
Cardiac Arrhythmia Classification Using
KNN and Naive Bayes Classifiers

Optimized with Differential Evolution
(DE) and Particle Swarm Optimization

(PSO)

Christian PADILLA-NAVARRO a,1, Rosario BALTAZAR-FLORES a ,
David CUESTA-FRAU b , Arnulfo ALANIS-GARZA c and

Victor ZAMUDIO-RODRÍGUEZ a

a Division of Research and Postgraduate Studies, Leon Insitute of Technology, Av.
Tecnológico S/N Col. Industrial Julián de Obregón, 37290, León, Mexico

b Technological Institute of Informatics, Polytechnic University of Valencia, Campus
Alcoi, Plaza Ferrándiz y Carbonell, 2, 03801 Alcoi, Spain

c Division of Research and Postgraduate Studies, Tijuana Insitute of Technology, Blvd.
Industrial y Av. ITR, Tijuana S/N, 22500, Mesa Otay, Tijuana, B.C, Mexico

Abstract. In the present investigation we are looking for improve the features clas-
sification of a cardiac arrhythmias database using metaheuristics (Differential Evo-
lution and Particle Swarm Optimization) and classifiers (KNN and Naive Bayes),
with the purpose of select the main features and increase the percentage of classi-
fication. The classification percentage in some cases increased until 100% and the
number of features was significantly reduced.
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1. Introduction

Separate the data through different classes is the main function of the classifiers. Exist
different applications of classifiers in ECG signals. In Nasiri [21] was performed the ar-
rhythmia classification of EEG signals using Support Vector Machines (SVM) and Ge-
netic Algorithms. In Abdeel-Badeeh [1] was applied the machine learning in a ECG diag-
nosis. Ramı́rez [24] propose a dynamic model of cardiac arrhythmia classification trough
machine learning with user interface. In Mohamed [19] presented two methods for mul-
ticlass arrhythmia classification applying the Principal Component Analysis (PCA), the
Fuzzy Support Vector Machine, and the Unbalanced Clustered. Kallas [12] showed the
classification of multiclass arrhytmia through Support Vector Machines (SVM) mixed
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with feature extraction through Principal Components Analysis (PCA) in ECG signals.
In Thanapatay [34] proposed a new method for ECG classification using Principal Com-
ponent Analysis (PCA) and Support Vector Machine (SVM). Rabee [25] presented the
ECG signal classification using Support Vector Machine and based on the Multiresolu-
tion Wavelets analysis. In Shen [29] proposed a classification model using Support Vec-
tor Machine (SVM) and Independent Component Analysis and Zellmer [37] obtained the
ECG signals classification based on continuous wavelet transform and Support Vector
Machines (SVM).

The combination of classifiers with metaheuristics for feature selection on ECG sig-
nals is an efficient way to eliminate unnecessary data in the search of abnormal heart-
beats. Martı́nez [17] proposes a classification model using intelligent ECG to detect heart
problems using neural networks and Genetic Algorithms. In Melgani [18] was performed
ECG signals classification with Support Vector Machine (SVM) algorithm applying PSO
(Particle Swarm Optimization) and in Daamouche [5] they are looking for optimize the
classification applying PSO algorithm, Support Vector Machines (SVM) and perform
noise reduction in ECG signals through Wavelets.

In Fira [7] investigated the results of classification from the compression of ECG
signals from different projection matrices. In Vaish [35] were investigated the loads of
efficacy and computational efficiency of different algorithms used to recognize the emo-
tional state through cardiovascular signals.

The ability to identify automatically ECG arrhythmia is important for clinical di-
agnosis and treatment. In Soman [31] have used machine learning systems, Oner, J48
and Naive Bayes to classify the data sets obtained from doctors databases. In Gao [8]
was described a system for detecting cardiac arrhythmias in ECG signals, based on a
bayesian artificial neural network (ANN) constructed by a logistic regression model and
a BackPropagation algorithm.

2. Metaheuristics

In this work we applied several metaheuristics, Differential Evolution and Particle
Swarm Optimization, mixed with a different classifiers, KNN and Naive Bayes, to find
the best value in the percentage of classification.

2.1. Differential Evolution (DE)

In computer science, differential evolution (DE) is a method that optimizes a problem
by iteratively trying to improve a candidate solution with regard to a given measure of
quality. Such methods are commonly known as metaheuristics as they make few or no
assumptions about the problem being optimized and can search very large spaces of
candidate solutions. However, metaheuristics such as DE do not guarantee an optimal
solution is ever found.

