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Abstract

Adapting an information extraction application to a new do-
main (e.g., new categories of narrative text) typically requires 
re-training the application with the new narratives. But could 
previous training from the original domain alleviate this adap-
tation? 

After having developed an NLP-based application to extract 
congestive heart failure treatment performance measures from 
echocardiogram reports (i.e., the source domain), we adapted 
it to a large variety of clinical documents (i.e., the target do-
main). We wanted to reuse the machine learning trained mod-
els from the source domain, and experimented with several 
popular domain adaptation approaches such as reusing the 
predictions from the source model, or applying a linear inter-
polation. As a result, we measured higher recall and precision 
(92.4% and 95.3% respectively) than when training with the
target domain only.
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Introduction

Heart Failure (HF) is one of most common diseases in the U.S. 
and is subject to many treatment quality improvement efforts.
Left ventricular ejection fraction (LVEF) qualitative and quan-
titative assessments are important indicators to monitor the 
progression and treatment of congestive heart failure. This 
study was realized in the context of the ADAHF (Automated 
Data Acquisition for Heart Failure) project, a U.S. Veterans 
Administration (VA) project aiming at the automated extraction 
of congestive heart failure treatment performance measures 
from clinical notes. These performance measures include LVEF 
assessments (their mention and measured values), medications 
(angiotensin-converting-enzyme inhibitors and angiotensin re-
ceptor blockers), or reasons not to administer these medica-
tions. In the study reported here, we focused on left ventricular 
ejection fraction (EF) mentions and associated qualitative as-
sessments (e.g., ‘decreased’, ‘preserved’) and quantitative val-
ues (e.g., ‘35%’, ‘0.5’).

The extraction of the aforementioned information can rely on 
various methods that include regular expressions and machine 
learning. The former was chosen for the CUIMANDREef [1]
system. We applied the latter, as a sequence tagging task. Se-
quence tagging based on online learning has been chosen for 
many Natural Language Processing (NLP) tasks, such as, pro-
tein or gene detection in biomedical literatures [2-4], med-

ical term extraction from clinical notes [5]. Our implementation 
based on machine learning allowed for higher accuracy than 
CUIMANDREef when detecting mentions of LVEF and asso-
ciated values in echocardiogram reports [6].

When adapting our machine learning-based application to the
new domain of the ADAHF project, which is a domain with a 
large variety of clinical notes (Table 2) instead of only echo-
cardiogram reports, we experimented with several popular do-
main adaptation approaches. Our goal was to reuse the machine 
learning trained models from the echocardiogram reports cor-
pus, to improve the efficiency of the adaptation. 

Domain adaptation of ������������ ������	cations has received
increased attention for various NLP problems, such as text clas-
sification, sentence parsing, or machine translation. In our 
study, the echocardiogram reports corpus was the source do-
main, and the ADAHF project corpus with various note types 
was our target domain. Many algorithms for efficient domain 
adaptation with or without labeled target domain data have 
been proposed. For mention detection, Florian et al. introduced 
a method that builds on a source domain model and uses its 
predictions as features to train the target domain model (Pred
method explained below) [7]. Chelba and Acero used the fea-
ture weights of the source domain model as a Gaussian prior for
initializing each feature in the target domain model (Prior) [8].
They applied their approach to recover the correct capitaliza-
tion of uniformly cased text. Foster and Kuhn linearly interpo-
lated source and target domain models for machine translation
(LinInt) [9]. Daumé presented a feature augmentation method 
that can learn trade-offs between source/target and general fea-
ture weights (Augment) [10].

In the following sections, we will describe the domain adapta-
tion approaches mentioned above in more details and present 
our experimental results.

Materials and Methods

Domains Comparison

The echocardiogram reports corpus (i.e., our source domain) 
consisted of 765 manually annotated notes. We used 275 notes 
as source training data (EF Train) and 490 notes for testing (EF 
Test). For more detailed information about this corpus, see [1].

The ADAHF project uses clinical notes from inpatients with 
Congestive Heart Failure (CHF) who were discharged from a 
selection of 8 VA medical centers in 2008. For this study, we 
sampled 665 clinical notes (i.e., our target domain), and 275
notes were randomly selected to train a sequence classifier
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(ADAHF Train) and the remaining 390 notes (ADAHF Test) 
were used for testing. The ADAHF Train corpus size was cho-
sen to match the EF Train corpus we used. Table 1 shows the 
number of concepts and notes contained in the source and tar-
get domains.

