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Abstract. Unsupervised multirelational learning (clustering) in
non-sparse domains such as molecular biology is especially diffi-
cult as most clustering algorithms tend to produce distinct clusters
in slightly different runs (either with different initializations or with
slightly different training data).
In this paper we develop a multirelational consensus clustering

algorithm based on nonnegative decompositions, which are known
to produce sparser and more interpretable clusterings than other data-
oriented algorithms.
We apply this algorithm to the joint analysis of the largest avail-

able gene expression datasets for leukemia and respectively normal
hematopoiesis in order to develop a more comprehensive genomic
characterization of the heterogeneity of leukemia in terms of 38 nor-
mal hematopoietic cell states. Surprisingly, we find unusually com-
plex expression programs involving large numbers of transcription
factors, whose further in-depth analysis may help develop personal-
ized therapies.

1 Introduction

We are currently witnessing an explosion of multi-relational data in
many real-life application domains, such as social network analysis,
bioinformatics, Web mining, collaborative filtering and many more
[16].
Learning is especially difficult in complex domains because the

combinatorial explosion of hypotheses hugely exceeds the existing
data that may discriminate between them. While this phenomenon
already manifests itself in the single relation case, it is significantly
more difficult to deal with in a multi-relational setting.
Therefore, there has been a significant recent increase in interest

in learning from such multi-relational data [16], but most work has
focused on supervised approaches (e.g. classification). However, un-
supervised, discovery-based settings are of equal importance, despite
having received relatively less attention due to the inherent difficulty
in evaluating their results [9].
In this paper, we present an unsupervised data-oriented approach

to multi-relational learning for discovery in leukemia biology.
Among the many different approaches that have been tried in the

domain of multirelational learning, including probabilistic (Statisti-
cal Relational Learning), logical (Inductive Logic Programming) and
data-oriented, we have concentrated on the last type of approach, as
it can better deal with the non-sparse numerical relations that pre-
dominate in the field of high-throughput molecular biology.
Many relational domains, such as the link structure of the Web,

or various collaborative filtering settings (e.g. movie recommenda-
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tion), involve (relatively) sparse relations. On the other hand, the in-
teraction networks encountered in molecular biology have the small-
world property, so that almost any pair of nodes is connected via a
relatively short chain of links. Moreover, many of these relations are
best represented using numerical features rather than using a logical
or probabilistic representation. For example, gene expression matri-
ces in genomics are best represented as full (rather than sparse) nu-
merical matrices encoding the expression levels of individual genes
in specific samples of well-defined biological phenotypes.
While extracting a simple characterization of a set of sparse re-

lations is complicated2, inferring such a simple model for a set of
almost “fully connected” relations is truly daunting.
A typical application in genomics of complex diseases is finding

a molecular-level characterization of the disease and predicting its
evolution using high-throughput data (such as gene expression mi-
croarrays) and related biological knowledge on gene/protein interac-
tions and pathways. Unfortunately however, complex diseases (such
as cancer) are quite heterogeneous at a molecular level, so that vir-
tually every patient is essentially a unique case. Therefore, for many
types of cancer it has been impossible to determine good predictors
of disease evolution, despite numerous attempts with the best super-
vised (classification) techniques. Thus, if direct prediction of evolu-
tion is sometimes too difficult for the entire population of patients,
it may be of interest to break down the problem by characterizing
the most important disease subtypes in an unsupervised, or semi-
supervised manner. Much less work has addressed this problem in
a multi-relational setting, perhaps especially due to the extreme dif-
ficulty of validation, which involves in-depth expert knowledge and
cannot simply rely on the traditional validation methods used in a
supervised setting [9].
Leukemias are a very heterogeneous group of cancers of the

hematopoietic system. Recent large-scale genomic studies, such as
the Microarray Innovations in Leukemia (MILE) study [2] have
made the expression profiles of 2096 patients publicly available and
have shown that the current clinical subclassification (involving 18
subtypes) can be accurately recovered from the genomic profiles.
Unfortunately however, achieving a detailed molecular-level under-
standing of the various leukemia subtypes is still a goal for the future,
mostly because of the disease heterogeneity.
This heterogeneity can be explained by the very large genomic and