Differential Evolution is a small and simple mathematic model of a big and complex
evolution process, this process is easy and efficient [6]. The first description of differen-
tial evolution was performed in 1995 by Price and Storn [23].
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2.1.1. Population

Differential Evolution needs an initial population of a 4 individuals at least. Each indi-
vidual have a vector, each vector contain a component that represent a dimension with
values in the continue space, but can be used in the discrete space too.

2.1.2. Function of Adaptation

Given an individual, the adaptation function need to assign a real number, that reflects
the level of adaptation to the individual problem.

2.1.3. Mutation

The mutation consists in the construction of noise random vectors NP, created from
three random individuals, called target vectors. We could use different methods for the
mutation process:

Using the equation OF/RAND/1:

temp−→Ei =
−→E j +F(

−→Ek −
−→El ) (1)

Using the equation OF/RANK:

temp−→Ei =
−→Ei +F(

−→E j −−→Ek) (2)

temp−→Ei =
−−−→EBEST +F(

−−−→EBEST −−→El ) (3)

Using the equation DE/CURRET TO BEST/1:

temp−→Ei =
−→Ei +F(

−−−→EBEST −−→Ei)+G(
−→Ek −

−→El ) (4)

Where i �= j �= k �= l, F (and G for current to best) ∼ [0,2] is a basic parameter of input
(constant in all time of the execution time), if F is less than 1 then shrinks and if F is
more than 1 then grows.

2.1.4. Crosses

When we have the noise random vectors NP, the crosses is done randomly through the
following equation:

tempEi[ j] =
{

tempEi[ j] i f r ≤CR
Ei[ j] in other case (5)

Where CR ∼ [0,1] is a basic parameter of input (constant in all time of the execution
time) and r ∼ [0,1] is a random number uniformly distributed.
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2.1.5. Differential Evolution Algorithm to Classifier ECG Arrhythmias

Algorithm 1 Differential Evolution Algorithm.
1: Data input: F ∼ [0,2], CR[0,1], size of the population, call functions, objective function

-classifier-(1NN, 3NN, Naive Bayes), number of folds.
2: Start a random population.
3: Evaluate the first population.
4: while (no finish call functions) do
5: tempEi ← (see Equation of Mutation).
6: Use sigmoid (>1→ 0, <1→ 1)
7: for each coordinate j of the individual do
8: r ← uniformly distributed random number between 0 and 1.
9: if r ≤CR then

10: tempEi[ j]← (see Crosses Equation)
11: end if
12: end for
13: if f (tempEi) better f (Ei) then
14: Ei ← tempEi.
15: f (Ei)← f (tempEi).
16: end if
17: end while

2.2. Particle Swarm Optimization (PSO)

PSO is a metaheuristic inspired in the social conduct of particles often applied for solv-
ing optimization problems. In 1995 Kennedy and Eberhart [14] developed the first algo-
rithm. The algorithm can be used in continues or discrete functions. This proposal was
an excellent optimization algorithm to continues no-lineal math functions, but could be
applied in binary too.

Basically, PSO works with a set of candidates solutions named swarm. Each member
of the swarm is a particle, and this particle have a solution vector named position. Each
particle knows the best position in the swarm o best global. If you defined subsets of
particles in the swarm, each particle is named neighbourhood.

To update the velocities of the particles, we need to use the next equation:

vi j = wvi +φ1(GBesti − xi)+φ2(LBesti − xi) (6)

Therefore, to realize the actualization of the value xi we need to use a sigmoid, the equa-
tion is:

−−−−→
Sig(Vi j) =

1
1+ exp−vi j (7)
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2.2.1. PSO Algorithm to Classifier ECG Arrhythmias

Algorithm 2 PSO Algorithm
1: Data input: φ1[0,1], φ2[0,1], size of the population, call functions, objective function

-classifier-(1NN, 3NN, 5NN, Naive Bayes), number of folds.
2: Start a random population and generate random velocities V [0,1].
3: Evaluate the first fitness of each individual, take the Best Individual and the Best Fitness

(GBest) and save the first fitness of each individual (LBest).
4: while (no finish call functions) do
5: for each particle i do
6: for each member of the particle j do
7: Update the velocities (Equation 6) and update the value of xi (Equation 7).
8: end for
9: for each member of the particle j do

10: Generate a random number ri j[0,1].
11: if ri j < Sig(Vi j) then
12: xi j = 0
13: end if
14: if ri j > Sig(Vi j) then
15: xi j = 1
16: end if
17: end for
18: Evaluate the fitness of each individual (percentage of classification).
19: Update the LBest.
20: if f (xi)> f (LBesti) then
21: LBesti = xi
22: end if
23: end for
24: Find the best LBest
25: if LBest > GBest then
26: GBesti = LBesti
27: end if
28: end while