Table 1 – Corpora characteristics

EF
Train

EF
Test

ADAHF 
Train

ADAHF 
Test

LVEF mentions 723 1,250 510 844

Quantitative values 430 746 455 743

Qualitative values 439 759 44 66

Number of notes 275 490 275 390

The number of qualitative assessments is very different in the 
two corpora, probably because qualitative assessments occur 
more frequently in echocardiogram reports than in other clini-
cal note types, and echocardiogram reports only represented 
about 4% of the note types found in the ADAHF corpus (Table 
2), where the most prevalent note types were progress notes, 
discharge summaries, history and physical notes, and cardiolo-
gy consultation notes (Table 2).

Table 2 – Clinical note types in the ADAHF corpus

Type of Note ADAHF Train ADAHF Test

Progress note 70 (25.5%) 100 (25.6%)

Discharge summary 38 (13.8%) 43 (11.0%)

History and physical 35 (12.7%) 52 (13.3%)

Cardiology consultation 33 (12.0%) 69 (17.7%)

Echocardiogram report 14 (5.1%) 10 (2.6%)

Pharmacy note 12 (4.4%) 5 (1.3%)

Other consultation note 8 (2.9%) 12 (3.1%)

Nursing note 1 (0.4%) 7 (1.8%)

Other note types 64 (23.3%) 92 (23.6%)

Progress notes include several note subtypes, such as intern 
note, internal medicine note, nurse practitioner note, physician 
note, etc.

A few differences between the two domains were also related to 
differences in the annotation schema and instructions, as ex-
plained below with LVEF mentions.

In both corpora (i.e., the source and the target domain), the 
following concepts were annotated;

LVEF mentions

In the EF corpus, LVEF (e.g., “VISUAL ESTIMATE OF 
LVEF”, “EF”) and left ventricular systolic function (LVSF)
(e.g., “Global LV systolic function”, “systolic dysfunction”)
were annotated.

However, in the ADAHF corpus, only LVEF was annotated,
and LVSF was excluded.

Quantitative values

In both corpora, quantitative values of LVEF (e.g., “~0.60-
0.65”, “0.45”, “50%”) were annotated. . There were no quanti-
tative values of LVSF.

Qualitative assessments

Similarly to LVEF mentions, all qualitative assessments of 
LVEF and LVSF (e.g., “NORMAL”, “mildly decreased”, 
“SEVERE”.) were annotated, but qualitative assessments of 
LVSF were excluded in the ADAHF corpus.

The annotation differences related to LVSF made the direct 
reuse of the model trained with the EF corpus more difficult.
To benefit from the EF corpus, as already annotated by medical 
expert, and make the corpus compatible with the ADAHF cor-
pus, manual adjustments like removing every LVSF mention
and its qualitative assessment would be necessary. Instead of 
this expensive effort, we wanted to resolve this incompatibility
with domain adaptation.

As a first step, we reused the machine learning-based infor-
mation extraction application with the original features de-
signed for the EF corpus and observed if we could measure
reasonable performance with the ADAHF corpus. Then, we
combined the two corpora in many different ways, and allowed 
our classifier to benefit from both source and target domain 
data. In the next section, we will describe how the feature vec-
tors from clinical notes were extracted and which feature set 
was utilized for concept detection.

Features extraction

As part of our information extraction application built in UIMA 
[11, 12], pre-processing includes multiple components depicted 
in Figure 1. 

Figure 1- Pre-processing pipeline for features extraction

Y. Kim et al. / Improving Heart Failure Information Extraction by Domain Adaptation186



The sentence splitter detects sentence boundaries and splits the 
text in sentences; the tokenizer splits sentences in tokens; and 
the part-of-speech (POS) tagger assigns POS tags to each to-
ken. We also used all information extracted by CUIMAN-
DREef [1], the regular expressions-based system.

