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Abstract 

Despite a trend to formalize and codify medical information, 
natural language communications still play a prominent role 
in health care workflows, in particular when it comes to hand-
overs between providers. Natural language processing (NLP) 
attempts to bridge the gap between informal, natural language 
information and coded, machine-interpretable data. This pa-
per reports on a study that applies an advanced NLP method 
for the extraction of sentinel events in palliative care consult 
letters. Sentinel events are of interest to predict survival and 
trajectory for patients with acute palliative conditions. Our 
NLP method combines several novel characteristics, e.g., the 
consideration of topological knowledge structures sourced 
from an ontological terminology system (SNOMED CT). The 
method has been applied to the extraction of different types of 
sentinel events, including simple facts, temporal conditions, 
quantities, and degrees. A random selection of 215 anony-
mized consult letters was used for the study. The results of the 
NLP extraction were evaluated by comparison with coded 
sentinel event data captured independently by clinicians. The 
average accuracy of the automated extraction was 73.6%. 
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Introduction

Natural language information still plays an important role in 
health care processes and workflows. For example consulta-
tions and referrals often convey important patient-specific 
health information in form of letters exchanged between pro-
viders. Natural language consult letters are not readily ma-
chine-interpretable because of their lack of structure and codi-
fication. Natural language processing (NLP) attempts to 
bridge the gap between unstructured and structured infor-
mation. There is growing interest in using NLP methods in 
health informatics.
Unique challenges arise with the application of NLP to health 
care information.  For example, clinical narrative is often un-
grammatical. General-purpose NLP systems often perform 
poorly when applied to clinical notes and narratives [1]. Most
NLP solutions that perform successfully in the medical do-
main have been designed and fine-tuned for specific purposes. 
These solutions have been developed and evolved with great 
expertise and require significant experience. Unfortunately, 
the process of developing an NLP solution for medical infor-
matics problems is still more of an art than an engineering 
science. Guidance on systematic engineering methodologies 
and re-usable components and processes remain scarce. 

The purpose of this paper is twofold. Firstly, we document a 
systematic method (“blueprint”) for engineering NLP solu-
tions for the medical informatics domain. More precisely, the 
types of NLP solutions that can be built with our method are 
purposed for automatically extracting codified information 
from clinical narrative. Our blueprint includes several novel 
aspects when compared to other NLP architectures, e.g., it 
makes use of point-of-speech tagging information during to-
kenization and it uses ontological knowledge during concept 
extraction. 
Secondly, we present the results of a study evaluating the effi-
cacy of an NLP solution built under this “blueprint” for ad-
dressing the problem of different heterogeneous types of sen-
tinel events1 from palliative consult letters. Sentinel events are 
of interest to predict survival and trajectory for patients with 
acute palliative conditions. We measure the accuracy of our 
NLP solution by comparing its automatically extracted output 
against two sets of data: (1) a set of physician-extracted senti-
nel event data, and (2) a set of physician-collected sentinel 
event data. The difference between the two data sets will be 
described in detail. Our results indicate a correlation between 
explicit information content and a high level of accuracy of 
the automatic extraction method.

Materials and Methods

Generic Method for NLP Information Extraction 

The general term of NLP encompasses processing of spoken 
language (audio) as well as the processing of written text. This 
paper is concerned with the latter. More precisely, we are in-
terested in NLP problems that attempt to extract structured, 
codified information from clinical narratives. Figure 1 pre-
sents a generic architecture for NLP solutions addressing this 
class of problems.
In the first two steps, the input text is segmented according to 
its sentence structure and then individual sentences are further 
broken down into individual text units referred to as tokens
[2]. Part-of-speech (POS) tagging assigns speech categories 
(as tags) to tokens, such as assigning the tag noun to the token 
thorax. A POS tag supplies information on its tagged word 
and on surrounding words. For example, it is likely that a 
noun follows after the word the (e.g., “the hands”), whereas it 
is less likely that a verb follows the (e.g., “the wrote”) [3].
Using the tagged tokens, the parsing step analyzes the gram-
matical structure of each sentence, i.e., its syntax [3].
The next processing step (automated clinical coding, ACC)
attempts to identify coded concepts in the parsed sentences 

1 A sentinel event is “an unexpected occurrence involving death or 
serious physical or psychological injury, or the risk thereof”
[www.jointcommission.org/SentinelEvents]
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and to annotate the sentence structure with these codes [4].
This step makes use of standard clinical terminologies such as 
SNOMED CT. 

