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Abstract

Central venous catheters play an important role in patient 
care in intensive care units (ICUs), but their use comes at the 
risk of catheter-related infections (CRIs). Electronic surveil-
lance systems can detect CRIs more accurately than manual 
surveillance, but these systems often omit patients that do not 
exhibit all infection signs to their full degree, the so-called 
borderline group. By extending an electronic surveillance 
system with fuzzy constructs, the borderline group can be 
identified. In this study, we examined the size of the borderline 
group for systemic CRIs (CRI2) by calculating the frequency 
of fuzzy values for CRI2 and related infection parameters in 
patient data involving ten ICUs (75 beds) over one year. We 
also validated the expert-defined fuzzy constructs by compar-
ing overall and CRI2-specific support. The study showed that 
more than 86% of the data contained fuzzy values, and that 
the borderline group for CRI2 consisted of 2% of the study 
group. It was also confirmed that most fuzzy constructs were 
good representatives of the borderline CRI2 patient group.

Keywords: 

Infection Control, Cross Infection, Intensive Care Units, Au-
tomatic Data Processing, Fuzzy Logic.

Introduction 

Central venous catheters (CVCs) play an essential role in the 
care of critically ill patients admitted to intensive care units 
(ICUs). Estimates suggest that in the United States 15 million 
CVC days occur annually [1]. However, the frequent use of 
CVCs also puts a patient at risk of acquiring CVC-related in-
fections (CRIs), which increases morbidity, length of hospital 
stay, and cost of care, especially in ICUs [2-5].

In response to the threat of CRIs and other healthcare-
associated infections (HAIs), the US National Healthcare 
Safety Network and the European Centre for Disease Preven-
tion and Control (ECDC) have developed infection surveil-
lance programs to identify and document HAIs in ICUs, also
known as ICU-acquired infections [6]. However, manual sur-
veillance based on these programs requires a high amount of 
resources, and produces variable results [7, 8]. To reduce re-
source consumption and improve surveillance quality, elec-
tronic HAI surveillance systems have been developed [9-11].

In an effort to make surveillance rules less subjective to inter-
pretation, involved medical concepts are often supplied with 
numerical cut-offs on underlying measurable raw data to clas-
sify a patient condition as either HAI or non-HAI. While this 
makes surveillance rules easier to interpret, the downside is 
that due to the simplified representation of the patient popula-
tion, patients who adhere to at least some of the conditions in a 
surveillance rule (the so-called borderline patient group) are 
indistinguishable from patients with little or no infection signs.
This limits the usefulness of surveillance systems as well as the
recognition of starting infection episodes.

In order to identify the borderline patient group and distin-
guish them from the remaining patient population, we applied 
fuzzy set theory and fuzzy logic in an electronic HAI surveil-
lance system [11-13]. Through fuzzy set theory, it is possible 
to quantify a patient’s health status in a numerical spectrum 
between 0 and 1 rather than in a yes/no binary form, thus pre-
serving information about borderline cases. For each clinical 
infection parameter, fuzzy sets and processing rules were de-
fined by clinical and infection control experts. 

In this paper, we assessed the frequency of fuzzy values for 
clinical infection parameters involved in the detection of CRIs 
in ICUs. Furthermore, we validated the established fuzzy sets 
by comparing overall and CRI-specific support of fuzzy re-
sults. If the difference between both metrics was statistically 
significant, this would indicate that the fuzzy set for that pa-
rameter would be an accurate representation of the borderline 
group compared to the overall patient population.

Materials and Methods

Study design and setting

Our retrospective data study included ten ICUs (comprising 75 
beds) of the Vienna General Hospital, a 2,133-bed tertiary care
and teaching hospital. Electronic surveillance was performed 
by the MONI-ICU system, which serves as a support tool for 
surveillance and epidemiology to the Clinical Institute of Hos-
pital Hygiene.

Participants and study period

All patients admitted to or staying in the selected ten ICUs 
between January 1st, 2011 and December 31st, 2011 were eli-
gible for this study. Conforming to the ECDC definition of 
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ICU-acquired infections, only patients staying longer than 48
hours in an ICU were included in the study. Furthermore, pa-
tients of age 17 and younger were excluded since MONI-ICU 
was established to monitor adult patients.

Electronic surveillance

Data sources

Electronic surveillance of HAIs is done by combining patient-
specific data from three different types of data sources: clinical 
data, biochemistry laboratory data, and microbiology laborato-
ry data. Clinical and biochemistry laboratory data are supplied 
by the PhilipsTM CareVue patient data management system,
whereas microbiology results are provided by the laboratory 
information system of the Department of Microbiology. Data 
are combined through unique patient and admission identifiers 
registered in the hospital information system.

