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Abstract. This paper presents a target detection and recognition
mission by an autonomous Unmanned Aerial Vehicule (UAV) mod-
eled as a Partially Observable Markov Decision Process (POMDP).
The POMDP model deals in a single framework with both perception
actions (controlling the camera’s view angle), and mission actions
(moving between zones and flight levels, landing) needed to achieve
the goal of the mission, i.e. landing in a zone containing a car whose
model is recognized as a desired target model with sufficient belief.
We explain how we automatically learned the probabilistic observa-
tion POMDP model from statistical analysis of the image processing
algorithm used on-board the UAV to analyze objects in the scene. We
also present our “optimize-while-execute” framework, which drives
a POMDP sub-planner to optimize and execute the POMDP policy in
parallel under action duration constraints, reasoning about the future
possible execution states of the robotic system. Finally, we present
experimental results, which demonstrate that Artificial Intelligence
techniques like POMDP planning can be successfully applied in or-
der to automatically control perception and mission actions hand-in-
hand for complex time-constrained UAV missions.

1 INTRODUCTION

Target detection and recognition by autonomous Unmanned Aerial
Vehicules (UAVs) is an active field of research [18], due to the in-
creasing deployment of UAV systems in civil and military missions.
In such missions, high-level decision strategies of UAVs are usually
given as hand-written rules (e.g. fly to a given zone, land, take im-
age, etc.), which depend on stochastic events (e.g. target detected in
a given zone, target recognized, etc.) that may arise when execut-
ing these decision rules. Because of the high complexity of auto-
matically constructing decision rules under uncertainty [6, 10], often
called policies in Artificial Intelligence planning, few deployed UAV
systems rely on automatically-constructed and optimized policies.

When uncertainties in the environment come from imperfect ac-
tion execution or environment observation, high-level policies can
be automatically generated and optimized using Partially Observable
Markov Decision Processes (POMDPs) [13]. This model has been
successfully implemented in ground robotics [3, 15], and even in
aerial robotics [7, 12, 1]. Yet, in these applications, at least for the
UAV ones, the POMDP problem is assumed to be available before
the mission begins, allowing system designers to have plenty of time
to optimize the UAV policy off-line.

However, in a target detection and recognition mission [18], if
viewed as an autonomous sequential decision problem under uncer-
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tainty, the decision problem is not known before the actual flight.
Indeed, the number of targets, zones making up the environment,
and positions of targets in these zones, are usually unknown before-
hand. They must be automatically extracted at the beginning of the
mission (for instance using image processing techniques) in order to
define the sequential decision problem to optimize. In this paper, we
study a target detection and recognition mission by an autonomous
UAV, modeled as a POMDP defined during the flight, after the num-
ber of zones and targets has been automatically analyzed and ex-
tracted online. We think that this work is challenging and original for
at least two reasons: (i) the target detection and recognition mission
is viewed as a long-term sequential decision-theoretic planning prob-
lem, with both perception actions (changing view angle) and mission
actions (moving between zones, landing), for which we automati-
cally construct an optimized policy ; (ii) the POMDP is solved online
during the flight, taking into account time constraints required by the
mission’s duration and possible future execution states of the system.

Achieving such a fully automated mission from end to end re-
quires many technical and theoretical pieces, which can not be all
described with highest precision in this paper due to the page limit.
We focus attention on the POMDP model, including a detailed dis-
cussion about how we statistically learned the observation model
from real data, and on the “optimize-while-execute” framework that
we developed to solve complex POMDP problems online while ex-
ecuting the currently available solution under mission duration con-
straints. Section 2 introduces the mathematical model of POMDPs.
In Section 3, we present the POMDP model used for our target de-
tection and recognition mission for an autonomous rotorcraft UAV.
Section 4 explains how we optimize and execute the POMDP pol-
icy in parallel, dealing with constraints on action durations and with
the probabilistic evolution of the system. Finally, Section 5 presents
and discusses many results obtained while experimenting with our
approach, showing that Artificial Intelligence techniques can be ap-
plied to complex aerial robotics missions, whose decision rules were
previously not fully automated nor optimized.