Figure 1- NLP system components

The last processing step extracts the desired information from 
the parsed and code-annotated text using a hybrid approach 
involving feature classification and direct (heuristic-based) 
extraction. The rationale for this hybrid approach is that a
classifier cannot extract all types of information that may be 
required. Direct (heuristic-pattern based) extraction is re-
quired, particularly when it comes to extracting quantities, 
dates, and date range information.
Having given a high-level overview of the components in a
generic NLP system used for extracting coded concepts from 
clinical narrative, we will use the rest of this section to de-
scribe the language processing methods we used in more de-
tail. We particularly highlight novel aspects of our method and 
architecture.
Tokenization and POS tagging method

The accuracies of the tokenization and POS tagging steps have
impact on the effectiveness of the downstream NLP pro-
cessing chain. Despite the importance of tokenization, there is 
no single widely accepted method for biomedical text, yet 
neither is biomedical tokenization trivial. Moreover, POS tag-
gers trained for general language communication (e.g. news-
paper text) tend to perform poorly when segmenting clinical
text [5]. Therefore, a number of dedicated tokenizers and POS 
taggers have been developed for the biomedical domain, e.g. 
MedPost [6] and Specialist [7]. Two drawbacks of this ap-
proach are (1) the dedicated effort required in developing such 
domain-specific components, and (2) the relative scarceness of 
large domain-specific corpora of clinical narratives that can be 
used to trainsuch dedicated components. 
The method we developed for tokenization and POS tagging 
addresses these drawbacks. Rather than implementing tokeni-
zation and POS tagging as two subsequent steps, we utilize 
feedback between POS analysis and segmentation. The result-
ing POS-tokenizer performs three major steps: 

1. Create a bounded lattice representing a phrase’s poten-
tial segmentations (cf. Figure 2 for an example).

2. Execute a set of in-place transformations (transducers)
to normalize elements in the token lattice, e.g. trans-
form them into a canonical form. For example, the 
string “mg” would be transformed to “milligrams”.

3. Select the segmentation from the token lattice that 
yields the most probable part-of-speech tagging se-
quence. We use a Naïve Nayes classifier that considers 
the current token and its immediate context (previous 
and next POS tag) for computing the probability of its 
assigned POS tag.

A formal definition and evaluation of our tokenization and 
tagging method is out of scope of this paper and can be found 

in [5,8]. These earlier experiments indicated that POS tagging 
is effective in disambiguating tokenization of biomedical text 
[5]. Moreover, we established that our POS tagger performs 
significantly more accurate than other leading POS taggers in 
cross-domain scenario, i.e., if trained on non-biomedical cor-
pora and tested on medical text [5]. We also showed that our
POS tagger’s accuracy is statistically indistinguishable from 
the accuracy of other leading methods that have specifically 
been trained onbiomedical corpora [5].

Figure 2- A lattice representing a phrase’s segmentation

Parsing method

Context free grammars and dependency grammars are popular 
methods applied for syntactic parsing. We selected the latter 
as it is faster and generates a presentation more suitable for 
subsequent semantic processing of concept relations. MST [9]
and Malt [10] were the two best dependency parsers in the 
“CoNLL-X shared task on Multilingual Dependency Parsing”
report [11], which measured dependency parsing performance 
in 13 languages. As the above competition demonstrated the 
generalizability of both parsing techniques, we set out to in-
corporate one of them into our architecture, rather than im-
plementing our own parser from scratch. However, nothing 
was known about how the performance of MST and Malt 
would compare in presence of an imperfect input stream of 
POS tagged tokens. We therefore set up an experiment to in-
vestigate this,and found Malt to be more robust to “up-stream” 
errors of the POS tagged input token sequence. Details have 
been reported in [8].
Automatic Clinical Coding method