transcriptomic variability of the normal hematopoietic cell compart-
ment (which is comparable to the variability of the entire repertoire
of human cell types [13]), given the fact that leukemias are diseases
of the hematopoietic stem cells.
Some of the simplest data-oriented unsupervised learning meth-

ods involve dimensional reduction methods such as matrix factoriza-
2 Due to the combinatorics involved.
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tions. Nonnegative Matrix Factorization (NMF) in particular tends
to produce sparse and domain-interpretable3 decompositions, within
an extremely simple computational framework [8]. While a large
number of gene expression studies employing matrix factorization
in general and NMF in particular have been put forward (e.g. [1, 3]),
only very few have been able to exploit the inherent multi-relational
structure of the domain (e.g. [7, 5]).
Moreover, unsupervised learning (clustering) is prone to instabil-

ity (or ambiguity) especially in multi-relational domains, where dif-
ferent runs of a given algorithm (either with different initializations
or with slightly different training data) tend to produce distinct re-
sults (clusters). Preliminary investigations of the MILE study gene
expression data with various clustering algorithms have emphasized
clustering instability as the main obstacle toward determining a de-
tailed genomic subclassification of leukemias.4

In this paper we introduce a multi-relational consensus clustering
method that is able to deal with the inherent instability of multi-
relational clustering and apply it to the problem of unsupervised
leukemia subclassification.
Developing a consensus clustering algorithm for multi-relational

decompositions is highly nontrivial. Typical consensus clustering
systems [12] construct a square consensus matrix that records for
each pair of items the frequency of their co-clustering. Unfortu-
nately, this simple idea only works for unidimensional clustering,
while multi-relational decompositions produce biclusters (two-way
clusters).
In order to better understand the relationships of the leukemia sub-

types with the normal hematopoietic cell types, we have performed a
simultaneous clustering of the MILE leukemia dataset [2] (the largest
transcriptomic dataset for leukemia) with the largest transcriptomic
dataset of normal hematopoietic cell types [13] (which contains tran-
scriptomic data for 211 samples of 38 distinct cell types, including
hematopoietic stem cells).
More precisely, we are searching for gene expression modules that

are shared between leukemia and certain normal hematopoietic cells,
as well as for the specific differences between leukemia and normal
hematopoiesis.
The paper is organized as follows. After a more formal intro-

duction of multirelational nonnegative decompositions, we present
a simple multiplicative update algorithm for inferring such factoriza-
tions. We then develop a consensus clustering algorithm based on a
Positive Tensor Factorization [17] of several individual runs of the
base algorithm. The consensus clustering algorithm is subsequently
applied to leukemia subclassification. The paper concludes with a
short discussion of the results as well as with a brief mention of re-
lated works.

2 Multirelational learning via Nonnegative Matrix
Factorization (MNMF)

We start by presenting the framework of multirelational learning us-
ing nonnegative decompositions.
A multirelational domain involves a set of entity types {E(n)}n as

well as a set of numerical relations {R(mn)}mn between these en-
tity types. An entity type E(n) is a set of Nn related entities (such
as genes, documents or movies). In our setting, the nonnegative real-

3 As opposed to Principal Component Analysis, SVD or other factorization
methods which tend to produce more “holistic” decompositions.