2 FORMAL FRAMEWORK: POMDP

A POMDP is a tuple 〈S,A,Ω, T,O,R, b0〉 where S is a set of states,
A is a set of actions, Ω is a set of observations, T : S×A×S → [0; 1]
is a transition function such that T (st+1, a, st) = p(st+1 | a, st),
O : Ω×S → [0; 1] is an observation function such that O(ot, st) =
p(ot|st), R : S × A → R is a reward function associated with
a state-action pair, and b0 is the initial probability distribution over
states. We note Δ the set of probability distributions over the states,
called belief state space. At each time step t, the agent updates its
belief state defined as an element bt ∈ Δ using Bayes’ rule [13].

Solving POMDPs consists in constructing a policy function π :
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Δ → A, which maximizes some criterion generally based on re-
wards averaged over belief states. In robotics, where symbolic re-
warded goals must be achieved, it is usually accepted to optimize the
long-term average discounted accumulated rewards from any initial
belief state [4, 16]:

V π(b) = Eπ

[ ∞∑
t=0

γtr(bt, π(bt))

∣∣∣∣∣b0 = b

]
(1)

where γ is the actualization factor. The optimal value V ∗ of an opti-
mal policy π∗ is defined by the value function that satisfies the bell-
man’s equation:

V ∗(b) = max
a∈A

⎡
⎣∑
s∈S

r(s, a)b(s) + γ
∑
o∈O

p(o|a, b)V ∗(boa)

⎤
⎦ . (2)

Following from optimality theorems, the optimal value of belief
states is piecewise linear and convex [13], i.e, at the step n < ∞,
the value function can be represented by a set of hyperplanes over
Δ, known as α-vectors. An action a(αi

n) is associated with each α-
vector, that defines a region in the belief state space for which this α-
vector maximizes Vn. Thus, the value of a belief state can be defined
as Vn(b) = maxαi

n∈Vn
b · αi

n. The corresponding optimal policy at
this step will be πn(b) = a(αb

n).
Recent offline solving algorithms, e.g. PBVI [8], HSVI2 [14] and

SARSOP [5], and online algorithms like RTDP-bel [2] and AEMS
[9] approximate the value function with a bounded set of belief states
B, where B ⊂ Δ. These algorithms implement different heuristics
to explore the belief state space. They update the value of V , which
is represented by a set of α-vectors (except in RTDP-bel), using a
backup operator for each b ∈ B explored or relevant. Therefore, V
is reduced and contains a limited number |B| of α-vectors.

3 MULTI-TARGET DETECTION AND
RECOGNITION MISSION

3.1 Mission description

We consider an autonomous Unmanned Aerial Vehicle (UAV) that
must detect and recognize some targets under real-world constraints.
The mission consists in detecting and identifying a car that has a par-
ticular model among several cars in the scene, then landing next to
this car. Due to the partially observable nature of the problem, espe-
cially the probabilistic belief about cars’ models, it is modeled as a
POMDP. The UAV can perform both high-level mission tasks (mov-
ing between zones, changing height levels, landing) and perception
actions (changing view angles in order to observe the cars). Cars can
be in any of many zones in the environment, which are beforehand
extracted by image processing (no more than one car per zone).

The total number of states depends on many variables that are all
discretized: the number of zones (Nz), height levels (Nh), view an-
gles (NΦ), targets (Ntargets) and car models (Nmodels), and a termi-
nal state that characterizes the end of the mission. As cars (candidate
targets) can be in any of the zones and be of any possible models
a priori, the total number of states is: |S| = Nz · Nh · NΦ · (Nz ·
Nmodels)

Ntargets + Ts, where Ts represents the terminal state.
For this application case, we consider 4 possible observations, i.e.

|Ω| = 4, in each state: {no car detected, car detected but not iden-
tified, car identified as target, car identified as non-target}. These
observations rely on the result of image processing (described later).