3. Experimental Set-Up

3.1. Experimental Dataset

We need a experimental set to find the percentage of classification. In this research,
the experimental dataset consisted of labelled ECG records from the [9] database. The
experimental records were obtained from the MIT/BIH arrhythmia set. This set contains
48 recordings of 30 min duration. All the heatbeats were already labelled. However,
the AAMI standard [4] recommends the consideration of the following heartbeat types:
normal beat (labelled as N), Supraventricular ectopic beat (S), Ventricular ectopic beat
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(V), Fusion beat (F), and unknown beat class (Q). Any of these types might be present
in any record. A complete description of all the records is included in (see Table 1),
showing the equivalence between the AAMI and MIT/BIH labels in the two first rows.

AAMI N S V F Q
MIT N L R e j A a J S V E F f P Q
Code 1 2 3 34 11 8 4 7 9 5 10 6 38 12 13
Class 0000 1010 0111 1011 0101 0010 1000 0110 1100 0001 1101 1001 0100 0011 1110
100 2237 33 1
101 1858 3 2
102 99 4 56 2026
103 2080 2
104 163 2 666 1378 18
105 2524 41 5
106 1505 520
107 59 2076
108 1738 1 4 16 2
109 2490 38 2
111 2121 1
112 2535 2
113 1787 6
114 1818 10 2 43 4
115 1951
116 2300 1 109
117 1532 1
118 2164 96 16
119 1541 444
121 1859 1 1
122 2474
123 1513 3
124 1529 5 2 29 47 5
200 1742 30 825 2
201 1623 10 30 97 1 198 2
202 2059 36 19 19 1
203 2527 2 444 1 4
205 2569 3 71 11
207 1457 85 106 105 105
208 1585 2 992 372 2
209 2619 383 1
210 2421 22 194 1 10
212 922 1824
213 2639 25 3 220 362
214 2001 256 1 2
215 3194 2 164 1
217 244 162 260 1540
219 2080 7 64 1
220 1952 94
221 2029 396
222 2060 212 208 1
223 2027 16 72 1 473 14
228 1686 3 362
230 2253 1
231 314 1252 1 2
232 396 1 1381
233 2229 7 830 11
234 2698 50 3

TOTAL 74986 8069 7250 16 229 2543 150 83 2 7127 106 802 982 7020 33

The first row corresponds to the labels used according to the AAMI standard, and the second row lists the labels used in the MIT/BIH database.
The third row corresponds to the numerical code of these last labels.

The first column is the name of the records, whereas the others contain the number of heartbeats of each type.

Table 1. Set of recordings of the MIT/BIH database used in the experiments.
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3.2. Feature Extraction

Feature extraction consists in obtain the main features of the arrhythmia signal to classify
after. For the feature extraction in this research, we took like a reference the extraction
of Rodrı́guez-Sotelo [28]. The initial input feature vectors x j = {xi j,x2 j, . . . ,xp j}, with
p = 100 were composed of:

x1 j = l j − l j−1 (RR interval)
x2 j = l j−1 − l j−2 (pre-RR interval)
x3 j = l j+1 − l j (post-RR interval)
x4 j = x1 j − x2 j
x5 j = x3 j − x1 j

x6 j = (
x3 j
x1 j

)2 +(
x2 j
x1 j

)2 − ( 1
3

3
∑

k=1
x2

k jlog(x2
k j))

x7 j quantifies the morphological dissimilarity between current QRS-complex, and a lin-
early averaged QRS-complex of the last 10 complexes [32] by means of a dynamic time
warping (DTW) approach.

x8 j = | max{QRS j [t]}
min{QRS j[t]} |

x9 j =
L j

∑
k=0

QRS j[t]2

x10 j to x19 j correspond to the Hermite coefficients.

4th-level coefficients of a Daubechies-2, (dB2), Wavelet heartbeat decomposition (A-
Amplitude, D-Detail)
x20 j to x25 j ⇐ A4
x26 j to x31 j ⇐ D4
x32 j to x42 j ⇐ D3
x43 j to x58 j ⇐ D2
x59 j to x90 j ⇐ D1
x91 j to x95 j = var{A4,D4,D3,D2,D1}
x95 j to x100 j = max{A4,D4,D3,D2,D1}

4. Experiments and Results

We made different experiments for the classification. In the case of PSO we used the
next parameters: φ1 = 0.3 , φ2 = 0.5 y w=0.7. In the case of Differential Evolution, the
parameters were F = 0.9 and cr = 0.5.

