is then a prod-
uct of many parallel classifiers operating on separate but pos-
sibly overlapping feature subspaces in a case-based manner. 
Automated classification of TBI image slices has been studied 
before. Cosic and Longaric proposed a rule-based approach 
for classifying intracerebral hemorrhage (ICH) on CT brain 
images [1]. The rules were manually generated based on he-
matoma region information. Liao et al. [2] used a decision 
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tree-based approach to classify CT brain images into three 
hematoma types: extradural hematoma (EDH), subdural he-
matoma (SDH) and ICH.  Gong et al. [3] proposed an unsu-
pervised approach to label images with keywords extracted 
from their corresponding text reports, and used this “weakly”
labeled training data to construct the TBI classification sys-
tem. All these classifiers require pre-segmented image re-
gions; thus the quality of image processing is the critical com-
ponent. Furthermore, additional adjustments of the segmenta-
tion method are often needed when dealing with different da-
tasets. This limits the practicality of the whole system. Manu-
ally crafting features is also a time-consuming process. Re-
cently, Liu et al. [5] proposed an automatic Alzheimer’s dis-
ease (AD) classification system that makes use of sparse clas-
sification based on spatially normalized tissue density maps.
These maps still require segmentation of the gray matter, 
white matter and cerebrospinal volumes. 

In our previous work [6], we have studied the classification of 
full stacks of volumetric TBI images using methods that re-
quire selecting handcrafted features and segmented regions. In 
this work, we concentrate on classifying single image slices. 
We propose to eliminate the segmentation process out of the 
system flow and embrace the unsupervised and autonomous 
Gabor feature extraction methods that aim at a more robust 
image classification system. By doing so, we enhance the
practicality of the system by reducing the requirement of hu-
man expertise in selecting features and segmentation. To the 
best of our knowledge, this is the first attempt for TBI classifi-
cation under these assumptions. 

Materials and Methods

In this section, we introduce a Gabor feature subspace ensem-
ble classification framework, using sparse representation-
based classifiers. To demonstrate its performance, the CT im-
ages commonly used for detection of TBI are evaluated .
However, the theory makes no assumption about the specific 
neuroimaging modality. 

System Architecture

The workflow of the system is shown in Figure 1. First, the 
skull regions in TBI brain images are removed. The image is 
then normalized in terms of pose, direction and intensity. The 
images are further de-noised by reducing their resolution to
128 × 128 grayscale pixels. The image resolution is reduced 
for computational efficiency. Visually, the reduced resolution 
images are not very different from the original images.

Gabor features of the low resolution images are then extracted.
The features are sampled randomly many times to form differ-
ent feature subspaces that serve as input features for different 
“weak” classifiers. Finally, the results of all weak classifiers 
are combined to generate the final classification. 

Gabor Feature Extraction

Gabor filters have been widely used for image/texture recogni-
tion and detection [7]. The Gabor function extracts edge-like 
features in different scales and orientations at different loca-
tions of the image. Gabor features closely resembles the fea-
tures extracted by the human visual system [8]. In particular, 
2D Gabor filters have been used for texture segmentation, 
analysis, and recognition [9, 10].

In our work, we deploy 2D spatial Gabor filter [7] as a feature 
extraction mechanism. The filter �: �� � � is defined as a 

product of a Gaussian elliptical envelope with major/minor 
axis of �/� and a complex sinusoidal plane wave that can be 
parameterized by an angle � and central frequency f0 by first 
rotating its plain coordinates (x,y) via

�� = � cos 	 + 
 sin 	,
� = �
 sin 	 + 
 cos 	 , 
and then expressing the filter as 

��,�(�, 
) = ������ ����������������������!���. (1)

Figure 1 - System architecture: The Gabor features of prepro-
cessed images are randomly sampled to form input spaces for 
weak SRC classifiers W1,…,WW, which are then combined to 

get the final class label.

The Gabor feature G attached to the location (x0,y0) of a gray-
scale image img is now defined by the magnitude of the con-
volution

"�,�(��, 
�) = # $ ��,�(� � ��, 
 � 
�)%&�(�, 
)('�*,'�*)
(�,�)-(�,�) #.

(2)

We use the Matlab package [11] that can automatically adjust 
the sharpness parameters � and � to create a Gabor filter bank 
with 5 frequencies and 8 orientations. Thus, each of the 
16,384 locations in the image has 40 different features, result-
ing in a feature vector with 655,360 features. Performing clas-
sification directly on such long vectors is computationally 
demanding and carries the danger of overfitting. 