As mentioned before, the high-level mission tasks performed by
the autonomous UAV are: moving between zones, changing height
levels, changing view angles, landing. The number of actions for
moving between zones depends on the number of zones considered.
These actions are called go to(ẑ), where ẑ represents the zone to

go to. Changing the height level also depends on the number of dif-
ferent levels at which the autonomous UAV can fly. These actions
are called go to(ĥ), where ĥ represents the desired height level. The
change view action changes the view angle when observing a given
car, with two view angles Φ = {front, side}. The land action can
be performed by the autonomous UAV all the time and in any zone.
Moreover, the land action completes the mission. So, the total num-
ber of actions can be computed as: |A| = Nz +Nh +(NΦ − 1)+1.

3.2 Model dynamics

We now describe the transition and reward models. The effects of
each action will be formalized with mathematical equations, which
rely on some variables and functions described below. These equa-
tions help to understand the evolution of the POMDP state.

3.2.1 State variables

The world state is described by 7 discrete state variables. We assume
that we have some basic prior knowledge about the environment:
there are two targets that can be each of only two possible models,
i.e. Nmodels = {target, non− target}. The state variables are:

1. z with Nz possible values, which indicates the UAV’s position;
2. h with Nh possible values, which indicates its height level;
3. Φ = {front, side}, which indicates the view angle between the

UAV and the observed car;
4. Idtarget1 (resp. Idtarget2 ) with Nmodels possible values, which

indicates the identity (car model) of target 1 (resp. target 2);
5. ztarget1 (resp. ztarget2 ) with Nz possible values, which indicates

the position of target 1 (resp. target 2).

3.2.2 Transition and reward functions

To define the model dynamics, let us characterize each action with:
• its effects: textual description explaining how state variables

change after the action is applied;
• its transition function T ;
• its reward function R.
Concerning the notation used, the primed variables represent the suc-
cessor state variables, whereas the unprimed ones represent the cur-
rent state. In addition, let us define the indicative function : I{cond}
equal to 1 if condition cond holds, or to 0 otherwise; this notation is
used to express Bayesian dependencies between state variables. An-
other useful notation is δx(x′) equal to 1 if x = x′, or to 0 otherwise;
this notation allows us to express the possible different values taken
by the successor state variable x′.

Based on previous missions with our UAV, we know that moving
and landing actions are sufficiently precise to be considered as de-
terministic: the effect of going to another zone, or changing flight
altitude, or landing, is always deterministic. However, the problem is
still a POMDP, because observations of cars’ models are probabilis-
tic ; moreover, it has been proved that the complexity of POMDP
solving essentially comes from probabilistic observations rather than
from probabilistic action effects [10].

Moreover, in order to be compliant with the POMDP model, which
assumes that observations are available after each action is executed,
all actions of our model provide an observation of cars’ models. The
only possible observation after the landing action is no car detected,
since this action does not allow the UAV to take images of the en-
vironment. All other actions described below automatically take im-
ages of the scene available in front of the UAV, giving rise to image
processing and classification of observation symbols (see later). As
the camera is fixed, it is important to control the orientation of the
UAV in order to observe different portions of the environment.
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Action go to(ẑ) This action brings the UAV to the desired zone.
Its dynamics is described next, but note that if the UAV is in the
terminal state (Ts), this action has no effects and no cost (which is
not formalized below).
• Effects: the UAV moves from a zone to another one.
• Transition function:

T (s′, go to(ẑ), s) = δẑ(z
′)δh(h

′)δΦ(Φ
′)

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

which, according to the definition of function δ previously men-
tioned, is non-zero only for the transition where post-action state
variables s′ are all equal to pre-action state variables s, but the
target zone z′ that is equal to ẑ.

• Reward function: R(s, go to(ẑ)) = Cz,ẑ , where Cz,ẑ < 0 rep-
resents the cost of moving from z to ẑ. This cost models the fuel
consumption depending on the distance between zones. To sim-
plify, we chose to use a constant cost Cz , because actual fuel con-
sumption is difficult to measure with sufficient precision on our
UAV. And also, because the automatic generation of the POMDP
model does not take into account zones’ coordinates. The latter
are needed for computing distances between zones, which are as-
sumed to be proportional to costs.