First tests were with the classifiers 1NN, 3NN and Naive Bayes, without metaheuris-
tics. We considered all characteristics to take an initial parameter and to can compare an
improvement. Next, we test with the same classifiers, but with the PSO and with Differ-
ential Evolution Algorithms.

We can see the Medium of the Percentage of Classification obtained (see Table 2)
and the Medium of the Number of Characteristics used in the classification (see Table 3).
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Classifier KNN (1NN) KNN (3NN) Naive Bayes Naive Bayes Naive Bayes
Population 5 5 5 5 10

Fold 2 2 2 10 10
Call Functions 20 20 20 20 50

without algorithm 94.11% 94.71% 9.72 % 9.93 % 9.93%
PSO 93.38% 94.59% 17.24 % 21.80 % 28.0%

Differential Evolution 93.94% 94.07% 19.50 % 17.46 % 15.75%
Table 2. Medium of Classification Percentage.

Classifier KNN (1NN) KNN (3NN) Naive Bayes Naive Bayes Naive Bayes
Population 5 5 5 5 10

Fold 2 2 2 10 10
Call Functions 20 20 20 20 50

without algorithm 100 100 100 100 100
PSO 36.8 53.8 28.6 34.6 31.2

Differential Evolution 50 45.6 29.2 38.4 39.4
Table 3. Medium of Number of Characteristics Used in the Classification.

4.1. Weight of the Characteristics

Taking as 50 the maximum number of times that each feature could be chosen, these are
the results for each characteristic:

Characteristic Number of Times Selected Characteristic Number of Times Selected
1 19 26 22
2 18 27 21
3 24 28 22
4 24 29 19
5 20 30 21
6 19 31 22
7 29 32 15
8 24 33 16
9 22 34 20

10 14 35 20
11 12 36 20
12 22 37 23
13 19 38 27
14 14 39 18
15 19 40 19
16 19 41 22
17 27 42 20
18 21 43 22
19 19 44 21
20 18 45 19
21 20 46 18
22 20 47 13
23 19 48 21
24 23 49 22
25 28 50 20

Table 4. Weight of the Characteristics (1 to 50).
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Characteristic Number of Times Selected Characteristic Number of Times Selected
51 20 76 22
52 21 77 15
53 19 78 18
54 20 79 4
55 19 80 11
56 14 81 17
57 21 82 25
58 17 83 17
59 16 84 18
60 22 85 20
61 24 86 14
62 17 87 26
63 18 88 23
64 16 89 22
65 24 90 22
66 18 91 16
67 17 92 15
68 12 93 21
69 20 94 19
70 19 95 18
71 17 96 23
72 16 97 13
73 19 98 16
74 19 99 21
75 25 100 16

Table 5. Weight of the Characteristics (51 to 100).

4.2. Non Parametric Wilcoxon Signed-Rank

Using the non-parametric Wilcoxon Signed-Rank, and seeing the Table 2, we can observe
that:

In the comparative of methods Without Algorithm (T−) and PSO (T+), because
T=min(T−,T+)=(5, 10)=5 y T0 = 1, we can’t conclude that T ≤ T0, and we can’t accept
the alternative hypothesis HA. Is not possible determined if the PSO Algorithm or the
method without algorithm is more nearly to the right.

In the comparative of methods Without Algorithm (T−) and Differential Evolu-
tion (T+), because T=min(T−,T+)=(9, 6)=6 y T0 = 1, we can’t conclude that T ≤ T0, and
we can’t accept the alternative hypothesis HA. Is not possible determined if the Differen-
tial Evolution Algorithm or the method without algorithm is more nearly to the right.

In the comparative of methods PSO (T−) and Differential Evolution (T+), because
T=min(T−,T+)=(12, 3)=3 y T0 = 1, we can’t conclude that T ≤ T0, and we can’t accept
the alternative hypothesis HA. Is not possible determined if the PSO Algorithm or the
method Differential Evolution is more nearly to the right.

5. Conclusions

After performing different tests applying PSO and Differential Evolution mixed with
KNN and Naive Bayes Classifiers, although the features reduction was excellent, and in
some cases the increase in the classification rate becomes even higher than 100%, the
statistical tests, non parametric signals Wilcoxon test, tell us that we can’t determined
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what algorithm is better PSO, AG or without algorithm, but feature reduction guarantee
significant savings in time classification, which is essential in this topic.

As future work, we would propose a new classification algorithm, features reduc-
tion through principal component analysis, propose a new metaheuristic or improve the
already proposed.
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[24] Ramı́rez López. Modelo de Clasificación Dinámico de Arritmias Cardiacas Mediante Aprendizaje de
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