Features extracted from pre-processors included words, POS 
tags, morphology, infixes, the output of CUIMANDREef, and 
their combinations – as listed below:

� Word: 0 (current word), -1 (one previous), +1 (one fol-
lowing), -2, +2, -3, +3, -4, and +4

� Bi-grams of words: [-2, -1], [-1, 0], [0, 1], and [1, 2]

� POS tag: 0 (current word POS tag), -1, +1, -2, +2, -3, 
+3, -4, +4 and [-2, -1], [-1, 0], [0, 1], and [1, 2]

� Word shape information (for example, “EF” is normal-
ized to “AA”, “ejection fraction” to “aa”): 0, -1, +1, -2, 
+2, -3, +3 and [-2, -1], [-1, 0], [0, 1], and [1, 2]

� Prefix and suffix: up to length of 3

� Morphology: alpha-numeric characters, punctuations,
etc.

� CUIMANDREef tag: 0 (the output of CUIMANDREef 
for the current word), -1, +1, -2, and 2

Concept detection

We reformatted the training data with BIO tags (B: at the be-
ginning, I: inside, or O: outside of a term) and trained a sequen-
tial classifier using Miralium [13], a Java implementation of the 
Margin Infused Relaxed Algorithm (MIRA) [14]. MIRA, also 
called passive-aggressive algorithm, is an extension of the per-
ceptron algorithm with a margin-dependent learning rate for 
multiclass classification. It is used to learn the feature weights 
by processing the training instances one-by-one and seeking the 
smallest update to the feature weights when the output label of 
the instance is different than the desired label.

Domain Adaptation

We implemented three baselines and four domain adaptation
methods, as explained below:

Baselines

� Source data only (SrcOnly): a model trained only with 
the source data, and then tested with the target data
(training with EF Train; testing with ADAHF Test).

� Target data only (TgtOnly): a model trained and tested 
only with the target data (training with ADAHF Train; 
testing with ADAHF Test).

� Union of data (Union): a model trained with the union 
of the source and target data, and then tested with the 
target data (training with EF Train and ADAHF Train; 
testing with ADAHF Test). For simplicity, we did no in-
stance weighting from both datasets. By cross-
validation, the weight of instances for each domain can 
be re-assigned.

Other Methods

� Predictions (Pred): a model trained with the target data 
and the predictions from the SrcOnly model, following 
these steps:

� Train the SrcOnly model with the source data.

� Run the SrcOnly model on the target data.

� Use the resulting predictions as new feature to 
augment training of the new model with the tar-
get data.

� Test with the target test data.

Any combination of predictions by multiple pre-existing 
models can be used in this method. The identical feature 
set for both dataset is not necessary while it is required 
for other approaches.

� Linear interpolation (LinInt): the predictions of the 
SrcOnly and the TgtOnly models are linearly interpolat-
ed, as follows:

� Train the SrcOnly model with the source data.

� Train the TgtOnly model with the target data.

� Interpolate the probabilistic predictions of both 
models.

For each word x with label y in the test data, the proba-
bility Ps( y | x ) assigned by the SrcOnly model and the 
probability Pt( y | x ) assigned by the TgtOnly model are 
combined to obtain the interpolated probability as de-
fined in Equation (1).

(1)

The � value can be between 0 and 1, which can be opti-
mized by testing on a development set or cross valida-
tion. For this study, we did not adjust � but assigned it a
value of 0.5 (uniform weights) as the simplest setting.

� Prior based (Prior): the feature weights learned from the 
source data are used as a prior to train with the target 
data. To initialize the weight of each feature in target 
data, we did as follows:

� If the feature exists in the SrcOnly model, assign 
the corresponding weight from the SrcOnly model.

� Otherwise, assign a zero weight.

� Train the target model starting with those feature 
weights.

This method makes the feature weight close to the priors
from the SrcOnly model and keeps the weight when the 
target data is similar to the source data. In other cases,
the weight will be updated from the prior to the new tar-
get data.

� Feature augmentation (Augment): a model jointly 
learned from three different versions of original features
(common, source-specific, and target-specific). The 
augmented training instances of the source domain data 
contain common and source-specific versions while the 
augmented instances of the target domain contain com-
mon and target-specific versions. The transformation of 
features are as follows:

� Source data: x � < x, x, 0 >

� Target data: x � < x, 0, x >

0 means zero vectors and the order of segments is com-
mon, source-specific, and target-specific. During a sin-
gle supervised learning process with these augmented 
features extracted from both data sets, the trade-off reg-
ularization between source/target and general weights is
possible.
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Results

We first present results when training and testing our applica-
tion with the EF corpus, and then present results of the various 
approaches for domain adaptation. All trainings were finished 
after ten iterations and no feature pruning was done for this 
study.