Action go to(ĥ) This action leads the UAV to the desired height
level. Like action go to(ẑ), if the UAV is in the terminal state (Ts),
this action has no effects and no cost.
• Effects: the UAV’s height level is changed to ĥ.
• Transition function:

T (s′, go to(ĥ), s) = δz(z
′)δĥ(h

′)δΦ(Φ
′)

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

• Reward function: R(s, go to(ĥ)) = Ch,ĥ, where Ch,ĥ < 0 rep-
resents the cost of changing from height level h to ĥ. This cost also
models the fuel consumption depending on the distance between
altitudes. These costs are typically higher than costs for moving
between zones. For the same reason as the previous action, we
also chose to use a constant cost such that Cz < Ch.

Action change view This action changes the view angle of the
UAV when observing cars. Due to environmental constraints, we as-
sume that all cars have the same orientations in all zones (as in park-
ing lots for instance), so that each view angle value has the same
orientation for all zones. Like the previous actions, if the UAV is in
the terminal state (Ts), this action has no effects and no cost.

• Effects: the UAV switches its view angle (from front to side and
vice versa).

• Transition function:
T (s′, change view, s) = δz(z

′)δĥ(h
′)

(I{Φ=front}δside(Φ
′) + I{Φ=side}δfront(Φ

′))

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

• Reward function: R(s, change view) = Cv , where Cv < 0 rep-
resents the cost of changing the view angle. It is represented by a
constant cost that is higher than costs of all other actions. Follow-
ing our previous constant cost assumptions: Cv ≥ Ch > Cz .

Action land This action completes the UAV mission, leading the
autonomous UAV to the terminal state. If the UAV is in the terminal
state (Ts), this action has no effects and no cost.

• Effects: the UAV ends its mission, and goes to the terminal state.
• Transition function: T (s′, land, s) = δTs(s

′)
• Reward function:

R(s, land) = I{(z=ztarget1
)&(Idtarget1

=target)}Rl +

I{(z=ztarget2
)&(Idtarget2

=target)}Rl +

I{(z=ztarget1
)&(Idtarget1

=non−target)}Cl +

I{(z=ztarget2
)&(Idtarget2

=non−target)}Cl +

I{(z!=ztarget1
)&(z!=ztarget2

)}Cl

where Rl > 0 represents the reward associated with a correctly
achieved mission (the UAV is on ground in the zone where the
correct target is located) and Cl < 0 represents the cost of a failed
mission. Note that: Rl 	 Cv ≥ Ch > Cz ≫ Cl.

3.3 Observation model

POMDP models require a proper probabilistic description of actions’
effects and observations, which is difficult to obtain in practice for
real complex applications. For our target detection and recognition
missions, we automatically learned from real data the observation
model, which relies on image processing. We recall that we con-
sider 4 possible observations in each state: {no car detected, car
detected but not identified, car identified as target, car identified as
non-target}. The key issue is to assign a prior probability on the pos-
sible semantic outputs of image processing given a particular scene.

Car observation is deduced from an object recognition algorithm
based on image processing [11], already embedded on-board our au-
tonomous UAV. It takes as input one shot image (see Fig. 1(a)) that
comes from the UAV on-board camera. First, the image is filtered
(Fig. 1(b)) to automatically detect if the target is in the image (Fig.
1(c)). If no target is detected, it directly returns the label no car de-
tected. If a target is detected, the algorithm extracts the region of in-
terest of the image (bounding rectangle on Fig. 1(c)), then generates
a local projection and compares it with the 3D template silhouettes
in a database of car models (Fig. 1(d)). The local projection only de-
pends on the UAV’s height level, camera focal length and azimuth
as viewing-condition parameters. The height level is known at every
time step, the focal length and the camera azimuth are fixed parame-
ters. Finally, the image processing algorithm chooses the 3D template
that maximizes similarity (for more details see [11]), and returns the
label that corresponds or not to the searched target: car identified as
target or car identified as non-target. If the level of similarity is less
than a hand-tuned threshold, the image processing algorithm returns
the label car detected but not identified.