One possible solution would be to select just a small number 
of discriminative features for constructing a classifier. How-
ever, as discussed in the introduction, pathological image clas-
sification is a skill that requires holistic tacit knowledge. 
Therefore, we opt for designing an ensemble of weak classifi-
ers that together would accomplish the task.

In order to construct one weak classifier, we randomly select 
4,000 Gabor features to form a feature subspace. We do this 
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sampling several times, and each random sampling defines a
feature subspace for one weak classifier. In the experiments,
we study the effect of the ensemble size by varying the num-
ber of weak classifiers from 5 to 100.

Sparse Representation-Based Classifier

Recently, a sparse representation-based classifier (SRC) was 
proposed by Wright et al. [12]. SRC has achieved high per-
formance and high robustness to noise upon classifying face 
images. Instead of using the sparsity to identify a relevant 
model or relevant features which can be used for classifying 
all test samples, the SRC aims at reconstructing the test image
as a linear combination of a small number of training images.
Classification is then done by evaluating how the images, be-
longing to the different classes, contribute to the reconstruc-
tion of the test image. Using the original training images for 
reconstruction, however, allows “lazy” classification without 
forcing us to induce a classification rule for all possible test 
images before they are encountered.
In our work, we propose to use this non-parametric sparse 
representation to construct the individual weak classifiers.
More formally, suppose we have N training samples which
belong to K classes. Each class Xk consists of Ni training vec-
tors of length M, i.e.,  /0 = 1�'0, … , �230 4 5 �6×23, and 7 = 8 7090-' . We can join the training data matrices to a one 
big block matrix / = [/', … , /9] 5 �6×2. The pseudo-code 
for this classification algorithm can be found in Algorithm 1.

Algorithm Sparse representation-based classifier (SRC)

Input: 

� A block matrix / = [/', … , /9] 5 �6×2 of training 
samples.

� A test sample as a column vector 
 5 �6.
Program:

1. Scale each column of X and the test sample y to have 
unit L2-norm.

2. ��������	�
������������������
������������N by solving 
the L1-norm minimization problem:� = ;<�&%>?@A@'BCDE�FG GH @/A � 
@� I J

3. For k=1,…,K:
Evaluate the class specific reconstruction error <0(
) = @/0�0 � 
@�  using vector �0 in which 
elements of � that do not correspond to training 
vectors in class k have been set to zero.

4. return the residuals rk(y) for all classes k.

Algorithm 1- The algorithm of sparse representation-based classifier

The optimization problem in step 3 can be solved efficiently 
by L1-regularized sparse coding methods [13, 14].

Ensemble of Weak Classifiers 

Combining multiple weak classifiers often yields more accu-
rate and robust classification than using individual classifiers
[15]. The method of combining the results of individual classi-
fiers isimportant. Many classifiers simply output the class la-
bel. In this case, it is common to decide the class label by ma-
jority voting. This simple method cannot account for the dif-
ferent confidences of weak classifiers. 

When using SRC, we can take the class specific residuals as 
confidence measurers. The better a test sample is, approximat-
ed by the sparse reconstruction of training samples belonging 
to a certain class, the smaller the corresponding residual. In-
stead of performing majority voting on class labels, we thus 
compute the average residuals of all weak classifiers for each 
class. The test sample y is assigned to the class with minimum 
average residual. Suppose that we have W weak classifiers. 
Let <0K(
) be the residual for class k given by the classifier w.
The average residual for a given class k will be calculated 
as L0(
) =  'M 8 <0K(
)MK . The final label of a test y is defined 
as N;D�O(
) = ;<�&%>0L0(
).
Experimental Materials

Data used for evaluation of our proposed method are taken 
from the database of the Neuroradiology Department in a ter-
tiary referral hospital specializing in neurological diseases in 
Singapore. We obtained the Institutional Review Board ap-
proval for this anonymised dataset for retrospective data min-
ing. 

TBI brain damages are classified into several types mainly 
based on location, shape or size of hemorrhages (or hemato-
ma). The commonly used types are subdural hematoma 
(SDH), extradural hematoma (EDH), intracerebral hemor-
rhage (ICH), subarachnoid hemorrhage (SAH) and intra-
ventricular hematoma (IVH). External mechanical forces such 
as traffic accidents, violence and falls are usually the main 
reasons behind these injuries. Radiologists, trained specialists 
and senior residents usually categorize TBI by scrutinizing the 
CT images. The categorization is based on the doctor’s previ-
ous experience and knowledge. It may be inaccurate due to the 
individual doctor’s limited experience. 

