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Abstract

This study presents a prediction-based approach to determine 
thresholds for a medication alert in a computerized physician 
order entry. Traditional static thresholds can sometimes lead to
physician’s alert fatigue or overlook potentially excessive 
medication even if the doses are below the configured threshold.
To address this problem, we applied a random forest algorithm
to develop a prediction model for medication doses, and applied 
a boxplot to determine the thresholds based on the prediction 
results. An evaluation of the eight drugs most frequently causing 
alerts in our hospital showed that the performances of the 
prediction were high, except for two drugs. It was also found 
that using the thresholds based on the predictions would reduce 
the alerts to a half of those when using the static thresholds.
Notably, some cases were detected only by the prediction 
thresholds. The significance of the thresholds should be 
discussed in terms of the trade-offs between gains and losses;
however, our approach, which relies on physicians’ collective 
experiences, has practical advantages.
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Introduction

Background

Computerized physician order entry (CPOE) systems for 
medication have been widely implemented in recent years. The 
percentage of large hospitals with 400 or more beds that use
CPOE was 78.6% as of 2011 in Japan [1]. The use of CPOE is 
expected to be efficient for the health care practice and reduce a
physician’s time [2]. The CPOE system is also expected to 
contribute to the prevention of malpractice [3, 4], such as the 
prescription of excessive medication. In many of these systems, 
the thresholds for the upper-limits of medication dose are static
based on drug notes, and are applied without consideration of
the patient's condition. These static thresholds are generally 
useful; however, medication doses occasionally exceed the 
thresholds as a result of considering a patient’s condition, which
creates false alerts and leads to physician’s alert fatigue [5, 6]. 
Moreover, when taking a patient’s poor condition into account, 
the static threshold may overlook potentially excessive 
medication doses even if the doses are under the static 
thresholds. To address this problem, we have developed a case-
based approach that uses the past medication record for setting 
the thresholds. A previous study revealed that the system 
reduced the number of false alerts compared to the static 
thresholds method; however, it did not function well with an 

insufficient amount of case data, which remained a limitation
[7].

Purpose

This study presents a prediction-based approach to determine 
dose thresholds using past medication records. First, we apply
Random Forest (RF), a type of machine-learning algorithm, to 
predict the medication dose. To show the characteristics of the 
RF prediction, we compare the performance with other 
algorithms, such as Bagging (BAG) and Classification and 
Regression Tree (CART). Second, we present a method to 
determine the dose upper-thresholds based on the results of the 
predictions, and compare them with the results using the static 
threshold. Finally, we discuss the benefit of the RF predictions 
and the significance of the prediction-based dose thresholds.

Materials and Methods

Health Insurance Claims in Japan

To develop a prediction model for medication dose, we used 
health insurance claims in Japan as the data source. The health
insurance claims are monthly statements of medical expenses 
and contain comprehensive information on medical procedures 
in inpatients and outpatients. In almost all of the hospitals and 
pharmacies in Japan, the claims for payment are electronically 
available. The major information contained in the claims are 
date of visits, demographics such as age and gender, medical 
procedures, current diseases, and total medical expenses for
each month. In the medical procedures section, the details of the 
medications, such as what types of drugs were used, how many 
tablets were used daily, how many days long, regular use or only 
as needed, oral or injection, are described. In the current diseas-
es section, the basis for medical procedures, e.g., patient’s dis-
eases or diagnoses are described for the purpose of insurance 
claims. The coding system used in the disease section, devel-
oped by Medical Information System Development Center 
(MEDIS-DC) Japan, is called the MEDIS standard disease mas-
ter [8], and it contains approximately 23,000 disease codes.