The purpose of the Automatic Clinical Coding (ACC) step is
to map segments of the parsed text to codified concepts, as 
defined in a controlled clinical terminology system. We use
the SNOMED CT (SCT) terminology system, as it is widely 
used internationally and provides a rich set of semantic rela-
tionships between the defined terms. Each SCT concept is 
associated with several natural language descriptions, one of 
them being marked as the “preferred” description.
Step 1: Tokenization and normalization of the natural lan-
guage description(s) associated with each concept. The nor-
malization step removes variations among tokens with the 
same or similar semantics. This includes stemming (e.g., 
“fractures” is normalized to “fracture”), written numbers 
(e.g., “two” and “II” become “2”), and abbreviations (e.g., 
“HIV”). As a result of this step, each SCT concept is associat-
ed a set of normalized tokens2, referred to as semantic atom
set.
Step 2: Pinpoint semantic atoms to concepts where they are 
first introduced. This step traverses the SCT concept poly-
hierarchy and discards tokens from semantic atom sets of con-
cepts with parents that have the same tokens in their semantic 
atom set.
Step 3: Perform token-level coding. Map each token in the 
input stream of clinical narrative to the set of SCT concepts 
where that token appears in the associated semantic atoms set.
Step 4: Combine multiple tokens into valid SCT pre-
coordinated and post-coordinated expressions, using the syn-
tactic structure and the POS tags of the input text. This step is 

2 or several sets if alternative descriptions exist.
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done by implementing SCTs rules on constructing valid ex-
pressions.
Step 5: Select the most general SCT concept. Multiple con-
cepts may have been mapped to a given linguistic structure.
This step selects the most general one according to the SCT 
hierarchy.
A more formal algorithmic definition of the ACC processing 
step is given in [8].
Information Extraction

The purpose of the last step Figure 1 is to extract the actual 
information that is sought as the output of the NLP process. In 
the case of the study presented in this paper, we sought to ex-
tract 17 sentinel events, which we are going to define in more 
detail in the following section.
The method we used for information extraction (IE) is a hy-
brid between feature-based classification and direct, template-
based extraction. We use support vector machines (SVM) and 
decision trees as classifiers [12].

Evaluation method

In previous publications, we have evaluated each component 
of our blueprint architecture in comparison to other leading 
NLP solution components in the biomedical domain. (See
[5,8, 13] for details on these component-wise comparison ex-
periments.) This paper will now describe evaluation of the 
entire NLP system end-to-end in context of a real-world con-
crete problem, namely that of extracting sentinel events from 
palliative care consult letters. The set of sentinel events used 
was taken from an earlier research project of one of the au-
thors (VT). They are listed below: 
• Dyspnea [yes/no]
• Dyspnea at rest [yes/no]
• Delirium [yes/no]
• Brain metastases (leptomeningeal) [yes/no]
• Sepsis [yes/no]
• Infection [yes/no]
• Infection site [sites include urinary tract/intra-

abdominal/skin]
• Chest infection, aspiration related [yes/no]
• IV antibiotic use [yes/no]
• IV antibiotic use response [no/partial/complete]
• Oral antibiotic use [yes/no]
• Oral antibiotic use response [no/partial/complete]
• Serum creatinine [integer; pattern-based IE]
• Serum creatinine date [date; pattern-based IE]
• Dysphagia [yes/no]
• Previous VTE [yes/no]
• VTE [yes/no]
• ICU Stay [yes/no]
• ICU length of stay in days [integer; pattern-based IE]
Study data

A total of 215 palliative care consult letters were used in this 
study (200 randomly selected ones, plus 15 “reserved” letters 
chosen by one of the authors, VT). These were anonymized by 
hospital staff members prior to be released to the researchers.
No other pre-processing of the text contained in the letters was 
carried out. Two data sets of sentinel events (physician-
extracted and physician-collected) were used to measure the 
accuracy of the automated NLP extraction process.
The first data set (physician-extracted) was specifically creat-
ed for our study by an expert palliative care physician who 
manually analyzed the 15 selected letters and extracted the 
sentinel events of interest. This data set was considered per-
fectly accurate, i.e., the “gold standard” for the automatic ex-

traction. Due to resource constraints, however, the sample size 
of the physician-extracted data set is small. 
The second data set (physician-collected) re-used pre-existing 
data on sentinel events that were collected earlier for a differ-
ent study. It was available on the entire sample population of 
patients (215). These data were collected independently from 
the consult letters, at a different point in time, and often by a 
different provider. Consequently, the structured information in 
the physician-collected data set is not guaranteed to be con-
sistent with the consult letters on the same patient. We will 
refer to this imperfect nature of the physician-collected data 
set as the “information gap” analyzed in more detail below.
Feature-based Information Extraction