EF corpus training and testing

As seen in Table 3, our sequential tagger using online learning 
obtained good performance on every concept type when trained
with the EF training corpus and tested with the EF testing cor-
pus. Precision was about 3% higher than recall on average,
except with quantitative values. Recall was lower with qualita-
tive assessments, because of the higher variability of these con-
cepts, and difficulty to capture all possible ways to express 
them in narrative text.

Table 3 – Results of EF Test Data (%)

Recall Precision F1-measure

LVEF mentions 93.8 97.1 95.4

Quantitative 97.1 96.9 97.0

Qualitative 91.8 96.7 94.2

All concepts 94.1 96.9 95.5

Domain adaptation to ADAHF results

All domain adaptation approaches used the same feature set 
than with the EF corpus, and were tested with the ADAHF test-
ing corpus. All results are listed in Table 4.

Statistical analysis was realized with multiple Student t-tests 
and the Šidák correction for multiple hypotheses [15].

As expected, SrcOnly performed very poorly, especially with 
qualitative assessments: precision was only 22.8% with numer-
ous LVSF qualitative assessment false positives.  All other ap-
proaches obtained significantly better performance (except with 
qualitative assessments; p between 0.00126 and < 0.00001)

As already explained, the TgtOnly model was trained and tested 
with the ADAHF corpus (i.e., the target domain). Even though 
performance was not as good as when trained and tested with 
the EF corpus, we confirmed that our application could be uti-
lized with a variety of clinical note types. For qualitative as-
sessments, this method obtained the best precision.

The Union approach obtained the best recall with qualitative 

assessments among all approaches, but also saw precision drop 
in the same category. It was only significantly better than the 
SrcOnly approach.

The Pred approach did not work well with quantitative values 
and qualitative assessments. However, it obtained the best per-
formance with LVEF mentions detection. For example, with a
phrase containing a LVEF mention like “ESTIMATED EF: 
15%”, the Pred approach was able to extract the correct term 
“ESTIMATED EF” but the TgtOnly approach only captured 
“EF”. Recall and precision were both significantly better than 
with the LinInt approach (p values 0.00366 and 0.00003) and 
very significantly better than the SrcOnly approach (p values <
0.00001).

We didn’t observe any significant improvement with the LinInt
approach. Overall, recall and precision dropped, probably be-
cause of the equal weights to predictions from both the SrcOnly
and TgtOnly models that we assigned with this method.

Prior was the only approach that allowed for better overall re-
call (significantly better than LinInt and SrcOnly; p values 
0.00132 and <0.00001), and the best recall with quantitative 
values. Prior and Augment seemed the most useful with catego-
ries that had the same annotation schemata and guidelines in 
both domains, like quantitative values.  

Augment allowed for results similar to Prior, and the highest 
precision with quantitative values, significantly better than 
LinInt, Union, and SrcOnly (p values 0.00009, 0.00679, and 
<0.00001). Compared to TgtOnly, the Augment approach
avoided false positives that were wrongly detected by TgtOnly:
“GFR > 50%” (GFR is the glomerular filtration rate) “fib ~ 
40% of time” (fib means atrial fibrillation here).

In summary, the domain adaptation approaches we implement-
ed were efficient to overcome the difference in annotation 
schemata and allowed for a better performance with categories 
like LVEF mentions and quantitative values, but they did not 
outperform the baselines (TgtOnly and Union) when important
difference in prevalence of concepts exist between domains, 
such as qualitative assessments in our case.

Even if our experimental setting was quite different from tradi-
tional domain adaptations with large quantities of source data 
and small target data, the improvements were promising for the 
extension of our application to a larger variety of clinical note
types.

Conclusion

This study showed that NLP-based information extraction 
methods could be successfully applied to the detection of men-

Table 4 – Recall (R) and precision (P) results for all domain adaptation approaches [The highest recall and precision for 
each concept are bolded.]

