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Abstract. Compressive sensing has become a popular technique in broad areas of 
science and engineering for data analysis, which leads to numerous applications in 
signal and image processing. It exploits the sparseness and compressibility of the 
data in order to reduce the size. Wavelet analysis is one of leading techniques for 
compressive sensing. In 2D discrete wavelet transform, the digital image is 
decomposed with a set of basis functions. At each level, wavelet transform is 
applied to compute the lowpass outcome (approximation) and highpass outcomes 
(three details), each with a quarter size of the source image. For the subsequent 
levels, the lower level outcomes turn out to be the inputs of the higher level to 
conduct further wavelet decompositions recursively, so that another set of 
approximation and detail components is generated. Discrete wavelet transform and 
discrete wavelet packet transform differ in higher levels other than the first level of 
decomposition. From the second level, discrete wavelet transform applies the 
transform to the lowpass outcomes exclusively, while wavelet packet transform 
applies the transform to lowpass and highpass outcomes simultaneously. As the 
more comprehensive approach, wavelet packet transform is selected for scene 
image compression on cases of both the lower and higher dynamic range images. 
Quantitative measures are then introduced to compare the outcomes of two cases.   
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1. Introduction 

Wavelet analysis has a wide range of applications in math, engineering, computer 
science, and so on. The related topics cover continuous wavelet transform and discrete 
wavelet transform, decimated wavelet transform and non-decimated wavelet transform, 
as well as the multiresolution analysis. The notions of sparsity and thresholding are 
always emphasized. Different algorithms have been designed and applied, such as the 
famous Haar wavelets and Haar-Fisz transformation [1-3]. Some fundamental 
applications have appeared in literatures. An algorithm based on the wavelet-packet 
transform has been used for the analysis of harmonics in the power systems. It 
decomposes the voltage and current waveforms into frequency bands corresponding to 
the odd-harmonic components of the signal, so that spectral leakage due to the 
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imperfect frequency response of the existing wavelet filter bank is reduced. By 
comparing with the harmonic group, it is shown that wavelet analysis is a potential 
alternative for harmonic estimation in the power systems [4]. Fractional wavelet 
transform has been applied to extract largest analytical information from spectral 
bands. Absorption spectra of the pharmaceutical samples are processed by fractional 
wavelet transform. The coefficients obtained can be applied to construct principal 
component regression and partial least squares calibrations [5]. Wavelet transform has 
been also implemented on biometric pattern recognition and medical diagnosis 
successfully. In addition, by means of soft thresholding, discrete wavelet transform can 
be employed for image fusion of still and moving pictures [6-8]. In subband and 
wavelet image coding, size-limited subband decompositions is used to limit the number 
of samples. To reduce coding distortions at borders, the symmetric extension filter 
banks are introduced in the cyclic frequency domain framework. Enhancement to the 
filter bank is made at a tree-structured system level. The new filter banks can 
implement FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters, 
even with irrational transfer functions. The condensed wavelet packet transform has 
superior compression performance over those existing biorthogonal wavelets and block 
transforms [9].  
 

A novel compression scheme has been proposed with a tunable complexity-rate-
distortion as the trade-off. As the images increase in size and resolution, better 
compression schemes with low complexity are required on-board. Satellite mission 
specifications expect higher performance in terms of rate-distortion. To comply with 
existing on-board devices, the wavelet transform is applied in association with a linear 
post processing. The post transform decomposes a small block of wavelet coefficients 
on a particular basis. The basis can be adaptively selected by the rate-distortion 
optimization scheme [10]. Multiresolution synthetic aperture radar (SAR) signal 
processing traditionally carried out in the Fourier domain has inherent limitations in 
context of the image formation at hierarchical scales. A generalized approach is 
presented to form multiresolution SAR images using biorthogonal shift invariant 
discrete wavelet transform. The inherent subband decomposition of wavelet packet 
transform is introduced to produce multiscale filtering without any approximations. 
Analytical results and sample imagery of diffuse backscatter are presented to validate 
the efficiency [11]. A compressive sensing coding paradigm is proposed for high 
packet loss transmission. 2D discrete wavelet transform (DWT) is applied for sparse 
representation. By fully exploiting the intra-scale and inter-scale correlation of 
multiscale DWT, two different recovery algorithms are developed for the low-
frequency subband and high-frequency subbands of the decoder. It is more robust 
against lossy channels, while achieving higher rate-distortion, compared with 
conventional wavelet-based methods and coding schemes [12]. A study of the role of 
wavelet packet transform in sparsity reduction is conducted in this research to enhance 
the compressive sensing. Quantitative results are introduced and computed in order to 
compare the two cases [13]. 