4 We distinguish a detailed genomic subclassification from the above men-
tioned “clinical”/“histopathologic” subclassification involving 18 subtypes,
each of which may be heterogeneous genomically.

valued relation matrices R
(mn)
ij are weighted by means of weight

matrices W
(mn)
ij , which allow us to represent unknown relation en-

tries (i, j) (by setting W
(mn)
ij = 0), as well as to balance relations

with widely disparate variation ranges.
As already amply demonstrated in the unirelational setting by

Nonnegative Matrix Factorization (NMF) [8], the nonnegativity con-
straints are essential for obtaining sparse and easily interpretable de-
compositions. Problems featuring relations with negative values can
usually be reformulated in a nonnegative framework, depending on
their precise semantics (see e.g. [3] for an example).
A rank Nc multirelational nonnegative decomposition of a multi-

relational structure 〈{E(n)}n, {R(mn)}mn, W (mn)}mn}〉 is an as-
signment of a nonnegative factor matrix E(n) of size Nn × Nc to
each entity type E(n), such that all relationsR(mn) are approximated
by the product of the corresponding entity type matrices

R(mn) ≈ E(m) · E(n)T . (1)

More formally, we are minimizing the following weighted squared
error function

f =
1

2

∑
s,d

∥∥∥R(sd) − E(s) · E(d)T
∥∥∥2

W (sd)

=
1

2

∑
s,d

∑
i,j

W
(sd)
ij

(
R

(sd)
ij −

Nc∑
c=1

E
(s)
ic · E

(d)
jc

)2

(2)

subject to nonnegativity constraints for the entity matrices E(n) ≥
0, where ‖·‖W is the W -weighted Frobenius norm ‖X‖2

W =∑
i,j WijX

2
ij .

A simple algorithm solving the optimization problem (2) can be
developed by generalizing the method employed by Lee and Se-
ung for standard NMF [8]. Introducing the Lagrangean L = f −∑

n μ(n) ◦ E(n), we obtain the following Karush-Kuhn-Tucker con-
ditions:

∂f

∂E(n)
− μ(n) = 0 (3)

μ(n) ◦ E(n) = 0 (4)
μ(n) ≥ 0 (5)

Explicitly splitting the gradient of the error function ∂f

∂E(n) into a
positive and a negative part:

∂f

∂E(n)
=

(
∂f

∂E(n)

)
+

−

(
∂f

∂E(n)

)
−

(6)

with
(

∂f

∂E(n)

)
±

≥ 0 and then using (6) and (3) in the complemen-
tarity conditions (4), we get the fixpoint equation[(

∂f

∂E(n)

)
+

−

(
∂f

∂E(n)

)
−

]
◦ E(n) = 0 (7)

which can be solved by the following multiplicative update rules for
E(n):

E(n) ← E(n) ◦

(
∂f

∂E(n)

)
−(

∂f

∂E(n)

)
+

(8)

where ‘◦’ and ‘−’ represent element-wise (Hadamard) multiplication
and respectively division of matrices.
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The gradient of the error function (2) is given by (6) and the fol-
lowing:(

∂f

∂E(n)

)
+

=
∑

(s,n)∈R

[
W (sn) ◦

(
E(s) · E(n)T

)]T

· E(s)(9)

+
∑

(n,d)∈R

[
W (nd) ◦

(
E(n) · E(d)T

)]
· E(d)

(
∂f

∂E(n)

)
−

=
∑

(s,n)∈R

[
W (sn) ◦ R(sn)

]T

· E(s) (10)

+
∑

(n,d)∈R

[
W (nd) ◦ R(nd)

]
· E(d)

where (m, n) ∈ R denotes the existence of a relation between entity
types E(m) and E(n).
We have thus arrived at a simple algorithm for multirelational

NMF (MNMF) that randomly initializes the entity matrices E(n)

and then iteratively applies the multiplicative update rules (8) with
the gradient components given by (9) and (10).
An important condition for the convergence of the algorithm is

ensured by the following theorem.

Theorem 1. The weighted error function (2) is nonincreasing under
the multiplicative update rules (8).

The proof relies on combining the following two lemmas.

Lemma 1. A weighted multirelational NMF (MNMF) problem (2)
can be reduced to an equivalent single relation weighted symmetric
NMF problem R ≈ E ·ET , minimizing f = 1

2

∥∥R − E · ET
∥∥2

W
for

a symmetric matrix R.