In order to learn the POMDP observation model from real data,
we performed many outdoor test campaigns with our UAV and some
known cars. It led to an observation model learned via a statistical
analysis of the image processing algorithm’s answers on the basis
of images taken during these tests. More precisely, to approximate
the observation function O(ot, st), we count the number of times
that one of the four observations (labels) was an output answer of
the image processing algorithm in a given state s. So, we compute
the following statistical estimation p̂(oi|s), where oi is one of the 4
possible observations:

p̂(oi|s) = 1

Nexp

Nexp∑
n=1

I{on=oi|s}
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(a) Input image (b) Filtering (c) Car detection (d) Matching
Figure 1. Target detection and recognition image processing based on [11].

where Nexp represents the number of experiences, i.e. the number of
runs performed by the image processing algorithm with respect to the
different images, and on the label obtained at experience n. It applies
the usual estimator of the mean of a Bernoulli distribution, which
is equal to the probability of oi against all other observations. It is
proven to converge in probability to p(oi|s) as Nexp → ∞. More
than 500 images are available for each state (Nexp 	 1) so that the
statistical approximations may be good enough. We also computed
intervals in which the true model lies with 99% confidence.

Table 1 shows an example of observation probability obtained af-
ter learning in a given state. We precompute tables for all possible
states. No additional learning phase is performed during the real mis-
sion flight to improve the precision of the observation model. Note
that, for the POMDP model, only p̂(oi|s) is taken into account.

observation (oi) p̂(oi|s) σp̂ I = [p̂± 3σp̂]

no car detected 0.0453 0.0091 [0.0183 ; 0.0723]
car detected but not identified 0.0907 0,0127 [0.0526 ; 0.1288]

car identified as target 0.7233 0,0199 [0.6636 ; 0.7830]
car identified as non-target 0.1405 0,0154 [0.0943 ; 0.1867]

Table 1. Probability observation table learned from statistical analysis of
the image processing algorithm’s answers using real data, with
s = {z = ztarget1 , Idtarget1 = target, h = 30, ztarget2 �=
z, Idtarget2 = non − target}; σp represents the standard error.

4 OPTIMIZE-WHILE-EXECUTE
FRAMEWORK

Large and complex POMDP problems can rarely be optimized off-
line, because of the lack of sufficient computational means. More-
over, the problem to solve is not always known in advance, e.g. our
target detection and recognition missions where the POMDP prob-
lem is based on zones that are automatically extracted from on-line
images of the environment. Such applications require an efficient on-
line framework for solving POMDPs and executing policies before
the mission’s deadline. We worked on extending the optimize-while-
execute framework proposed in [17], previously restricted to deter-
ministic or MDP planning, to solve on-line large POMDPs under
time constraints. Our extension is a meta-planner that relies on stan-
dard POMDP planners like PBVI, HSVI, PERSEUS, AEMS, etc.,
which are called from possible future execution states while execut-
ing the current optimized action in the current execution state, in
anticipation of the probabilistic evolution of the system and its en-
vironment. One of the issues of our extension was to adapt the mech-
anisms of [17] based on completely observable states, to belief states
and point-based paradigms used by many state-of-the-art POMDP
planners [8, 9].

We implemented this meta-planner on top of the anytime POMDP
algorithms PBVI [8] and AEMS [9]. AEMS is particularly useful for
our optimize-while-execute framework with time constraints, since
we can explicitly control the time spent by AEMS to optimize an
action in a given belief state. Our purpose is not to improve existing
algorithms, but to incorporate them into a more flexible framework
that allows us to on-line solve POMDPs under time constraints.

The approach relies on using a meta planner that conducts an any-
time POMDP planner, and that benefits from the current action’s exe-
cution time to plan ahead for next future belief states. The meta plan-
ner handles planning and execution requests in parallel, as shown in
Fig. 2. At a glance, it works as follows:

1. Initially, the meta-planner plans for an initial belief state b using
PBVI or AEMS during a certain amount of time (bootstrap).

2. Then, the meta-planner receives an action request, to which it re-
turns back the action optimized by PBVI or AEMS for b.

3. The approximated execution time of the returned action is esti-
mated, for instance 8 seconds, so that the meta planner will plan
from some next possible belief states using PBVI or AEMS dur-
ing a portion of this time (e.g. 2 seconds each for 4 possible future
belief states), while executing the returned action.