Data Collection

The University of Tokyo Hospital (UTH) is an educational 
hospital with more than 1,200 beds and 750,000 visits annually. 
We collected the medication records of the inpatients and 
outpatients including ambulatory settings at UTH from January 
2007 to December 2011; and multiple prescribed medication
records for the same patients during different visits or on 
different days were included. We defined medication dose as the 
daily amount of tablets used regularly, excluding tablets used 
only as needed.
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Table 1 - Statistical summary for the collected medications

The records also include patient demographics such as gender, 
age, and disease names presented at the time of the medication. 
All of these data were not extracted from actual claims, but from 
the hospital information system database; however, the data in-
clude the same information as described in the claims. We se-
lected the records for the eight drugs most frequently causing 
alert in January 2011 in our hospital. A statistical summary of 
the collected medications is shown in Table 1.

Random Forest

General Procedure

Random Forest is a machine-learning algorithm for both 
classification and regression problems and developed by 
Breiman and Culter [9]. It has become popular and appears to be 
very powerful in many different applications such as gene 
selection in microarray data, face recognition, etc. [10]. Random 
forest belongs to a family of ensemble learning algorithms that is 
a committee of weak learners. In RF, CART, a family of the 
decision tree, is used as a weak learner. For the classification 
problems, RF outputs the majority of class votes across all trees.
On the other hand, for regression problems, RF outputs the 
mean of the votes. We present a brief description of the 
regression RF procedure, which takes the following steps:

Step 1: Making a bootstrap sample B1, B2... BN consisting of 
N subjects from the original training data. In each sample, not 
all features are used, but a small number of features are 
randomly selected. Two-thirds of the data are used for training a 
tree and one-third are used for testing the tree, which are called 
Out-Of-Bag (OOB) data.

Step 2: Growing CARTs for the training data in the samples B1, 
B2… BN. In a CART, the split variable in a node of the tree is 
decided to increase the difference of Gini-Indexes between a 
parent and its two child nodes. Once the variable is decided and 
the node is split into two, the same process is applied to each 
child node. In RF, no pruning is used and the tree is grown to its 
fullest possible extent, which is distinct from the standard 
CART. The OOB data are not used for training the tree, but are
used to estimate the prediction error and then to evaluate the 
variable importance.

Step 3: Random forest outputs the mean of the votes across all 
trees based on the OOB estimation.

There are two parameters that should be given in RF. The first 
parameter is the number of features that are randomly selected 
from all features. Although it could be determined by heuristic 
reasoning, it is recommended that one-third of all features be 
used in the regression RF. The second parameter is the number 
of trees included in RF. In theory, the stability of the results in-
creases with the number of trees grown. In practice, we can use 

the number of trees when the decrease in error rate becomes 
saturated, because the OOB-based error estimation gradually
decreases as the number of trees increases. According to our 
preliminary experiments, we used 200 trees in a forest in this 
study.

Variable Importance in RF

There are two measurements of variable importance available in 
RF. The first measurement is the permutation importance that is 
computed by comparing the prediction error of the original data 
with that of the OOB data, in which the variables are randomly 
permutated. The other measurement is the Gini importance that 
is computed by adding up the reduction of the Gini-Index for 
each node over all trees in the forest. In this study, we used the 
permutation importance to show which feature is useful for
predicting the medication dose and discussed whether these 
features are consistent with clinical interpretation.

CART and BAG

Generally, RF performs better than both CART and BAG. We
compared RF with CART and BAG to confirm the generality of 
its algorithm. The classification and regression tree [11] is a
well-known decision tree model, which is used as a weak learner 
in RF. Unlike RF, pruning is usually used in CART to avoid 
over fitting to training data. . However, in this study, we used
CART without pruning in the same way as RF to clarify the con-
tribution of the ensemble in RF. Bagging is another well-known
tree-based algorithm [12], which also belongs to a family of 
ensemble learning that create CARTs. The difference between 
RF and BAG is that RF uses randomly selected sample features 
to grow the trees, whereas BAG uses all features. The number of 
trees used in BAG should also be given. Here, we used 200 trees 
for developing BAG, which was the same setting in RF.