The proof of the lemma involves constructing a single relation ma-
trixR (as well as an associated weight matrixW ) with a block struc-
ture, whose block rows and columns correspond to the entity types
E(n). For each relation R(mn), we set the corresponding (m, n)
block ofR toR(mn) and the (n, m) block toR(nm)T . The remaining
blocks are set to zero. (Similarly, we construct a weight matrix from
W (mn).) Figure 1 illustrates the construction on a simple example.

Figure 1. The symmetric matrix R associated with a multirelational
structure

Lemma 2. For a symmetric matrix R, the error function f =
1
2

∥∥R − E · ET
∥∥2

W
(corresponding to the weighted symmetric NMF

decomposition R ≈ E · ET ) is nonincreasing under the update rule

E ← E ◦
(W ◦ R) · E

[W ◦ (E · ET )] · E
. (11)

The proof of this lemma closely follows the auxiliary function ap-
proach of Lee and Seung [8]. An easy analysis shows that in the case
of the construction from Lemma 1, the update rule (11) decomposes
into the update rules given by (8,9,10), thereby proving Theorem 1.5

3 Multirelational consensus clustering

Learning in domains with many variables but small sample sizes is
notoriously difficult. Unsupervised learning (clustering) in such do-
mains tends to produce unstable clusters, which vary from run to
run, depending on slight changes in the training data or in the ini-
tialization of the algorithm. Such small sample sizes compared to the
number of variables turn up in many domains. For example, gene ex-
pression data record the expression of virtually all genes in a given
biological sample. However, the number of genes (around 20,000)
significantly exceeds even the largest sample sizes (hundreds or at
most a couple of thousand samples, in the case of the MILE study).
The situation only worsens in most real-life multirelational set-

tings, where obtaining sufficiently large sample sizes (as compared
to the number of variables) is complicated by the need to gather co-
herent data across the relevant relations. For example, if we intend
to combine gene expression with mutation data for a certain disease,
it is of crucial importance that the data comes from the same set of
patients. But even in this case, the number of variables increases and
the instability of the clustering algorithms worsens.

Consensus clustering refers to a family of approaches that tends
to alleviate clustering instability by searching for items that cluster
together in a significant number of runs. A typical consensus cluster-
ing approach [12] constructs a consensus matrix, which for each pair
(i1, i2) of items records the percentage C(i1, i2) of runs in which
they have ended up in the same cluster.
Unfortunately, this simple approach designed for unidimensional

clustering cannot be easily generalized to clustering methods based
on matrix factorization, which produce two-way clusters (biclusters).
An elegant method of consensus clustering of biclusters, put for-

ward in [6], uses Positive Tensor Factorization [17] for clustering the
biclusters obtained in a number of different factorization runs.
In the following, we generalize this approach to the multi-

relational setting. We start with a number Nr of different runs of
the multirelational MNMF algorithm, which is assumed to have pro-
duced Nr individual factorizations {E(n)

r }n=1,...,Ne

r=1,...,Nr

(index n refers

to the entity type, while r refers to the run). E(n)
r are entity matrices

whose entries E
(n)
icr denote the membership of entity i (having entity

type n) to cluster c of run r.
A consensus clustering corresponds to

• a set of consensus entity matrices e
(n)
ik (with i an entity and k ∈

{1, . . . , Nc} an index referring to a specific consensus cluster),
together with

• a cluster correspondence array αcrk (which shows how the indi-
vidual clusters c from run r are recomposed from consensus clus-
ters k)

such that the biclusters obtained in the different runs can be recovered
from the following Positive Tensor Factorization:

E
(s)
icr · E

(d)
jcr ≈

Nc∑
k=1

αcrke
(s)
ik e

(d)
jk . (12)

5 Note that although formally useful, the above single relation representation
of a multirelational domain is highly impractical due to its size.

L. Badea / Multirelational Consensus Clustering with Nonnegative Decompositions 99



More formally, (12) is rewritten as a minimization problem for the
following error function:

F
(
α, {e(n)}n

)
=

1

2

∑
(s,d)∈R
c,r,i,j

(
E

(s)

i(cr)E
(d)

j(cr) −

Nc∑
k=1

α(cr)ke
(s)
ik e

(d)
jk

)2

.