4. After the current action is executed, an observation is received and
the belief state is updated to a new b′, for which the current opti-
mized action is sent by the meta-planner to the execution engine.

This framework is different from real-time algorithms like RTDP-bel
[2] or AEMS that solve the POMDP only from the current execution
state (belief state), but not from future possible ones as we propose.
Indeed, this framework proposes a continuous planning algorithm
that fully takes care of probabilistic uncertainties: it constructs vari-
ous policy chunks at different future probabilistic execution states.

To compute next beliefs states, we ask the anytime planner about
the probabilistic effects of the action that is being run in the cur-
rent belief state. As we use the POMDP framework, we consider
observations as effects, and so we construct the next belief states for
each possible observation. For example: in the current belief state,
we get the optimized action, next we predict the time that the UAV
will spend to perform this action (e.g. Ta). Then, we ask the plan-
ner about the possible next effects (e.g. at most 4 observations). And
so, we compute next belief states and optimize the policy for each
of them during a time proportional to the action’s predicted duration
and to the number of next possible observations (e.g. Ta/4 for each).

Furthermore, as illustrated in Fig. 2, planning requests and action
requests are the core information exchanged between the main com-
ponent and the meta-planner. Interestingly, each component runs in
an independent thread. More precisely, the main component, which is
in charge of policy execution, runs in the execution thread that inter-
acts with the system’s execution engine. It competes with the meta-
planner component, which runs in a separate optimization thread.
The meta-planner component, which is in charge of policy optimiza-
tion, drives the sub-POMDP planner.

main component

meta-planner
AEMS (b)

or
PBVI (b)

b → a∗

planning request

action request

Figure 2. Meta-planner planning/execution schema.
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In addition, in real critical applications, end-users often want the
autonomous system to provide some basic guarantees. For instance,
in case of UAVs, operators require that the executed policy never puts
the UAV in danger, which may happen in many situations like being
out of fuel. Another danger may come from the lack of optimized
action in the current system state, due to the on-line optimization
process that has not yet computed a feasible action in this state. For
that reason it is mandatory that the meta-planner provides a relevant
applicable action to execute when queried by the system’s execution
schema, according to the current execution state. It can be handled
by means of an application-dependent default policy, which can be
generated before optimization in two different ways: either a para-
metric off-line expert policy whose parameters are on-line adapted
to the actual problem; or a heuristic policy quickly computed on-line
before computing the optimal policy. Simple but complete heuristic
POMDP policies, for instance based on the QMDP approximation
proposed by [6], can be quickly generated.

5 EXPERIMENTAL RESULTS

We performed complete realistic “hardware in the loop” simulations,
i.e. using the exact functional architecture and algorithms used on-
board our UAV, a Yamaha Rmax adapted to autonomous flights, as
well as real outdoor images. Real flights have just been tested with
success at the time we write this article. In this section, we present a
deep analysis of results obtained during realistic simulations.

The instance of the problem considered has 2 height levels (30
and 40 meters), 2 view angles (front and side), 2 targets and 2 car
models, and 3 zones, which leads to 433 states. Recall that we have 4
possible observations. The aim is to land next to the car whose model
is presented in Fig. 1(d); however, the models of the cars is unknown
at the beginning of the mission. The meta-planner on-line framework
presented in the previous section is a good option for this problem
because: (1) the number of zones is discovered in flight, making it
impossible to solve the problem before the beginning of the mission,
and (2) the POMDP algorithms we used – PBVI or AEMS – do not
converge within the mission duration limit.

Our experimental results are conducted on a small problem, but
yet a real needed identification mission. The need for POMDPs in
this kind of applications is indeed more related to the expressivity
of probabilistic observation functions, than to the size of the prob-
lem. In such applications, problem size is not the crucial bottleneck.
We believe that our approach will scale with bigger instances: in
the optimize-while-execute framework, if the optimization algorithm
does not provide an action in time, more default actions would just
be performed. On the other hand, the longer an action lasts, the more
the planner has time to improve the policy; thus, the scalability of our
approach is also impacted by actions’ actual durations.

