
e-Labs and the Stock of Health Method for Simulating Health Policies

Philip Coucha, Martin O’Flahertyb, Matthew Sperrinc, Benjamin Greena,
Panagiotis Balatsoukasa, Stephen Lloyda, James McGratha, Claudia Soiland-Reyesa,

John Ainswortha, Simon Capewellb, Iain Buchana

a Centre for Health Informatics, Institute of Population Health, University of Manchester
and Manchester Academic Health Science Centre, UK

b Division of Public Health and Policy, University of Liverpool, UK
c Department of Mathematics and Statistics, Lancaster University, UK

Abstract

Regional outcomes of national health policies are difficult to 
forecast. This is partly due to a lack of realistically complex 
models that can be used to appraise policy options and partly 
a lack of accessible and adaptable tools that can be used to 
simulate the consequences of policy decisions. These barriers 
might be overcome by exploiting the commoditization of mas-
sively parallel computing architectures, advances in machine 
learning, and the increased availability of large-scale linked 
healthcare data. This paper presents a novel modelling meth-
odology, The Stock of Health, for harnessing emerging data 
and computational resources to simulate health policy, with 
application initially to coronary heart disease. We detail the 
use of multi-core graphical processing architectures to facili-
tate a micro-simulation approach. The simulation tools have 
been deployed through the IMPACT Framework. We explore 
how this framework can be extended to support the sharing 
and reuse of policy models and simulations based on the digi-
tal publishing concept of e-Lab.
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Introduction

Cardiovascular disease (CVD) produces a massive burden of 
disability, distress and early death in society. It is therefore a 
policy priority for public health in many parts of the world [1]. 
In the UK, 50,000 premature and avoidable deaths are caused 
each year through CVD sub-diseases such as coronary heart 
disease (CHD), heart failure, stroke, chronic kidney disease,
and peripheral vascular disease. Yet over 80% of premature 
CVD deaths are avoidable [2]. Premature CVD rates are three-
fold higher in the most deprived groups, substantially contrib-
uting to health inequalities. CVD chronically affects over three 
million patients [1] with the total annual cost in the UK ex-
ceeding £30 billion [3]. Although UK CVD mortality rates 
have been falling since 1980, population aging will result in 
additional future cases. Furthermore, as therapies improve, 
more people are surviving their first CVD events. Thus the 
patient surviving CHD through better treatment may go on to 
have other CVD problems such as stroke or heart failure. This 
rising healthcare need, particularly in the late stages of disease, 
is compounded by escalating costs for hospital procedures and 

drugs [4]. Governments are therefore promoting CVD preven-
tion through policy initiatives (smoke free legislation, salt re-
duction and increasing physical activity) and targeting medica-
tions at the higher risk individuals [4]. However, the current 
and future population impact of these strategies remains un-
clear [1]. Health planners and clinicians need a better under-
standing of the recent trends in the burden of CVD, especially
the underlying epidemiological and therapeutic factors, in or-
der to compare future policy options and plan appropriate ser-
vices for CVD prevention.

Our initial work on CHD suggests a poor connection between 
decision making and potentially available evidence. In addi-
tion, software to support policy making is seldom used interac-
tively by policy makers because it is seen as too difficult to 
use. Furthermore, the potential value of population wide strat-
egies may be large, but is currently poorly quantified [5].
Growing evidence suggests that implementing preventive 
strategies throughout the entire life course will be an increas-
ingly important policy option [6]. However, potential impacts 
are difficult to quantify. To maximise the benefits from scarce 
resources, policy-makers need reliable information on disease 
trends and interventions (costs & outcomes), and local plan-
ners want tools to estimate future changes in service costs.
Among current CVD interventions prevention is dwarfed by 
treatment. Delays in identifying more effective strategies for 
CVD prevention will be costly; therefore ‘do-nothing’ is not 
an option politically, ethically or economically. Using model-
ling to compare the potential impacts of different strategies is 
increasingly recognized as key to evidence-based policy deci-
sion making [4].