(13)
Note that in (13) we have grouped the (cr) indices in α and E in

order to deal with matrices rather than 3-dimensional arrays.
The objective function (13) above aims at minimizing the Eu-

clidean distance between the bicluster c from run r (given by(
E

(s)

i(cr)E
(d)

j(cr)

)
ij
) and the cluster reconstructed from the consensus

biclusters
(
e
(s)
ik e

(d)
jk

)
ij
by means of the cluster correspondence ma-

trix α(cr)k.
To obtain a multiplicative update algorithm for minimizing (13),

we proceed in a similar way as in the case of MNMF (2). Introduc-
ing the Lagrangean L = F −

∑
n μ(n) ◦ e(n) − ν ◦ α, we obtain

Karush-Kuhn-Tucker conditions which combined with a splitting of
the gradient of F into positive and negative parts

(
∂F

∂e(n)

)
±
,
(

∂F
∂α

)
±

lead to the following multiplicative update rules for e(n) and α:

e(n) ← e(n) ◦

(
∂F

∂e(n)

)
−(

∂F

∂e(n)

)
+

(14)

α ← α ◦

(
∂F
∂α

)
−(

∂F
∂α

)
+

(15)

Computing the gradient of F leads to the following explicit form
of the update rules:

e(n) ← e(n) ◦

E(n) ·

⎡
⎢⎣α ◦

∑
(d,n)∈R or
(n,d)∈R

E(d)T · e(d)

⎤
⎥⎦

e(n) ·

⎡
⎢⎣(αT · α) ◦

∑
(d,n)∈R or
(n,d)∈R

e(d)T · e(d)

⎤
⎥⎦

(16)

α ← α ◦

∑
(s,d)∈R

(
E(s)T · e(s)

) (
E(d)T · e(d)

)
α ·

∑
(s,d)∈R

(e(s)T · e(s)) (e(d)T · e(d))
. (17)

Note that in any run r we have:

R
(sd)
ij ≈

Nc∑
c=1

E
(s)

i(cr)E
(d)

j(cr) ≈

Nc∑
c=1

Nc∑
k=1

α(cr)ke
(s)
ik e

(d)
jk

=

Nc∑
k=1

(
Nc∑
c=1

α(cr)k

)
e
(s)
ik e

(d)
jk

Therefore, in order to interpret e(s) as a consensus of E
(s)
r in the

different runs, we need to have
∑Nc

c=1 α(cr)k ≈ 1 for each run r.
Thus, we impose a normalization of α of the form∑

c,r

α(cr)k = Nr. (18)

Summing up, our consensus clustering algorithm runs MNMFNr

times, randomly initializes {e(n)}n and α, then iteratively applies

the update rules (16,17) until convergence and subsequently normal-
izes α using (18). Finally, the consensus clusters {e(n)}n are used as
initialization for a final MNMF run.
Note that the consensus clusters need not necessarily be highly re-

curring clusters across the different runs. They could form a “base”
set of clusters out of which all the clusters could be reconstructed by
means of linear combinations. This allows learning of frequently oc-
curring subclusters, thereby alleviating the need for very large num-
bers of runs.

4 Evaluation on synthetic datasets

We have evaluated our algorithm on synthetic datasets of the form

R(mn) = E(m) · E(n) + ε(mn)

with ε(mn) a noise term. The consensus clustering algorithm robustly
recovered the original clusters, performing slightly better than the
base level clustering algorithm.
Although important for algorithm validation, tests on synthetic

datasets are rarely indicative of the performance on real-life gene
expression data, as most genomic subtypes of cancer are still in-
completely known. We therefore concentrate in the following on the
most detailed genomic datasets of leukemia and respectively normal
hematopoiesis.