SrcOnly TgtOnly Union Pred LinInt Prior Augment

R P R P R P R P R P R P R P

LVEF mentions 81.6 83.5 94.8 95.8 95.5 97.0 96.5 98.0 94.9 95.0 95.7 96.8 94.9 96.0

Quantitative values 87.2 61.7 91.7 93.3 90.7 91.3 90.0 92.3 90.2 87.0 92.1 93.2 91.7 94.2

Qualitative values 51.5 22.8 54.6 97.3 57.6 90.5 53.0 94.6 45.5 58.8 54.6 94.7 54.6 78.3

All concepts 82.9 67.7 91.8 94.7 91.8 94.2 91.8 95.3 90.8 90.2 92.4 95.1 91.8 94.7
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tions of LVEF and associated qualitative assessments and quan-
titative values. We showed that our application performed well 
in both corpora with various linguistic features. The domain 
adaptation results are promising and will allow us to reduce the 
manual adjustment effort with already annotated data. 

Acknowledgments

We thank Hal Daumé III for his valuable advices on domain 
adaptation and Benoit Favre for his help with miralium. Re-
search supported by VA HSR&D IBE 09-069 and by HSR&D 
HIR 08-374 (Consortium for Healthcare Informatics Research) 
and HIR 09-007 (Translational Use Case – Ejection Fraction).
The views expressed in this article are those of the authors and 
do not necessarily represent the views of the Department of 
Veterans Affairs or the University of Utah School of Medicine.

References

[1] Garvin JH, Duvall SL, South BR, Bray BE, Bolton D, 
Heavirland J, Pickard S, Heidenreich P, Shen S, Weir C, 
Samore M, Goldstein MK. Automated extraction of ejec-
tion fraction for quality measurement using regular expres-
sions in Unstructured Information Management Architec-
ture (UIMA) for heart failure. J Am Med Inform Assoc. 
2012: 19: 859-866.

[2] Finkel J, Dingare S, Manning CD, Nissim M, Alex B, and 
Grover C. Exploring the Boundaries: Gene and Protein
Identification in Biomedical Text. BMC Bioinformatics. 
2005: 6: S5.

[3] McDonald R and Pereira F. Identifying Gene and Protein 
Mentions in Text Using Conditional Random Fields. BMC 
Bioinformatics. 2005: 6: S6.

[4] Zhou G, Shen D, Zhang J, Su J, and Tan S. Recognition of 
Protein/Gene Names from Text Using an Ensemble of 
Classifiers. BMC Bioinformatics. 2005: 6: S7.

[5] Bruijn BD, Cherry C, Kiritchenko S, Martin J, and Zhu X.
Machine learned Solutions for Three Stages of Clinical In-

formation Extraction: the State of the Art at i2b2 2010. J 
Am Med Inform Assoc. 2011: 18 (5): 557-562.

[6] Meystre SM, Kim Y, Garvin JH. Comparing Methods for 
left Ventricular Ejection Fraction Clinical Information Ex-
traction. AMIA Summits Transl Sci Proc, CRI. 2012: 138.

[7] Florian R, Hassan H, Ittycheriah A, Jing H, Kambhatla N,
Luo X, Nicolov N, and Roukos S. A Statistical Model for
Multilingual Entity Detection and Tracking. Proc. Conf.
NAACL and HLT. 2004.

[8] Chelba C and Acero A. Adaptation of Maximum Entropy
Capitalizer: Little Data Can Help a Lot. Proc. Conf. 
EMNLP. 2004.

[9] Foster G and Kuhn R. Mixture-Model Adaptation for 
SMT. Workshop on Statistical Machine Translation, ACL.
2007.

[10]Daumé H III. Frustratingly Easy Domain Adaptation. Proc. 
ACL. 2007.

[11]Ferrucci D and Lally A. UIMA: An Architectural Ap-
proach to Unstructured Information Processing in the Cor-
porate Research Environment. Journal of Natural Language 
Engineering. 2004: 10 (3-4): 327-348. 

[12]Apache UIMA 2008. Available at http://uima.apache.org.

[13]miralium. http://code.google.com/p/miralium/

[14]Crammer K, and Singer Y. Ultraconservative Online Algo-
rithms for Multiclass Problems. Journal of Machine Learn-
ing Research. 2003: 3: 951–991.

[15]Šidák Z. Rectangular confidence regions for the means of 
multivariate normal distributions. Journal of the American
Statistical Association. 1967: 62 (31): 626-633.

Address for correspondence

Youngjun Kim,
School of Computing, University of Utah,
50 S. Central Campus Drive, Salt Lake City, 
Utah 84112, USA;
youngjun@cs.utah.edu

Y. Kim et al. / Improving Heart Failure Information Extraction by Domain Adaptation 189