Our data set (Figure 2) consists of images featuring three types 
of TBI: EDH (24 patients), ICH (21 patients) and SDH (58
patients). Each case is in the form of a volumetric stack con-
sisting of 18-30 slices. There are a total of 531 slices exhibit-
ing SDH, 165 slices with EDH and 151 slices with ICH.

(a) (b) (c)

Figure 2 - Images (a) and (c) are examples of extradural hematoma 
(EDH), while image (b) features subdural hematoma (SDH)

Each image is 512 × 512 pixels of 8-bit grayscale. The dataset 
is manually labeled with TBI subtype and verified with find-
ings from medical text reports. In this work, we only focus on 
detection of abnormal slices, thus slices without abnormalities 
are removed from the dataset. The number of slices without 
any abnormalities is different from case to case. It could vary 
from 4 to 15 slices per patient. We assume that each remaining 
slice only exhibits a single type of hematoma.

Experimental Setup

We used stratified ten-fold, cross-validation to evaluate the 
performance of our system. We ran validation 50 times with 
different random folding and measured the average precisions 
and recalls. Although the system works at the slice level, the 
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training and testing dataset should be separated at the case 
level to avoid slices from the same case being both in training 
and test data. Since there are almost three times more SDH 
cases than EDH and ICH cases, our dataset is skewed. It is 
known that imbalance in training data may considerably re-
duce the accuracy of a classification system [16]. Although we 
could equalize the number of samples for each class, we chose 
to follow the real class distribution for the sake of more rele-
vant evaluation.

The main components of our classifier architecture are the 
sparse case-based SRC method that abolishes the need for 
segmentation; and the ensemble of weak classifiers that abol-
ish the need for semantic- or annotation-based feature selec-
tion.  To evaluate these design choices, we compared its per-
formance to other classifiers that differ in these aspects. The 
baseline classifier is the standard support vector machine 
(SVM) classifier, one of the most popular and successful clas-
sification techniques in machine learning [17]. Like SRC, the 
SVM is non-parametric and does not need feature selection for 
regularization. Therefore, it could potentially yield similar 
benefits as our method. To study the aspect of feature selec-
tion, we have also constructed an SVM+FS classifier that first 
selects the original Gabor-based features and then uses the 
SVM algorithm. Features are ranked according to their vari-
ance in the dataset: the top 1,000 features with largest variance
serve as an input space for the SVM. To study the role of 
combining weak classifiers, we constructed an Ensem-
ble+SVM method. Using an ensemble architecture similar to 
our proposed approach, instead of employing SRC as a weak 
classifier, we use the standard SVM. All the SVM classifiers 
use weighted SVM to deal with imbalanced data. We have 
also included a plain SRC method that does not use weak clas-
sifiers but, like the plain SVM, directly uses all the 655,360 
features.

Results

In general, our Ensemble+SRC method yields promising re-
sults in classifying abnormal TBI slices (Table 1). The per-
formance in the majority class SDH is better than in EDH and 
ICH. This might be explained by a limited number of training 
samples in these two classes compared to SDH. The proposed 
framework improves precision and recall compared to other
classifiers. The regularization of the SRC appears to suit this 
domain better than the maximum margin principle used by
SVM. Even without feature selection, the SRC generally out-
performs the SVM. Combining SVM with feature selection or 
using it as a weak classifier does not appear to bring about the 
desired results. SVM+FS and Ensemble+SVM do not perform 
very well in EDH and ICH classes. We conclude that combin-
ing SRC and ensemble learning is a good classifier architec-
ture for this domain.

Table 1- Average precision and recall for different methods. The 
standard deviations over several foldings listed in parenthesis.

SDH EDH ICH
Prec. Recall Prec. Recall Prec. Recall

SVM 76%
(±1%)

56%
(±1%)

42%
(±4%)

63%
(±4%)

43%
(±2%)

61%
(±3%)

SVM + FS 76%
(±2%)

57%
(±1%)

57%
(±2%)

42%
(±3%)

64%
(±2%)

42%
(±3%)

Ens. + SVM 76%
(±2%)

56%
(±2%)

43%
(±2%)

64%
(±2%)

43%
(±2%)

60%
(±3%)

SRC
77%

(±1%)
71%

(±2%)
45%

(±2%)
65%

(±3%)
52%

(±3%)
44%

(±4%)
Ens. + SRC 84% 80% 64% 60% 71% 65%

(±2%) (±2%) (±3%) (±4%) (±4%) (±1%)

There are two parameters that might have important influence 
on the overall performance of our system. They are the num-
ber of weak classifiers in the ensemble, and the number of 
features sampled from the original Gabor features. We will 
next investigate the effects of these parameters on classifica-
tion results.