5 A joint genomic analysis of leukemia and normal
hematopoiesis

Leukemia is one of the most heterogeneous diseases. Its highest-level
classification includes acute lymphoblastic leukemia (ALL), chronic
lymphocytic leukemia (CLL), acute myelogenous leukemia (AML),
chronic myelogenous leukemia (CML), with a myriad of subtypes
and other rarer types. Since its main cause consists of genomic de-
fects in the hematopoietic stem or progenitor cells and since the
hematopoietic system is in its turn extremely complex6, it seems
an extremely important task to investigate the similarities and dif-
ferences between leukemia subtypes and normal hematopoietic cells
(stem cells, progenitors and differentiated cells).
In the following we briefly present such an analysis of the largest

available gene expression datasets of leukemia and respectively nor-
mal hematopoiesis.
The Microarray Innovations in Leukemia (MILE) study [2] has

obtained gene expression profiles of 2096 leukemia patients (with
17 clinical subtypes of leukemia) and normal subjects (74 persons)
using Affymetrix U133 Plus 2.0 microarrays.
On the other hand, the study of Novershtern et al. [13] has pro-

duced gene expression measurements of 38 distinct types of purified
hematopoietic cells (211 samples in all) employing a slightly differ-
ent microarray platform (Affymetrix U133A).
We have reprocessed the raw Affymetrix CEL files using RMA

normalization and retained only the common probesets between the
two profiling platforms (U133A probesets are almost completely in-
cluded on the U133 Plus 2.0 platform). We further filtered the probe-
sets (genes) retaining only those with a significant expression (mean
of the log2-values> log2(100) and standard deviation of log2 values
> 0.8). We thus ended up with 7417 probesets.
Besides the gene expression matrices of the leukemia (XL) and re-

spectively hematopoiesis dataset (XH ), we employed the given sub-
type information, YL for leukemia and YH for hematopoiesis.
6 Its transcriptome is comparable in variability with the entire set of human
cell types.
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Figure 2. The multi-relational structure of the joint analysis of leukemia
and normal hematopoiesis

We constructed a relational structure containing 5 entities and 4
relations as shown in Figure 2. We used relation weights to balance
the Euclidean norms of the relations and subsequently reduced the
weights of the subtype relations by 1/100 to avoid any significant
bias of the known subtype information on the inferred clusters. Note
that such a very flexible form of semi-supervised learning can be
easily adapted in our framework.
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Figure 3. The entity matrix for the leukemia subtypes

Next we ran our multi-relational consensus clustering algorithm
with Nc = 15 clusters and Nr = 10 runs. The number of clusters
was chosen based on a series of runs of MNMF with progressively
larger numbers of clusters, ranging from 2 to 50. To avoid overfitting,

we performed a similar set of runs on the randomized entity matrices
and compared the decrease of the error with Nc in the two cases.
An Nc was chosen such that the error decrease on the real data was
significantly larger than that on the randomized data [3].
We subsequently analyzed in more detail the clusters obtained.

Note that the algorithm infers sample-specific gene modules (biclus-
ters) rather than simple unidimensional sample clusters. Some mod-
ules may be involved both in disease and in normal cells, although
certain modules are predominantly activated in leukemia while oth-
ers – in normal hematopoietic cells. Figures 3 and 4 show the entity
matrices for the leukemia and respectively hematopoiesis subtypes.
(Rows correspond to subtypes, while columns correspond to clus-
ters.7) These two matrices are especially informative since they es-
tablish a correspondence between the leukemia subtypes and the cell
types of the normal hematopoietic system.
Remarkably, the algorithm has been able to link major leukemia

types to their putative cells of origin in a completely unsupervised
manner. For example, gene modules (clusters) 10 and 11 are mainly
active in chronic lymphocytic leukemia (CLL) samples, but are also
weakly activated, in the hematopoietic dataset, in differentiated (ma-
ture) B-cells.
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Figure 4. The entity matrix for the hematopoiesis subtypes