The IMPACT programme is developing a framework for col-
laborative development and dissemination of public health and 
healthcare policy models. The central informatics challenge is 
to make such models locally relevant and easy to use, through 
incorporating local data and connecting decision makers in a 
professional social network of option appraisal.

The Stock of Health

Method

The concepts of this approach are illustrated in Figure 1. We
assume that each individual is born with a stock of health 
(SoH), and on an annual basis this stock depreciates. The rate 
of depreciation depends on underlying fixed and variable risk 
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factors and demographic factors, as well as random chance. 
When the health stock of an individual reaches a critical point 
(the dotted line in Figure 1) an event of interest occurs. The 
SoH approach can be used to model any event, the only con-
straint for reliability being the availability of data for model 
calibration. In the context of the application to CHD that we 
present here, there are two events of interest: the new presenta-
tion of a patient with symptoms of CHD (incidence), and death 
from CHD (mortality).

More formally, let tiy , denote the SoH held by individual i at 
age t . Then let 1,,, ��� tititi yy� , the SoH lost in year t ,
which is modelled as

tiZiXiti ZX ,0, )log( ����� ���� (1)

0� is the baseline, which is allowed to depend on the calendar 
year in order to capture secular trends in disease onset or dis-
ease specific death; ),0(~ 2�� Ni is an individual level ran-
dom effect; 

iX and
tiZ ,
denote individuals’ age invariant and 

age variant risk factors respectively (which are assumed to 
have population-level means subtracted) and the � s are pa-
rameters controlling how risk factors affect the SoH loss. The 
log-transform in (1) means that SoH annual loss is strictly pos-
itive. The model is mathematically equivalent to an accelerat-
ed failure time (AFT) model [7] with a log-normal distribu-
tion; the SoH formulation is useful for communication with 
policy makers, and also provides a mechanism for incorporat-
ing risk factor changes.

Risk factor changes in individuals are caused by population 
level or targeted interventions. Their effect is divided into two 
components: first, the long-term effect caused by the risk fac-
tor being different (leading to a change in the future rate of 
decline of SoH); second, an instantaneous effect, represented 
as an instant change in SoH. The instant change caused by an 
intervention, which shifts risk factor j by tj ,	 , leads to a new
SoH tititi yy ,,

*
, 
�� , where

jj p
tii

p
titjjti yyy ,2,1 )( ,0,,,, �	��
 (2)

j� and the exponents jp ,1 and jp ,2 are estimated separately 
for each risk factor through optimisation (Risk Factor Shifts
section). This is a skewed function of SoH, constrained to be 0
at the minimum (0) and maximum ( 0,iy ) SoH values. The 
instant change can, in principle, be positive or negative.
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Figure 1 - Stock of Health trajectories 

Coronary Heart Disease Models

We have applied the SoH approach to the IMPACT CHD 
modelling programme to predict the outcomes of policy op-
tions in terms of disease incidence and mortality. Polices are 

considered through their effect on five risk factors: systolic 
blood pressure, body mass index, total cholesterol, smoking 
and diabetes. Evidence has been gathered from the literature 
and a variety of databases in order to calibrate these models. 
The following sections describe the data sources, outline the 
statistical methods employed to optimize the models, and 
compare some SoH-simulated with real-world outcomes.

Model Calibration

Model calibration involves determining the values of the un-
known parameters presented in the Method section. These 
include parameters that control the effect of risk factors on the 
SoH, the baseline change in the SoH and the instant effect of 
risk factor shifts. Separate models are developed for mortality 
and incidence. In the mortality model, an individual’s SoH 
represents a point on a trajectory toward death from CHD. 
This is in contrast to the incidence model, where the trajectory 
is toward presentation of the disease. Both models are cali-
brated separately for males and females.