Most sentinel event IE is treated as a classification task. Each 
palliative care consult letter is modeled by features and is as-
sociated with sentinel event information (e.g., has-sepsis/no-
sepsis). A classifier learns the association between features 
(palliative care consult letters) and labels (sentinel event in-
formation). A trained classifier infers omitted labels from a 
consult letter’s features. 
Features are extracted from consult letters as follows. NLP 
converts text to NLP structures (e.g., dependency graphs). 
ACC augments these NLP structures with SCT codes. Rather 
than transforming all SCT encoded linguistic structures into 
features, linguistic structures are filtered. The post-filter lin-
guistic structures are noun, adjective, preposition and verb 
phrases. From these linguistic structures, the highest-ranking
associated SCT code (if any) becomes a consult letter feature. 
In negation cases, the feature value is false and omitting the 
feature implies its absence in the consult letter.
SVMs were trained to extract sentinel event information. A 
grid search of SVM parameter space established the best pa-
rameters for each SVM. In some cases, SVMs overfit the 
training data, which may result in all tested instances to be 
classified as the same category, or fewer categories than ex-
pected. For example, brain metastases occurs 19 times in 200 
consult letters even though an SVM classifies all consult let-
ters as the dominant non-metastases category. When an SVM 
overfits training data, a decision tree classifier (C4.5, J48) [12]
is used instead. The C4.5/J48 decision tree performs pruning 
in an attempt to not overfit data. SVMs may overfit data due 
to noise. This is likely the case for sentinel event IE, given that 
consult letters are modeled with approximately 16,000 fea-
tures. Decision trees are sensitive to individual features and 
process features sequentially avoiding some pitfalls experi-
enced by SVMs. For example, in our study SVMs failed to 
identify true positive examples if few of these examples exist-
ed in the data set.
Pattern-based Information Extraction

Sentinel event information such as creatinine levels (integer 
values) cannot be extracted by trained classifiers. We conse-
quently used pattern-based IE to extract date and integer val-
ues. The pattern-based approach is similar regardless of the 
information being extracted. The approach first locates a focus
token or SCT code such as creatinine or 15373003. Dates to 
the left and right of the focus are identified and marked, from 
tokens closest to the focus to those farthest away. Dates are 
identified by month. Year and day information is located 
thereafter. Locating dates excludes numeric date values such 
as the day (e.g., 21) or the year (e.g., 2009) from being falsely 
identified as, for example, creatinine levels. Once dates are 
identified and marked, integer values are identified. The clos-
est date and integer value are bound to the key. In the example 
sentence “On March 16, 2008, and on March 17, 2008, elec-
trolytes were normal, creatinine was 202.”, creatinine would 
be bound to the level 202 and the date March 17, 2008.
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Extraction and measurement

We performed two evaluation experiments, which are summa-
rized in Figure 3. The first one compared our NLP software’s
ability to automatically extract sentinel event information to 
physician-collected sentinel event information (cf. left-hand 
side of Figure 3). This comparison used a 10-fold cross-
validation method. In 10-fold cross-validation, data is random-
ly split into 10 evenly sized groups. Each group acts as test 
data while the remaining data (9 groups) act as software train-
ing data. For pattern-based IE, the approach was evaluated 
directly on the 200 consult letters (no training/testing splits). 
This evaluation used 200 palliative care consult letters paired 
with their collected sentinel event information for training and 
testing.

Figure 3- Data creation timeline and use during evaluation

The second evaluation experiment compared our NLP soft-
ware’s ability to automatically extract sentinel event infor-
mation to physician-extracted and physician collected infor-
mation on 15 reserved consult letters (cf. right-hand side of 
Figure 3). The training data consisted for this experiment con-
sisted again of the 200 letters used in the previous experiment.
For pattern-based IE, the approach was evaluated directly on 
the 15 consult letters (no training).

Figure 4- Sentinel event extraction 10-fold cross-validation

Results

The results of our two experiments (accuracy, confidence in-
tervals, and average f-measures) are presented in Figures 4

and 5, respectively. Confidence intervals for 95% confidence 
were calculated using the normal approximation method of the 
binomial confidence interval. 
In the 10-fold cross-validation experiment on the larger, phy-
sician-collected data set, our software’s average accuracy was 
73.6% with a range of 37.5% to 95.5%. The confidence inter-
val average was +/- 5.5%.
In our second experiment, our software’s average accuracy 
was 78.9% with a range of 53.3% to 100% when evaluated 
against physician-extracted sentinel event information. When 
evaluated against physician-collected sentinel event infor-
mation, the accuracy was 71.9% with a range of 46.7% to 
100%. Confidence intervals fell between +/- 0% and +/- 25%.