Conversely, module 4 is primarily activated in normal mature B-
7 In the figures, the columns of the subtype clusters have been normalized
to unit norm. Given that the gene clusters had also been normalized to unit
norm, the corresponding scaling factors of the sample clusters (representing
activation strengths) are shown in the last rows of the figures.
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cells, but is also weakly involved in Pro-B ALL with t(11q23)/MLL
and ALL with t(1;19).
On the other hand, cluster 1 predominantly involves B precur-

sor ALL cases (c-ALL/pre-B-ALL, pro-B-ALL with t(11q23)/MLL,
ALL with t(12;21) and ALL with hyperdiploid karyotype, but also
affects less differentiated B-cells (such as early B-cells or pro B-
cells), or even hematopoietic stem cells (either CD133+CD34dim or
CD38-CD34+).
Gene module 2 covers the T-ALL cases, while its “normal” coun-

terpart, module 8 is mainly active in normal T-cells and certain natu-
ral killer (NK) cells, with weaker activation in T-ALL.
Gene module 6 is dominant mainly in AML cases, but is also

weakly active in hematopoietic stem cells (HSC CD133+CD34dim
and CD38-CD34+), megakaryocyte/erythroid progeniors (MEP) and
common myeloid progenitors (CMP). Its closest normal counterpart
is gene module 13, which is primarily expressed in HSC, as well as in
the least differentiated erythroid progenitors (CD34+CD71+GlyA-
and CD34-CD71+GlyA-). It is remarkable that the highest level stem
cell in the hematopoietic lineage (CD133+CD34dim) is primarily in-
volved in acute leukemias (B precursor ALL in module 1 and respec-
tively AML in module 6).
Gene module 14 covers normal differentiated erythroid cells and

is only weakly active in myelodysplastic syndrome (MDS) cases.
Overall, it is impressive that the various leukemia subtypes have

been matched, in an unsupervised manner, to the main hematopoietic
cells affected by the disease.
A detailed “dissection” of each individual subtype and associated

expression program is needed to understand them at a molecular
level. An indication of the unusual complexity of these expression
programs is given by the unusually large numbers of transcription
factors involved. More precisely, using a relatively strict significance
threshold for the normalized gene cluster matrix8 E(1) > 2√

N1
, we

obtain 273 transcription factors (TFs) significantly involved in the
Nc = 15 clusters, many more than the TFs with a known role in
leukemia or normal hematopoiesis. However, this is less surprising
given the already known very large transcriptomic variability of the
normal hematopoietic cell types [13].
As an example, the hematopoietic stem cell program for cluster

6 involves 35 transcription factors, among which SOX4, HOXA10,
CEBPA, MYB, SATB1, CITED2, etc. A literature search has shown
that many of these transcription factors have been previously linked
to hematopoietic stem cells and/or leukemia. For instance, although
the normal function of SOX4 in hematopoietic stem cells (HSCs)
is not known, its over-expression in mouse HSCs has recently been
shown to cause myeloid leukemia [14].
HOXA10 is a critical regulator of hematopoietic stem cells and

erythroid/megakaryocyte development [11] (a fact consistent with its
observed role in cluster 6, related to AML).
Also, CITED2 is known to be an essential regulator of adult

hematopoietic stem cells [4].
The new perspective opened by our study is the large number of

such transcription factors that probably control the various associated
normal and leukemic gene expression programs (in a combinatorial
manner). This insight should further help to develop personalized
therapies, based on the specific genomic changes encountered in each
patient.

8 We have normalized the columns of the gene cluster matrix to unit Eu-
clidean norm.

6 Conclusions

A comprehensive discussion (or even enumeration) of all approaches
to multi-relational learning is impossible due to space limitations.
Focusing on numerical data-oriented approaches only, the frame-
works closest to our approach are Collective Matrix Factorization
(CMF) [15], Multi Relational Matrix Factorization (MRMF) [10] and
NMRF [5]. None of these approaches are able to deal with clustering
instability, which as mentioned previously is one of the main prob-
lems facing multi-relational discovery systems.
Moreover, a simple data-oriented approach like the one presented

in this paper avoids the combinatorics that tends to plague logi-
cal multirelational discovery systems (e.g. Inductive Logic Program-
ming).
The results of the genomics application are also encouraging.
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