Risk Factor Effects

In order to obtain the risk factor effect parameters ( X� , Z� )
we analysed the Cardiovascular Lifetime Risk Pooling Project 
dataset [8]. If individual studies met the following criteria, 
they were included in the dataset:  1) used community- or pop-
ulation-based sampling or a large volunteer cohort; 2) availa-
bility of at least one baseline examination at which participants 
provided demographic, personal and medical history infor-
mation and underwent direct measurement of physiologic 
and/or anthropometric variables (e.g., blood pressure and 
weight);  3) longitudinal follow-up of at least 10 years with 
complete or near-complete ascertainment of vital status; and  
4) availability of cause-specific or cardiovascular mortality 
data with or without ascertainment of non-fatal cardiovascular
events. The risk factor effect parameters are maximum likeli-
hood estimates from an accelerated failure time model fitted to 
the cohort data. For the incidence model, the endpoint was 
taken as the onset of non-fatal myocardial infarction and for 
the mortality model the endpoint was death due to CHD.

Baseline

The parameters that control the baseline rate of change of SoH
(� , 0� ) for the England and Wales mortality model were es-
timated by minimizing the distance between observed and
simulated mortality statistics. A long time-series of ischemic 
heart disease mortality is required for this purpose. The UK
Office of National Statistics (ONS) 20th and 21st Century 
mortality datasets were used. These files are a record of mor-
tality in England and Wales from 1901 to 2011. They consist 
of an aggregated database of deaths by age group, sex, year 
and underlying cause, and include populations for England and 
Wales. International Classification of Diseases 10 (ICD 10) 
codes I20-15 and ICD 9-8 codes 410-414 were used to esti-
mate coronary heart disease mortality rates. The ONS mortali-
ty dataset was also used to construct a life table, determining
the probability of individuals dying each year from any cause 
other than CHD.

The parameters were optimized using a Nelder-Mead simplex 
approach. England and Wales birth cohorts from 1901 – 2010
were simulated until all individuals died, either from coronary 
heart disease or any other cause. The cohort demographics 
were based on birth tables from the ONS. An individual’s risk 
factors levels were determined by sampling distributions ob-
tained from the UK Health Survey for England data. Data 
were obtained for total cholesterol, systolic blood pressure, 
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smoking, body mass index and diabetes from the 2004 wave. 
Calendar time changes in risk factor distributions were cap-
tured by trends in 0� (Equation 1). The optimization criterion 
was minimizing the distance between the observed and simu-
lated total and age group specific number of CHD deaths 
(1985 – 2010), and the mean and variance of the age at CHD 
death (1993 – 2004). Immigration effects were considered by 
adjusting simulated mortality based on the ratio of simulated 
to observed population sizes. Population trends and projec-
tions were obtained from the ONS; the main variant was used 
for projections. Figure 2 illustrates the best match between 
simulated and observed mortality for males and females, in-
cluding a simulated projection to 2030. Baseline parameters 
for the England and Wales incidence model have yet to be 
optimized for the England and Wales population. This model 
currently uses parameters determined from the US cohorts 
during the AFT regression.

Figure 2 - A comparison between simulated and observed 
ischemic heart disease mortality for England and Wales, with 

simulated projection to 2030

Risk Factor Shifts

The outcomes of public health policy are predicted through the 
expected shifts in risk factor levels. These shifts affect the fu-
ture rate of change of the SoH, but also lead to an instant 
change (Equation 2). The parameters that control the instant 
change ( j� , jp ,1 and jp ,2 ) are optimized by matching simu-
lated hazard or odds ratios for risk factor shifts with evidence 
presented by Ford et al. [9]. Each risk factor was optimized 
separately for males and females across a range of risk factor 
shifts and age groups. Excellent agreement was found between 
simulated and observed hazard ratios.