Knowledge base

Electronic surveillance of CRIs is based on ECDC guidelines 
for CRI surveillance [6]. Three types of CRI are defined:

� CRI1, a localized CRI, confirmed by a positive micro-
biology CVC culture, and pus or inflammation found at 
the CVC insertion site.

� CRI2, a systemic CRI, confirmed by a positive micro-
biology CVC culture and an improvement of clinical 
signs within 48 hours after catheter removal.

� CRI3, a microbiologically confirmed CVC-related 
bloodstream infection (BSI), confirmed by the occur-
rence of a BSI 48 hours before or after catheter remov-
al, and a positive microbiology culture of both the CVC
tip and a separately drawn blood specimen with the 
same microorganism.

A BSI is defined as follows [6]:

� A patient has at least one positive blood culture for a 
recognized pathogen, or 

� A patient has at least one of the following signs or 
symptoms: fever (>38° C), chills, or hypotension, and 
two positive blood cultures for a common skin contam-
inant.

The MONI-ICU knowledge base is a structured adaptation of 
the ECDC rules implemented in Arden Syntax 2.7, whereby 
each clinical decision is performed in a medical logic module 
[14, 15]. Due to the binary representation of some data ele-
ments in the various data sources, only clinical parameters in 
the CRI2 definition could be extended with fuzzy sets, and 
thus fuzzy results may occur only for CRI2.

Selection and fuzzy set construction of CRI2-specific clinical
infection parameters for the knowledge base was done by both 
clinical and infection control experts, and was based on 
aforementioned surveillance guidelines and medical literature.
Each fuzzy parameter falls into one of three categories:

� Core parameters, which are parameters whose values
are calculated by applying fuzzy sets to data stored in 
aforementioned data sources.

� Aggregate parameters, which are fuzzy parameters
whose values are either calculated by using fuzzy logic
operators such as fuzzy conjunction (min function) and 
disjunction (max function) on the values of other ag-
gregate and core parameters, or are derived from fuzzy 
relations (algebraic product) on crisp or fuzzy values. It 

should be noted that all operator definitions also in-
clude “missing values”.

� CRI2 surveillance definition, which is the aggregate pa-
rameter representing the final value for the CRI2 defini-
tion.

Table 1 shows all fuzzy infection parameters and relations for 
CRI2, divided into aforementioned categories. Relationships 
between core, aggregate, and CRI2 definition parameters are 
also listed. Note that non-fuzzy parameters are denoted with #
and that fuzzy relations on parameters are denoted with *.

Table 1 - Fuzzy infection parameters and dependencies

Core parameters

Increased body temperature, shock, drop in blood pressure, 
increased C-reactive protein, leukopenia, leukocytosis, hypo-
tension

Aggregate parameters Fuzzy parameter dependencies

Fever Elevated body temperature, 
*#thermoregulation

Hypotension *Drop in blood pressure, *shock

Clinical signs of BSI Fever, increased C-reactive pro-
tein, leukopenia, leukocytosis, 
hypotension

CRI2 definition Clinical signs of BSI, #CVC pres-
ence

Outcome measures

In order to quantify the overall occurrence of fuzzy values in 
the data for each clinical infection parameter, we calculated 
the fuzzy support. Let P be the amount of patients, and Ni be 
the amount of patient days for patient i; furthermore, let xij be 
the value of the parameter of interest for patient i on day j. The 
fuzzy support FSup for a specific infection parameter can then 
be calculated as follows:
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We also calculated the fuzzy conditional support to quantify 
how often fuzzy values for infection parameters occur given 
that the value for CRI2 definition is fuzzy. Let CRI2ij be the 
value of the CRI2 definition for patient i on day j, and again 
let xij be the value of a relevant infection parameter for patient 
i on day j. Given that parameter x is involved in the decision 
process of d, FCSupCRI2 can be calculated as follows:
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Data collection and analysis 

Data were collected from the MONI-ICU database. Empty and 
partial records were removed from the study data. Aforemen-
tioned outcome measures were programmed in Python. Patient 
and data filtering according to study inclusion guidelines was 
done in both Python and Microsoft Excel 2007. P-value calcu-
lation was done in R with Fisher’s exact test. Results were 
defined as significantly different when P < 0.05.
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Table 2 - Overall and CRI2-specific fuzzy support for selected infection parameters

Infection Parameter

Overall (N=24,487) CRI2 (N=501)

P-value#Fuzzy values FSup #Fuzzy values FCSupCRI2

Increased body temperature 3,421 .141 100 .20 0.003

Shock 6,615 .272 188 .38 < 0.001

Drop in blood pressure 14 <.001 - - 1

Increased C-reactive protein 5,841 .240 386 .77 < 0.001

Leukopenia 668 .027 34 .07 < 0.001

Leukocytosis 1,544 .063 44 .09 0.032

Fever 15,033 .618 450 .90 < 0.001

Hypotension 15,904 .654 339 .68 0.297

Clinical signs of BSI 5,015 .206 501 1 < 0.001

CRI2 definition 501 .021 N/A N/A

Results

During the study period, 2,429 patient stays were recorded 
comprising 24,487 patient days. Stay duration ranged from 
two to 138 days, with a median of six. In total, 20,962 patient 
days contained fuzzy values. Furthermore, 1,752 patients had 
one or more CVCs during their stay (72%). Table 2 shows 
both overall support and CRI2-conditional support for the pa-
rameters listed in Table 1.