Table 2 illustrates the performance of the system with differ-
ent numbers of weak classifiers. All cases are given 1,000 
randomly selected features. The number of classifiers appears 
to affect both the precision and recall. In particular, recruiting 
more classifiers helps in classifying the smaller EDH and ICH 
subtypes.

Table 2 - Average precision and recall of classifiers when varying 
the ensemble size and fixing the number of features at 1,000

SDH EDH ICH
Prec. Recall Prec. Recall Prec. Recall

Ens.+ SRC
5 classifiers

84%
(±3%)

60%
(±8%)

63%
(±7%)

56%
(±6%)

51%
(±7%)

65%
(±7%)

Ens.+ SRC
50 classifiers

82%
(±2%)

66%
(±5%)

63%
(±6%)

57%
(±4%)

58%
(±5%)

66%
(±5%)

Ens. + SRC
100 classifiers

83%
(±1%)

65%
(±3%)

65%
(±6%)

55%
(±3%)

57%
(±4%)

61%
(±6%)

The number of sampled features appears to have a reasonably
small effect. When using 50 weak classifiers (Table 3), in-
creasing the number of sampled features from 1,000 to 2,000
does not appear to improve the results. When conducting the 
experiments, we observed that when the number of features 
are increased, the ensemble size should be increased as well to 
avoid overfitting.

Table 3 - Average precisions and recalls of classifiers when varying 
number of features and fixing the number of classifiers at 50

SDH EDH ICH
Prec. Recall Prec. Recall Prec. Recall

Ens.+ SRC
500 features

80%
(±3%)

62%
(±3%)

60%
(±6%)

60%
(±5%)

53%
(±3%)

65%
(±4%)

Ens.+ SRC
1000 features

82%
(±2%)

66%
(±5%)

63%
(±6%)

57%
(±4%)

58%
(±5%)

66%
(±5%)

Ens. + SRC
2000 features

83%
(±2%)

64%
(±4%)

63%
(±6%)

55%
(±6%)

57%
(±4%)

61%
(±8%)

To further assess our proposed framework, we compared our 
results with one of the most recent methods in classifying TBI 
subtype. Gong et al. [3] proposed to use SVM classification on 
selected features extracted from segmentation. The compari-
son is possible since our dataset originates from the same 
source. However, only one particular folding is available to us 
for the comparison. Table 4 illustrates the results of the two 
methods. Although Gong et al.’s method yields better results, 
it takes more effort to manually craft the features to be ex-
tracted. In addition, this technique depends on the reliability of 
the segmentation technique involved. We believe that our 
method has more potential in terms of adaptability and auto-
mation.

Table 4- Comparison of the proposed framework to Gong et al.’s [3]

SDH EDH ICH
Prec. Recall Prec. Recall Prec. Recall

Ens.+SRC 84% 80% 64% 60% 71% 65%
Gong et al 80.6% 87.9% 82.9% 79.1% 83.3% 78.9%

[3]
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Conclusion and Future Work

We have introduced an ensemble classification framework 
with sparse Gabor-feature based classifiers. The system does 
not require segmentation nor supervised feature selection. This 
reduces the need for manual work in extracting useful infor-
mation from medical images. Our experiments show that in
the domain of classifying TBI images, we achieve reasonable
results as compared to segmentation-dependent techniques 
that rely on manually selected handcrafted features. The pro-
posed approach does not make any modality dependent as-
sumptions. Testing on other modalities is a natural extension 
for future work.

The proposed method is non-parametric, thus when more 
training data is used, the classification will take a longer time. 
Parallel computation or compression of the training data could 
help to improve this situation. The dilemma of imbalanced 
data has also not been addressed adequately in our current
system. Weights for each class are still manually assigned to 
avoid the dominance of large classes. We feel that these two 
issues are related, and devising a solution while still maintain-
ing the case-based distributed representation, is one of the 
main foci for future studies. 

Currently, the proposed system classifies single image slices.
In future, we would like to investigate the problem of classify-
ing regions of interest, possibly utilizing the slice level classi-
fication. In addition, unsupervised features extracted from text 
report could be used to enhance the classifier. Finally, integra-
tion with existing medical image retrieval system is needed to 
assess the practical value of the system.
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