Figure 5- Sentinel event extraction on reserved data

Discussion

The accuracies measured with our NLP system are similar to
state-of-the-art results reported by Stanfill et al. [4] (accuracy 
range60% - 100%; precision range10% - 100%; recall 
range25% - 100%).
Information gap

Inconsistencies exist between physician-collected and physi-
cian-extracted sentinel event information. Figure 6 quantifies 
these inconsistencies. For example, collected and extracted 
delirium information matched 86.7%, respectively differed by 
(a gap of) 13.3%.

Figure 6- Match between physician-collected and physician-
extracted sentinel event information, over 15 consult letters
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Several factors may contribute to the observed gap, including
• Errors in data collection or data extraction
• Quality variations in consult letters.
• Purpose variation of sentinel event information collected 

for research purpose, while consult letters were written as 
part of the care workflow. Some detailed information col-
lected for research may rarely be included in a palliative 
care consult letter, e.g., specific dates.

• Temporal proximity and relevance, i.e. consult letters 
were written after the physicians collected the sentinel 
event data. Some sentinel event information may have 
been excluded from consult letters because the infor-
mation may be of secondary importance or could impede 
readability. 

The information gap potentially explains some performance 
discrepancies when comparing automatically extracted senti-
nel event information to physician collected information on 
reserve data. A linear regression produces a ��������	. Thus, 
there is a correlation between the information gap and soft-
ware performance for physician-collected information (reserve 
data). This implies that the information gap limits perfor-
mance on reserve results. Given the correlation’s p-value, it is 
likely the dominant factor affecting this performance.
If the reserve data is a representative sample of the 10-fold 
data, then the information gap is likely present over all data. If 
the information gap is present over all data, then it may also 
explain the 10-fold results. A sample size of 15 is not suffi-
cient (confidence intervals of up to 25%) to simply extend the 
information gap to the 10-fold data. However, a linear regres-
sion between software performance on physician collected 
reserve results and 10-fold results produces ���� 
���	. Thus, 
the physician collected reserve data is similar to the 10-fold 
data when using our software as a similarity metric. It is likely 
that the information gap seen in the reserve data is present in 
the same form as in the 10-fold data.
The relatively small data set (215 letters) and its imperfect 
characteristic (information gap) is a limitation of our research 
result. However, our results indicate the viability of our meth-
od and are strong enough to justify resources for making 
available larger study data sets for further experimentation.

Conclusion

NLP has many potential and beneficial applications in health 
care, including but not limited to quality control, decision-
support, and research. Unfortunately, existing NLP solutions
for biomedical applications tend to be idiosyncratic, special-
ized and expensive to develop. There is a general lack of 
methodological guidance and reusable components for putting 
together new NLP solutions in this domain. Another challenge 
is the relative scarceness of corpora of clinical text needed for 
training and calibrating such solutions. We have set out to 
narrow this gap by researching and developing a generic blue-
print for NLP solutions used for information extraction from 
clinical narratives. This blueprint includes an integrated to-
kenizer / POS tagger component that can be trained on gener-
ally available English corpora and performs well when applied 
to the clinical domain. Moreover, the blueprint implements a 
novel automated clinical coding (ACC) method that uses the 
semantic relationships in SCT for assigning codes to linguistic 
structures.
We have evaluated our method tackling the problem of ex-
tracting sentinel events from palliative care consult letters. 
While the accuracy or our experimental measurements is lim-
ited by an imperfection in available study data (see discussion 
on the “information gap” above), our results are on par with 
those of other state-of-the-art systems in similar applica-
tions.[8]

We expect that our method and blueprint is generalizable and 
will be useful for constructing similar NLP solutions for in-
formation extraction from clinical narratives in an economic 
and systematic way. Our long-term vision is to make our 
method available in the form of a medical language processing 
(MLP) toolkit, similar to the Natural Language Tool Kit 
(nltk.org), but with specific support for applications in the 
medical domain.
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