Model Uncertainty

There are a number of sources of uncertainty in the model,
including uncertainty in parameter estimates, Monte Carlo 
error, model assumptions and external assumptions. The com-
plexity of the model and heterogeneity of data sources pre-
clude calculations of strict confidence limits for most of the 
parameters. For example, risk factor effect parameters are es-
timated using an accelerated failure time regression to US co-
horts and are applied to the England and Wales population. 
The behaviour of the SoH due to risk factor shifts is an im-
portant model assumption. At the time of an intervention, an 
individual’s SoH is immediately shifted towards a counterfac-
tual trajectory with the post-intervention risk factor levels from 
birth. External assumptions include different population pro-

jections, different future risk factor trends and novel future 
treatments.

Policy Scenarios

The SoH tools can be used by policy makers and NHS plan-
ners who wish to explore a variety of issues, including the po-
tential impact of population aging and recent trends on future 
overall mortality rates, mortality burden and age at death. It 
also permits a quantitative estimation of the potential benefits 
of small reductions in systolic blood pressure (-1 mmHg), as 
might be easily achieved by reducing the salt hidden in bread 
or in processed food. Likewise the potential public health ben-
efits of small reductions in the trans-fats or saturated fats hid-
den in snacks or fast food, which would reduce blood choles-
terol levels by at least 0.1 mmol/l. These scenarios can then be 
compared with alternative targeted health care strategies in-
volving the detection and lifelong treatment of individual pa-
tients with elevated blood pressure (or cholesterol).

Simulation Acceleration

The current Stock of Health model optimization typically re-
quires 100 simulations to be executed in series before the cri-
teria for reaching the error surface minimum are achieved. In 
addition, large populations need to be simulated in order to 
reduce the Monte Carlo error to a level that does not prevent a 
correct traversal of the error surface. The requirement to simu-
late large populations and to execute large numbers of simula-
tions during the calibration process requires careful considera-
tion of the software implementation. The initial software writ-
ten in R (http://cran.r-project.org) would typically complete in 
a timescale of a week. Although this may be sufficient for re-
search, we aim to create a system that runs quickly enough to 
support the collaborative and iterative development of policy 
models, which may need to be optimized many times. In order 
to improve runtime performance we wrote tools to exploit par-
allelism in common computing hardware. In an initial ap-
proach, the software was re-written in F#, a functional lan-
guage encouraging code that can be easily or even automati-
cally parallelized (http://research.microsoft.com/fsharp). The 
asynchronous programming model of F# was employed to 
create software that executed a simulation across multiple 
CPU cores, leading to a significant improvement in perfor-
mance [10]. However, this proved insufficient; simulations 
still completed in a timescale that hindered the exploration of 
different models. The SoH approach affords trivial paralleliza-
tion. There is no coupling between simulated individuals and 
each individual or group of individuals can be simulated sepa-
rately and in parallel. This allows SoH simulations to be 
viewed as high throughput tasks that are able to make efficient 
use of capacity computing infrastructures.

There have been a number of claims that the use of graphical 
processing unit (GPU) accelerators can provide significant 
performance gains over the use of CPUs for certain tasks [11]. 
These accelerators are particularly beneficial when tasks ex-
hibit data parallelism and many thousands of threads can exe-
cute concurrently with minimal synchronization. This is true 
for SoH simulations, and therefore we ported the F# code for 
execution on GPUs. The host application was written in C++ 
and OpenCL was chosen for the kernel. OpenCL was adopted 
because it allows execution on a wide range of devices with 
platform vendors that include Intel, AMD and NVIDIA. The 
following discussion uses terms defined in the OpenCL ab-
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stract models1; the initial use of these terms is italicized. A 
meta-programming approach was used, with the host applica-
tion writing the OpenCL kernel source. This allowed kernel 
optimizations to be performed based on the SoH model. These 
included loop unrolling, performing some calculations in ad-
vance, and a reduction of the number of variables to reduce 
register pressure. Many GPUs contain Special Function Units 
(SFUs) that can be used to execute transcendental functions. 
The SoH simulations make considerable use of such functions 
and they target SFUs through OpenCL ‘native’ functions. Each 
compute unit of a GPU has an area of memory that can be 
used to store constant, read-only data. This memory is low 
latency but small in size (typically 64 kB). GPUs support a 
broadcast mechanism that allows constant data to be accessed 
by many threads using a single read, therefore greatly reducing 
the required memory bandwidth. The SoH simulations require 
a significant amount of constant data; this includes the risk 
factor distributions, life tables and trends. To prevent the nec-
essary use of high latency global memory for more complex 
models, the host application executes a simulation using mul-
tiple kernel dispatches with each dispatch using different con-
stant data.