Experiment Settings

Data Arrangement

To improve the efficiency of the analysis, we arranged the 
collected data by reducing the features. There were over 22
million records for the current diseases, and approximately 
13,000 types of diseases were observed. The frequency 
distribution of the diseases was highly skewed with a long tail 
on the right. The most frequently observed disease was
hypertension, followed by diabetes. The top 1,500 types of 
diseases accounted for 90% of the frequency. Based on this 
finding, we used the top 1,500 types of diseases as features for 
developing the prediction model. Thus, our dataset included 
1,503 features for a medication record, i.e., two for gender and 
age, 1,500 for current diseases, and one for the dose of 
medication. Among these features, the dose and the age are 
presented as real values, and the gender and the current diseases 

Drug Tablet
Dose (mg)

Age Gender
M:F

Dose (Tablets) Total
Records

Alert (%)
Mean SD Range Mean SD Range

Ursodeoxy-
cholic acid 100 64.0 13.4 4-97 1:0.9 5.5 1.76 1-15 73,918 11.5

Carvedilol 2.5 65.1 16.2 0-95 1:0.4 1.9 1.21 0.02-9 48,379 9.6
Sennoside 12 62.1 16.8 6-100 1:1.1 1.9 0.89 0.5-10 126,483 5.2
Loxoprofen 60 55.0 18.1 3-99 1:1.4 2.0 0.95 0.5-6 170,775 4.4
Brotizolam 0.25 60.1 16.4 3-96 1:1 1.1 0.33 0.25-3 148,812 4.3
Nifedipine 20 68.0 12.0 9-97 1:1.1 1.7 0.84 0.5-6 55,245 2.5
Famotidine 20 61.8 16.2 4-97 1:0.9 1.4 0.49 0.5-3 130,650 2.3
Pravastatin 10 68.1 11.8 12-99 1:1.3 1.1 0.30 0.5-4 31,063 1.9
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are presented as binary values. In addition, we reordered the 
features in order of frequency for every drug, which was 
measured by how many times a certain disease was presented at 
the time a certain drug was prescribed. According to this 
reordering, a disease that is frequently presented for a drug is 
highly ranked, while a disease that is not frequently presented 
for a drug is ranked lower. For example, the most highly ranked 
disease was hepatocellular carcinoma followed by liver cirrhosis 
for Ursodeoxycholic acid; whereas, for Carvedilol, chronic heart 
failure and dilated cardiomyopathy were the two most highly 
ranked diseases.

Build and Evaluate Prediction Models

To build the prediction model for each algorithm, experiments 
were conducted as follows. For each drug, 30,000 medications 
were randomly selected and then further divided into two da-
tasets: a training dataset containing 20,000 medications and a
test dataset containing 10,000 medications. Performance of the 
prediction was measured as the mean of the correlation coeffi-
cient (n = 10 for RF and CART, n = 5 for BAG) between the 
predicted doses and the actual doses using the test dataset. To
determine how many features are appropriate to use, the perfor-
mance was calculated by gradually increasing the number of the 
features from 10 to 1,500. The features were already ranked in 
order of frequency as described above. For this analysis, we 
used statistical software R version 2.15.1 on a Linux OS.

Determine Threshold: Drawing Boxplot for RF Votes

To determine the thresholds based on the prediction model, we 
applied a boxplot for RF votes. The boxplot is a common and 
robust way to define a threshold for outlying data. The boxplot’s
data item has five main values: Low, Q1, Median, Q3, and High.
The difference between Q1 and Q3 is called the interquartile 
range or IQR. The High value is determined by a minimum of 
1.5 times the IQR above Q3. The Low value is determined simi-
larly. Thus, when RF votes are given for a medication, we can 
calculate the high value of the boxplot and use it as an upper-
threshold for the medication dose. For evaluation, we compared
the static thresholds described in drug notes to the predicted
thresholds. We used 20,000 medications for building RF and 
10,000 medications for the evaluation, which are the same da-
tasets used for building the prediction model.