We consider two initial belief states that represent 2 different ini-
tial view angles and the fact that we do not know about the positions
and the models of the cars: b10 (resp. b20) is a uniform probability dis-
tribution over the 12 states {z = 1, h = 40, φ = front, ztarget1 
=
ztarget2 , Idtarget1 
= Idtarget2} (resp. {z = 1, h = 40, φ =
side, ztarget1 
= ztarget2 , Idtarget1 
= Idtarget2}), The reward
function is based on the following constants: Cz = −5, Ch = −1,
Cv = −1, Rl = 10, and Cl = −100. The duration of an action
is represented by a uniform distribution over [T a

min, T
a
max], with

T a
min = 4s and T a

max = 6s, which is representative of durations
observed during preliminary test flights. We recall that we consider
static targets.

Observations are characterized by the output of the image process-
ing algorithm [11], which runs in the execution thread. It is launched
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Figure 3. Timelines for PBVI and AEMS implementations with the

optimize-while-execute framework starting from b10.

as soon as an action is performed. The simulator, which knows the
real state of the world, takes an image from the database and sends it
to the image processing algorithm, which returns an observation.

Figure 3 shows the timelines for the meta-planner execution pro-
cess. The x axis represents the time elapsed during the mission. Dark
bars represent the portions of time where the policy is optimized (op-
timization thread) and light bars represent the portions of time where
the policy is executed (execution thread) – both running in parallel.
The curve shows the Bellman’s error evolution during the mission.
After a first bootstrap (where only the optimization thread is active),
we can notice that the optimization process continues for a short time
period. Then, small optimization chunks are still processed when
new planning requests are sent to the planner, because the policy was
previously not fully optimized in the current belief state during previ-
ous optimization chunks. The evolution of the Bellman error, which
is monitored for each planning request during optimization, empha-
sizes the evolution of the optimization process.

In Fig. 3(a) the value function does not converge for all belief
states in the relevant belief set, contrary to 3(b) where the opti-
mization process has converged for the current (sliding) belief state.
The reason is that AEMS is more efficient than PBVI, so that it has
enough time to optimize the future possible belief states while exe-
cuting actions: after 50s the value function systematically converges
before the current action execution has completed. We can notice that
the execution thread still goes on, but optimization chunks are very
short because the Bellman error is already very small when begin-
ning to optimize from each future belief state.

Figure 4 shows results for planning times and mission success per-
centages, using the 2 underlying POMDP solvers PBVI and AEMS
driven by the optimize-while-execute framework. The average mis-
sion total time (on-line) represents the time until the end of the mis-
sion (i.e. limit time step). The average planning time represents the
time taken by the optimization thread, which is very close to the mis-
sion total time for the PBVI algorithm, because it cannot converges
during the mission time. These average results were computed over
50 test runs for each instance of the problem with a limit horizon
of 20 steps. Each test run was a complete mission (optimization and
execution in parallel from scratch). As a comparison, we drown an
offline mission time that would correspond to solving the problem
off-line of execution (but still during the flight just after zones ex-
traction from the environment), then executing the optimized policy.

Figure 4 also presents the percentage of default actions and
achieved goals. We aim at showing that, depending on the underlying
algorithm used (PBVI or AEMS), the planning thread does not react
as fast as expected, and more default actions may be performed. We
recall that the default policy used guarantees reactivity in case the op-
timized policy would not be available in the current execution state.
The default policy, implemented as a heuristic policy based on the
QMDP approximation proposed by [6], was quickly computed be-
fore computing the optimal policy. The percentage of achieved goals
(i.e. the UAV has landed in the zone containing the car that has the
correct target model) is close to 100%, which highlights that our ap-
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Figure 4. Averaged results for PBVI and AEMS implementations with the optimize-while-execute framework beginning from b10 and b20.

proach allows the UAV to achieve its mission very well on average.
Finally, figures 5(a) and 5(b) present the average over 50 real

policy executions of the discount accumulated rewards, statistically
computed as V π(st) = 1

50

∑
50

[∑t
k=0 γ

kr(sk, π(bk))|b0, sk
]
.