The choice of global and local work item index spaces is criti-
cal for optimal performance. An N-dimensional global index 
space determines the number of work items, with each work 
item being assigned a unique N-dimensional global index. 
Each work item is also assigned an N-dimensional local index 
that groups the work items into work groups. Specific device 
architectures need be considered when choosing an index 
space. The total number of work groups was chosen to be a 
multiple (typically 4) of the number of compute units to ensure 
that concurrent work groups could be used to hide latency 
(e.g., global memory access). The work group size was chosen 
to be a multiple of the SIMT (Single Instruction Multiple 
Threads) width of the compute unit (32 for NVIDIA or 64 for 
AMD). The size was chosen ensuring that the maximum num-
ber of work items for each compute unit was not exceeded and 
that there were sufficient resources available (e.g., shared 
memory). The simulated population was grouped into birth 
cohorts, with each kernel dispatch simulating a fixed number 
of cohorts. Each processing element executes a work item that 
simulates the life course of a number of individuals across all 
birth cohorts. Further optimizations included the use of single 
precision and MAD instructions to perform simultaneous mul-
tiply and add operations.

During development and testing, Stock of Health kernels were 
executing on GPU nodes of the Computational Shared Facility 
at the University of Manchester. These made use of NVIDIA 
Tesla C2050 devices operating under Scientific Linux 5.5 and 
controlled using the NVIDIA CUDA toolkit 4.0.17. An im-
pressive level of performance was achieved, with 100 simula-
tions of the life course of all individuals born in England and 
Wales, UK between 1901 and 2010 (8 x 107 individuals per 
simulation) executing in 61s. The NVIDIA Visual Compute 
Profiler was used to tune the performance. This shows the cur-
rent kernels to achieve 50% occupancy with 1.6 instructions 
being issued per cycle (maximum two). This gives a through-
put of 80% of the theoretical maximum of the GPU device. 
Using this setup, the Nelder-Mead optimizer can calibrate the 
baseline England and Wales CHD mortality model in a few 
minutes.

It was unclear whether the significant performance increase 
was due to the adoption of OpenCL or use of a GPU. To facili-

1 http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

tate a comparison with execution on a CPU, the host applica-
tion was further developed to include some optimizations to 
improve CPU performance. These included an organization of 
the memory structures to improve cache performance. SSE 
extensions were used to target SIMD (Single Instruction Mul-
tiple Data) units through the use of OpenCL vector types. The 
index space was chosen based on the number of processor 
cores and the availability of hyper-threading to hide latency. 
The kernel was executed on a dual Intel Xeon E5506 system 
running Windows 7 Enterprise using Intel OpenCL SDK 1.5. 
Simulations were found to run 24x slower (using 8 CPU cores 
and single precision) than on the Tesla C2050, which is signif-
icantly higher than the theoretical ratio of 7.6 for throughput. 
An initial investigation into the possible reasons suggests this 
is due to the heavy use of transcendental functions. The devel-
opment of this software for GPU execution has delivered in-
creases in runtime performance large enough to make wider 
uses of SoH tractable. This has been an important develop-
ment, facilitating a micro-simulation approach to health policy 
simulation.