2. Discrete Wavelet Packet Transform 

Most digital images are essentially sparse, with zero and nearly zero components in the 
matrix form. After squeezing out zero and nearly zero elements, sparse representation 
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of digital images are formulated. Discrete wavelet transform (DWT) has the tight 
affinity with compressive sensing in fields of image processing. Hence, two 
dimensional DWT has been proposed for data compression.  

 
In 2D wavelet transform, the decomposition of an image matrix f(x, y) of the size 

M by N is calculated by (1) and (2): 
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where the wφ(j0, m, n) function and wi

ψ(j, m, n) functions are calculated which 
represent the approximation component, three (horizontal, vertical and diagonal) detail 
components, respectively for scales j>= j0; j0 =0, j=0, 1, 2, …, J-1 and m, n = 0, 1, 2, 
… , 2j -1, N+M=2J; i is the directional index where i={H, V, D} and j0 is starting scale. 
The scaling function and wavelet functions are expressed as (3) and (4). 

 
φ j,m,n(x, y) = 2 j/2 φ(2jx - m, 2jy - n)      (3) 
ψi j,m,n(x, y) = 2 j/2 ψi (2jx - m, 2jy - n)      (4) 
 
Haar wavelet is chosen whose basis has been formulated as an increasing power of 

two of the source data set. Three-level wavelet decomposition is scheduled and the 
corresponding bases can be reached easily. At the level one, the data has a basis of two. 
At the level two, the data has a basis of four. At the level three, the data has a basis of 
eight, and so on for higher level decomposition. In this case, at the first level of 2D 
decomposition, the source digital image is decomposed into four components: 
approximation, horizontal detail, vertical detail and diagonal detail, each with a quarter 
size of the original image. The wavelets include the scaling function and three wavelet 
functions along with the variations in horizontal, vertical and diagonal directions, 
serving as the lowpass filter and highpass filters, respectively. Four resulting image 
matrices are computed by taking the inner products of the source image matrix with the 
scaling and three wavelet coefficients.  

 
At the second and third levels, the resulting approximation is always decomposed 

recursively into another subset of four components (approximation, horizontal detail, 
vertical detail and diagonal detail). From the compressive sensing point of view, 
regular DWT deals with solely the approximation component while disregarding the 
three detail components. Its role in compression is relatively limited since no further 
information on the detail components can be provided. Thus, wavelet packet transform 
is applied to process detail components in the same way as that of the approximation 
component. The quaternary tree structure is thus generated, where the Haar wavelet 
packet transform is in charge of applying the transform to both the lowpass and the 
highpass components across decomposition from the level one to level three of DWT. 
This process can be repeated recursively to the higher levels until satisfactory results 
can be retrieved via inverse discrete wavelet transform (IDWT). 
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After decomposition, hard thresholding is introduced and applied to the detail 
coefficients in three orientations (horizontal, diagonal and vertical) at all levels related. 
These coefficients are in conjunction with the predefined thresholding function. It will 
then provide a smooth reconstruction process. Image reconstruction is made after two 
steps of three-level decomposition and thresholding. The approximation components at 
three levels are kept unchanged. However, the revised detail components at three levels 
are all subject to hard thresholding. Then the approximated f(x, y) is retrieved by the 
inverse discrete wavelet transform as (5). 
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Based on schemes of the multilevel discrete wavelet packet transform, two case 

studies have been conducted for compressive sensing. The lower dynamic range image 
is selected in the first case and the higher dynamic range image is selected in the 
second case, respectively. The corresponding results are described in the following 
section. 
 