Note that the simulator uses its knowledge of the environment (i.e.
state st and all states sk), to give out rewards while simulating the
optimized policy. This equation allows us to show the accumulated
rewards from time step zero until time step t. For PBVI, regardless
of the initial belief state, the average rewards gathered during policy
execution tend to be smaller than for AEMS. We believe that this
difference comes from the fact that PBVI is less reactive (efficient)
than AEMS so that more default actions are performed, which are
not optimal for the belief in which they were applied.
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Figure 5. Average rewards for PBVI and AEMS implementations with the

optimize-while-execute framework starting from b10 and b20.

It is not surprising to observe a significant standard deviation on
statistically averaged rewards. Indeed, the cars are actually not in the
same zones in different missions, wich implies that the UAV lands
sooner or later depending on the zone in which the searched car is.

6 CONCLUSION AND FUTURE WORK

To the best of our knowledge, this paper presents one of the first
POMDP-based implementations of target detection and recognition
mission by an autonomous rotorcraft UAV. Our contribution is three-
fold: (i) we model perception and mission actions in the same de-
cision formalism using a single POMDP model; (ii) we statistically
learn a meaningful probabilistic observation model of the outputs
of an image processing algorithm that feeds the POMDP model;
(iii) we provide practical algorithmic means to optimize and exe-
cute POMDP policies in parallel under time constraints, which is
required because the POMDP problem is generated during the flight.
We analyzed experiments conducted with a realistic “hardware in the
loop” simulation based on real data: they demonstrate that POMDP
planning techniques are now mature enough to tackle complex aerial
robotics missions, assuming the use of some kind of “optimize-
while-execute” framework, as the one proposed in this paper.

At the time of writing this paper, we have just embedded our
decision-making components on-board the real UAV and began to
conduct real outdoor flights. Possible future research improvements
include: analyzing the impact of different initial belief states on the
optimized strategy; taking into account safety constraints imposed
by civil aeronautical agencies when optimizing the strategy; building
POMDP policies that are robust to imprecise observation models.

REFERENCES

[1] Haoyu Bai, David Hsu, Mykel Kochenderfer, and Wee Sun Lee,
‘Unmanned Aircraft Collision Avoidance using Continuous-State
POMDPs’, in Proceedings of Robotics: Science and Systems, Los An-
geles, CA, USA, (June 2011).

[2] Blai Bonet and Hctor Geffner, ‘Solving POMDPs: RTDP-bel vs. point-
based algorithms’, in Proceedings of the 21st international jont confer-
ence on Artifical intelligence, IJCAI’09, p. 16411646, San Francisco,
CA, USA, (2009). Morgan Kaufmann Publishers Inc.

[3] Salvatore Candido and Seth Hutchinson, ‘Minimum uncertainty robot
navigation using information-guided POMDP planning.’, in ICRA’11,
pp. 6102–6108, (2011).

[4] A.R. Cassandra, L.P. Kaelbling, and J.A. Kurien, ‘Acting under uncer-
tainty: Discrete Bayesian models for mobile-robot navigation’, in Pro-
ceedings of IEEE/RSJ, (1996).

[5] H. Kurniawati, D. Hsu, and W.S. Lee, ‘SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces’,
in Proc. RSS, (2008).

[6] M.L. Littman, A.R. Cassandra, and L. Pack Kaelbling, ‘Learning poli-
cies for partially observable environments: Scaling up’, in International
Conference on Machine Learning, pp. 362–370, (1995).

[7] Scott A. Miller, Zachary A. Harris, and Edwin K. P. Chong, ‘A POMDP
framework for coordinated guidance of autonomous UAVs for multitar-
get tracking’, EURASIP J. Adv. Signal Process, 2:1–2:17, (Jan. 2009).

[8] J. Pineau, G. Gordon, and S. Thrun, ‘Point-based value iteration: An
anytime algorithm for POMDPs’, in Proc. of IJCAI, (2003).

[9] S. Ross and B. Chaib-Draa, ‘AEMS: An anytime online search algo-
rithm for approximate policy refinement in large POMDPs’, in Pro-
ceedings of the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI-07), pp. 2592–2598, (2007).
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