Simulation Sharing and Reuse

Information Design

The SoH tools are being deployed in a staged manner via the 
IMPACT Framework. Such deployments pose a number of 
challenges that require careful consideration. When setting up 
models and simulations and interpreting results, users may 
need to work with large and complex data. Such datasets can 
become overwhelming when viewed in their entirety. Here we 
draw from the field of information design, using a combination 
of visual, statistical and psychological principles to make data 
more ergonomic. Recent progress in the HTML standard 
makes it possible to create native animations using scalable 
vector graphics (SVG) and JavaScript. No additional client or 
development software is needed and development tools are 
free. This has led to a range of third party libraries that lever-
age this new technology. An example is D3, a JavaScript data 
visualization library released under a permissive BSD-style 
license (http://d3js.org). It is entirely standards compliant, 
making it future proof and stable, and includes capabilities and 
features that meet the requirements of the IMPACT interface.

Information Management

Policy model development is a complex process that often 
requires the collaboration of researchers and practitioners 
across different disciplines, including statisticians, epidemiol-
ogists, informaticians, health economists and public health 
researchers. The e-Lab is an emerging eScience and Health 
Informatics paradigm concerned with the social aspects of 
scientific collaboration and the provision of generic services 
that can be used to manage shared information [12]. A discus-
sion of the benefits of adopting the e-Lab paradigm and the 
subsequent implications for the management of data are pre-
sented by Couch et al. [10]. Here we argue for the use of a 
domain independent data model for the exchange of infor-
mation between the IMPACT tools and e-Lab services, and we
propose the Resource Description Framework (RDF). There 
are benefits to using this model for all information managed by 
the system, not just for exchange.

We are developing a new data management library for 
IMPACT that allows software developers to map a domain 
object model to a conceptual model by annotating computer 
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code using attributes; classes can be related to concepts and 
member declarations to properties. The library exposes an API 
that can be used to manage the persistence of domain objects
in a relational database. The relational model is domain inde-
pendent, reducing data migration issues associated with using 
the same database with different versions of an application.
The RDF data model is a model for making statements and the 
domain independence of the model means that statements can 
be made about anything. The software uses the concept of 
RDF graphs to group statements, which can then be described. 
This supports the capture of semantically rich metadata includ-
ing data provenance. The software supports the creation of 
different data views based on RDF graphs. For example, dif-
ferent application versions may have different business logic 
and some data should only be accessible by specific versions; 
views could be created and shared between versions. Social 
networks of simulation can be developed in this way. Views 
will allow fine grained authorization at the statement level. 
Users will be able to specify a network of trust and only view 
statements that form part of that network.

Conclusion

We have presented a novel informatics approach for develop-
ing and disseminating health policy models that are useful at 
both the national and local population level. This approach
combines three key elements: 1) a flexible modelling method-
ology, SoH, enabling preventive and treatment healthcare op-
tions to be appraised in the context of local patterns of health 
and care services; 2) a software engineering approach that 
exploits commonplace GPU hardware to accelerate the simula-
tion of population health in a naturally parallel way; and 3) an 
information architecture that exposes the digital artefacts of 
population health simulation so that they are easier to develop, 
share and reuse across social networks of health professionals.
The IMPACT programme is deploying this new methodology 
into real-world CHD policy-making with partners such as the 
Collaboration for Applied Health Research and Care in the 
UK National Health Service. The same framework could be 
employed for developing and disseminating a wider range of 
models.

There remain significant public health informatics challenges 
here, namely: i) to increase the computational tractability of 
more complex simulations to make them even more relevant to 
local decision making; ii) to find the most engaging forms of 
information for interactive and interdisciplinary health policy 
option appraisal; and iii) to connect population health model-
lers and decision makers in social networks of simulation that 
lead to better models and decisions. We hope that such devel-
opments will help to move health systems from the current 
position of a blizzard of isolated and little-used models to an 
ecosystem of simulation that supports more evidence-based 
health policies at all levels.
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