3. Numerical Case Studies 

Two digital images in the gray level have been selected with different dynamic ranges. 
The first one has a relatively lower dynamic range together with fewer objects in the 
scene (e.g. one dolphin in the scope). The second one has a relatively higher dynamic 
range together with more objects in the scene (e.g, plenty of vehicles and seagulls in 
the scope). Two opposite examples are chosen for a comparison purpose. From Figure 
1 to Figure 5, some simulation results are illustrated. The decomposition results of the 
lower dynamic range image are shown in Figure 1 and Figure 2, respectively, where 
Figure 1 depicts the wavelet packet approximations at different decomposition levels as 
well as the source image; and Figure 2 depicts four decomposition components at the 
level one exclusively. The decomposition results of the higher dynamic range image 
are illustrated in Figure 3 and Figure 4, respectively, where Figure 3 depicts the 
wavelet packet approximations at different decomposition levels and the source image, 
and Figure 3 depicts the four decomposition components at the level one exclusively. 
Figure 5 depicts the two reconstructed images using compressive sensing based on the 
multilevel inverse wavelet transform. 
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Source Level 1

Level 2 Level 3

 
Figure 1. Wavelet Packet Approximations of Lower Dynamic Range Image 

 

Level 1 Level 1

Level 1 Level 1

 
Figure 2. Decomposition at Level One of Lower Dynamic Range Image 
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Figure 3. Wavelet Packet Approximations of Higher Dynamic Range Image 

 
Figure 4. Decomposition at Level One of Higher Dynamic Range Image 
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Figure 5. Reconstruction Images after Wavelet Packet Decomposition 
 
Comparing the reconstructed images with source images, there is almost no visual 

difference being observed, even though the lossy compression has been conducted in 
both cases. To further quantify the role of the discrete wavelet packet transform in 
scene image compression, define a couple of basic quantitative measures for the matter 
of simplicity: (1) Compression Ratio; and (2) Discrete Entropy; in order to evaluate the 
actual outcomes. Compression ratio is hereby defined as the ratio of the size of 
compressed image after reconstruction over that of the source image. On the other hand, 
for digital images, the occurrence of the gray level has been defined as co-occurrence 
matrix of relative frequencies, which is represented as the histogram. The occurrence 
probability distribution is thus computed based on the histogram. The discrete entropy 
is equal to the sum of products of the probability of the outcome times the logarithm of 
the inverse of probability of the outcome, with all the possible outcomes taking into 
account. It manifests the average uncertainty of the information source. Based on the 
proposed computation, the quantities are the two cases are obtained.  

 
For the lower dynamic range image, the compression ratio is 70.07%. The discrete 

entropy of the source image is 6.4740 while the discrete entropy of the reconstructed 
image is 6.4014. For the higher dynamic range image, the compression ratio is 78.22%. 
The discrete entropy of the source image is 7.4105 while the discrete entropy of the 
reconstructed image is 7.3715. In terms of these results, it indicates that the larger 
compression ratio occurs along with the lower dynamic range image using multilevel 
wavelet packet transform. In each case, the information loss occurs using compressive 
sensing, since discrete entropies of reconstructed images are lower than those of source 
images. At the same time, lower discrete entropies are corresponding to smaller total 
number of the gray levels. Hence, less intrinsic information has been kept after wavelet 
packet transform and reconstruction. Sparsity reduction has been achieved in both cases. 
 

4. Conclusions 

Wavelet transform is powerful in image compression and restoration so as to reduce the 
size needed for the actual scene representation. It can also be applied to multiresolution 
analysis. In the special case studies for compressive sensing of two diverse sparsity 
level images, discrete wavelet packet transform has been introduced for multilevel 

Z. Ye and H. Mohamadian / Multilevel Wavelet Transform Based Sparsity Reduction10



decomposition. In wavelet packet transform, a digital image has passed through both 
lowpass and highpass filters at each level rather than the lowpass filter itself in discrete 
wavelet transform, which covers more information. Thresholding is applied for better 
compression. As a tradeoff, representation complexity has been slightly reduced with 
the decrement in resolution, giving rise to lossy compression. From outcomes of two 
compressed digital images with the higher and lower dynamic ranges, respectively, it 
has been illustrated that wavelet packet transform based image compression leads to 
virtually no visual difference after thresholding and reconstruction. The density of the 
images after wavelet decomposition will be reduced in both cases. The higher 
compression ratio occurs in the lower dynamic range case than the higher dynamic 
range case. Using discrete entropy analysis, similar conclusions are made as well.  The 
wavelet packet transform is effective in image compression while slight information 
loss is observed. It indicates that multilevel wavelet packet transform is fairly suitable 
for the general applications on the multi-dimensional compressive sensing.   
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