Overall support for core parameters ranged between smaller 
than 0.01% and 27.2%. Drop in blood pressure had the least 
fuzzy support, recording fuzzy values for only 14 patient days, 
while shock had the highest support, with fuzzy values record-
ed for 6,615 patient days. For aggregate parameters, hypoten-
sion had the highest support with fuzzy values recorded for 
15,904 patient days (65.4%), followed by fever with 15,033
patient days (61.8%) and clinical indication of BSI with 5,015
patient days (20.6%). Finally, fuzzy values for the CRI defini-
tion were recorded for 501 patient days (2.1%).

When we compare fuzzy conditional support for CRI2 with 
overall support for core parameters, we see that except for the 
drop in blood pressure parameter (<.001 vs. 0), conditional 
support is generally higher than overall support and that dif-
ferences between both support metrics are statistically signifi-
cant. For aggregate parameters, conditional support is also 
significantly higher for fever and clinical indication of BSI; no 
significant differences were found between the two support 
metrics for hypotension (.645 vs. .68).

Discussion

This study showed that when an electronic ICU-associated 
CRI surveillance system is extended with expert-defined fuzzy 
sets and logic, more than 86% of the data is affected, and a 
borderline patient group for CRI2 is uncovered comprising
more than 2% of the data. The study also showed that most of 
the fuzzy infection parameters represented the CRI2 borderline 
patient group significantly better than the general patient popu-
lation.

Overall support of infection parameters showed that the pa-
rameter drop in blood pressure had an almost negligible sup-
port, with fuzzy values recorded for 14 patient days. Further 
analysis of the study data showed that there were 48 cases 
where drop in blood pressure fully applied, and that regardless 
of its value, it did not have an impact on the value of the CRI2 
definition. This indicates that the fuzzy set definition for this 
parameter should be changed or that this parameter is not rep-
resentative for the CRI2 condition and supposedly could be 
omitted.

Comparison between overall and CRI2-conditional support 
revealed no significant difference for hypotension, indicating 
that the fuzzy logic rules used to derive the value of this ag-
gregate parameter are too unspecific. Part of the problem 
could be its dependence on the drop in blood pressure parame-
ter, but that would not account for the high overall support. 
One solution would be to calculate its value using more re-
strictive fuzzy logic. Alternatively, instead of combining the 
parameters drop in blood pressure and shock in a fuzzy rela-
tion, the parameter shock could be used as a substitution for 
hypotension, since statistically it’s proven to be a better repre-
sentative of the borderline CRI2 patient population (P < .001).

One of the main strengths of this study is that it is based on 
almost 2,500 patient stays, which yielded nearly 25,000 patient 
days for analysis. In addition, the data come directly from sys-
tems used in clinical routine. A limitation of the study is the 
relatively low number of fuzzy parameters.

Other studies have also described electronic HAI surveillance 
systems specifically for ICUs [9, 10], but these systems did not 
engage fuzzy sets to represent linguistic uncertainty in clinical 
terms, nor did they employ fuzzy logic to process those data; 
the studies focused solely on the detection of cases where 
HAIs were fully established. We extended our system with 
fuzzy set theory and fuzzy logic to retain information on the 
patient group that shows infection signs, but not strong enough 
to adhere to the surveillance definition of an HAI. This enables
infection control specialists to distinguish between the patient 
group without signs of infection and the borderline patient 
group, and allows for better prediction of reoccurring CRI2 
episodes [16].
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Fine-tuning and validation of fuzzy sets in an electronic HAI
monitoring system is important for both infection control ex-
perts and system developers. If too many patients are attribut-
ed with fuzzy values for a specific medial concept, as was the 
case for the hypotension parameter, the borderline patient 
group is overrepresented. On the other hand, if there are too 
few patients represented by a fuzzy set, the fuzzy set should be 
changed or replaced by a non-fuzzy set to improve system 
performance.

Conclusion

This study shows that extending an electronic HAI surveil-
lance system with methods to identify the borderline patient 
population, in this case fuzzy set theory and logic, affects the 
majority of the data and uncovers a substantial borderline pa-
tient group. Statistical validation also showed that most of the 
expert-defined fuzzy sets and logical constructs currently pre-
sent in the knowledge base are an accurate representation of 
the CRI2 borderline patient population.
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