Results

Performances of the Prediction Models

Figure 1 shows the performance of the prediction among the 
three algorithms. The horizontal axis shows the number of fea-
tures used, and the vertical axis shows the mean of the correla-
tion coefficient. The results showed that regardless of the type of 
drug, RF performed better than the other algorithms. In all algo-
rithms, the performances reached their highest point when the 
number of features used was around 200. Specifically, RF 
showed 0.80 to 0.95 in its highest point, except for two drugs. 
The relatively low performances of 0.52 and 0.69 were observed 
for Loxoprofen and Brotizolam respectively, and these trends 
were also observed in the other algorithms. In addition, RF
maintained its performance even after reaching the highest 
point; whereas, in BAG and CART, the performance decreased 
as the number of features increased.

Evaluation of the Prediction Thresholds

Figure 2 illustrates the result for ‘Carvedilol 2.5 mg Tab’ by 
showing the relationships between the actual doses and the pre-

dicted thresholds and the static threshold. Among 10,000 medi-
cations, 602 cases were detected in total. . Among them, 57 cas-
es were detected by both thresholds, 228 cases were detected 
only by the predicted thresholds, and 317 cases were detected 
only by the static threshold.

Figure 1- The performances of the prediction among the three 
algorithms

Figure 2 - The relationships between the actual doses and two 
types of thresholds for Carvedilol Tablet
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This result means that when we apply the predicted thresholds
for medication alert, 317 medications are considered to be 
appropriate even if the doses are above the static threshold; 
however, 228 medications are considered to be inappropriate
even if the doses are below the static threshold. The summary of 
all results is shown in Table 2. The results indicate that when we 
apply the predicted thresholds for medication alert, there will be 
a reduction in four drugs, whereas the opposite will happen for 
the other four drugs. In total, the predicted thresholds will 
reduce the alerts by a half of those using the static threshold.

Table 2 - The evaluation results of thresholds

Number of the Cases Detected by 
Thresholds

Propor-
tions 
(Predic-
tion/Stati
c)

All
Cases

by
Both 

Thresh
olds

Only 
by 

Predic-
tion 

Only 
by 

Static

Ursodeoxy-
cholic acid 949 113 17 819 0.02

Carvedilol 602 57 228 317 0.72
Sennoside 327 29 195 103 1.89
Loxoprofen 505 15 465 25 18.60
Brotizolam 1,167 300 5 862 0.01
Nifedipine 627 37 171 419 0.41
Famotidine 183 8 171 4 42.75
Pravastatin 53 0 41 12 3.42
TOTAL 4,413 559 1,293 2,561 0.50

Discussions

Dose Prediction from Health Insurance Claims

Drug safety has been a notable issue for clinical practice. Re-
cently, machine-learning techniques have been applied for pre-
dicting dose of warfarin [13, 14]. In those studies, detailed clini-
cal data, such as biochemical examination and genetic variation
were used as features to predict the narrow therapeutic dose of 
the drug. Unlike those studies, we used patient demographics
and current diseases, which are commonly available from health 
insurance claims, to develop the prediction model that enables 
us to apply a wide range of drugs to an alert system. Although
current diseases in the health insurance claims are described not 
only for accurate diagnoses but also for insurance claims, the 
performance of RF using the claims showed high value. This 
indicated that it is useful to predict drug dose based on diseases
described in the insurance claims even if they are not intended 
for only accurate diagnoses.

Random Forest Predictions

The results of the prediction model revealed that regardless of 
the types of algorithm or drugs, the performances reached their 
highest points when the number of features used was around 
200. These results indicate a sufficient number of the features
used to build the prediction model. In contrast to RF, the per-
formance of BAG and CART decreased as the number of fea-
tures increased. This is due to over fitting to training data, which 
generally occurs when a model has too many features relative to 
the number of samples. Although RF is a collection of CART, 
ensemble-based learning helps to avoid the over fitting and re-

duces the variation of prediction errors. Bagging is also an en-
semble of CART; however, its performance was also decreased,
similar to CART. The reason is assumed to be the random sam-
pling of the features, which provides variety for the trees and 
improves the generalization of the prediction [9].

Understanding Clinical Reasons

The quantification of the variable importance is useful for inter-
preting data and understanding the underlying phenomenon. The 
variable importance measures a feature’s contribution to the 
reduction of the prediction errors in the forest. Figure 3 shows 
the top 10 features in a certain experiment with 200 features. 
There are several interesting features relevant to the clinical 
understandings. First, for patient demographics, age was the 
most important factor among all other features in almost all 
drugs, and gender was also important but not as much as age. 
This indicates that age and gender are primal and convenient 
markers to estimate the tolerance of drug dose.

Figure 3 - Variable importance: top 10 among 200 features in a 
certain experiment

Second, there were some clinical reasons that explain how the 
features could affect the dose. For example, ‘familial hyper-
lipidemia’ in ‘pravastatin 10 mg Tab’ was the most important 
feature compared to the others. Clinically speaking, familial 
hyperlipidemia is a genetic disorder that causes greatly elevated 
levels of cholesterol, and thus the patients with familial hyper-
lipidemia need a higher dose of an anti-cholesteremic agent than 
patients with other types of hyperlipidemia. Thus, it is reasona-
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ble to suppose that the familial hyperlipidemia is a good feature 
for predicting the required dose of pravastatin.

Significance of the Prediction Thresholds

Merely discussing the increase or decrease in the number of
alerts is not enough. We should also discuss the trade-offs
between gains and losses; in other words, the sensitivity and 
specificity of alert system [6]. However, knowing the correct 
answers for medication alerts is difficult because we could not 
identify the outcomes responsible for those medications. In light
of this, our approach has some practical advantages. The 
approach relies on data from past medications and physicians’ 
collective experiences, which are assured as appropriate for a
patient’s condition. As a result, the developed prediction model 
was capable of predicting the patient-specific medication dose. 
As shown above, the performance of prediction in RF is high in 
most of the drugs. Therefore, it is reasonable to suppose that the 
thresholds based on those predictions have a certain level of 
evidence.

Availability of the Prediction-based Approach

One of the advantages of our approach is that it can detect 
inappropriate medications even if the doses are below the static 
threshold. Our results show that the medications can be detected 
only by the prediction thresholds in 1,293 cases. Although it 
may lead to an increase in false alerts when we apply them, it is 
more significant to prevent iatrogenic injury caused by excessive 
medication. Furthermore, our approach is also capable of
suppressing the alerts even if the doses are above the static 
threshold. These advantages are helpful to improve the system 
by leaving room for interpretation either way. Moreover, in term 
of visualization, the display of boxplot-based threshold and the 
variable importance in RF will help physicians to understand the 
reason for the alert.

In terms of adaptivity, our approach can be easily adopted in 
other hospitals because the health insurance claims that we used 
as the source for the prediction model are commonly available. 
Although there are differences in patient demographics, disease 
frequencies, and drug doses among the hospitals, our approach 
can take these differences into account to determine thresholds.

Limitations and Future Works

Although we used 30,000 cases for building and testing the pre-
diction model, we did not determine how many cases are re-
quired to build the prediction model. Thus, our approach may
not apply to minor drugs that do not have a sufficient number of 
past records. When dealing with minor drugs, health insurance 
claims should be gathered from other hospitals. In addition, it is 
necessary to evaluate physicians' compliance with those alerts in 
the clinical setting while clarifying the outcomes responsible for 
those alerts.

Conclusions

In this study, we presented a prediction-based approach to 
determine thresholds for the medication alert. The evaluation of
eight selected drugs showed that the performance of the 
prediction using RF was high except for two drugs. The 
thresholds based on the prediction model reduced the alerts by a 
half of those when using the static thresholds. Although the 
significance of the thresholds should be assessed in more details,
our approach, which relies on physicians’ collective 
experiences, had some practical advantages. In future work, we 

will evaluate physicians' compliance with those alerts in a 
clinical setting.
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