
Partially Observable Markov Decision Process for
Closed-Loop Anesthesia Control

Eddy C. Borera 1 and Brett L. Moore and Larry D. Pyeatt

Abstract. Recently, researchers have favored computer-automated

drug delivery system to reduce the risks of intraoperative awareness

and postoperative morbidity, and their use is associated with a

number of favorable patient outcomes. For example, Proportional-

Integral-Derivative, maximum a posteriori (MAP) Bayesian ap-

proaches, fuzzy logic, and reinforcement learning, have been devel-

oped and applied successfully in simulated patients or volunteers.

Despite the successes, variations of errors in the observed data are

known to affect the performances of the controllers, especially when

a patient state estimation is required. To have a better controller, we

apply Partially Observable Markov Decision Process (POMDP) to

achieve better drug delivery policy, even when there is incomplete

information about patients’ current states during operations. In this

paper, a POMDP model for closed-loop anesthesia control is intro-

duced. Then, a state-of-the-art POMDP solver is used to compute a

good control policy, in other words, propofol rates to administer to a

patient, in efforts to reduce the risk of intraoperative awareness and

postoperative side effects in patients.

1 INTRODUCTION

Automated controllers have been applied in anesthesia control with

great successes, both in simulations and on volunteers. For instance,

Absalom et al. [1] have proposed and applied Proportional-Integral-

Derivative(PID) controllers successfully to patients undergoing gen-

eral anesthesia. Also, many other approaches have been applied

in computer-automated control systems; and these include: fuzzy

logic, stochastic control, dynamic programming, maximum a pos-

teriori (MAP) Bayesian techniques, etc. Recently, a reinforcement

learning (RL) controller has been successfully implemented and

tested on human volunteers [15].

Our work in closed-loop anesthesia control uses the bispectral

index of the electroencephalogram (EEG), or BIS (Aspect Medical

Systems, Newton, MA). Currently, BIS enjoys the greatest clinical

acceptance as a measure of hypnotic effect. BIS, measured as a single

value that lies in the range [0, 100], is a statistically derived indicator

of cortical activity [17]. BIS values near 100 are associated with

normal wakefulness; values near zero correlate to iso-electric brain

states.

1.1 Propofol-Induced Hypnosis

Propofol is a short-acting sedative agent administered intravenously

to achieve induction and maintenance of general anesthesia in the

operating room and other critical care arenas. Propofol suppresses

cortical brain function, yielding hypnosis, but offers no analgesic
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effect (pain relief). The anesthesia community has studied automated

delivery of propofol for two principal reasons. First, the short-acting

nature of the drug, characterized by rapid onset and recovery, permits

titration to desired effect. Second, indication of propofol effect may

be observed in the EEG [9].

2 Motivations for computer-automated controllers

Previously, propofol has been administered to patients manually.

In this case, anesthesiologists repetitively evaluate patient’s state

before injecting propofol to reach a desired set point value. Ac-

curacy of drug infusion is preferred to avoid underdosing and

overdosing patients, which may cause intraoperative awareness and

postoperative side effects respectively. Recently, researchers have

proposed computer-automated controller to assist anesthesiologists.

The ultimate goal is to have a good and accurate controller which is

tailored to any patient undergoing anesthesia control process.

Existing controllers are mostly developed for population-based

models, which make decisions based on results from the PK/PD

models of choices. Intra-variability in patients challenge these con-

trollers, and good performance is only guaranteed for ideal patients

that have the same characteristics of the patients used during the

PK/PD studies. Despite the limitations, automated-controller have

delivered successes both in simulations and clinical trials.

3 Challenges in anesthesia control

The anesthesia process is synonymous to modeling consciousness,

which is a very complex task. Absalom et al. [3] mentioned some

differences between anesthesia control and aviation control. For

example, in aviation control outputs, which consist of angle, velocity

and pitch, can be measured accurately. Also, the relationship between

inputs and outputs is predictable, well-defined, and linear [3]. How-

ever, this not the case in anesthesia control since the input-output

relationship is non-linear.

Currently, EEG is widely used to estimate patient’s brain activities,

which have been broadly accepted to be associated with patient’s

level of consciousness. BIS has been used as the de facto measure

of level of consciousness in anesthesia control field. This value is

computed from histories of EEG signals. The main challenge on

relying with BIS is that the EEG signals are known to exhibit some

noises, which complicate drug-effect estimations and the overall drug

infusion policy.

Absalom et al. [3] also mentioned the asymmetrical process in

drug administration because drugs infused to patients cannot be re-

moved. Also, PK/PD models are developed and tailored for patients

that share similar characteristics than the subjects used during their
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studies. Therefore, their accuracy is limited and vary according to

patient’s response to the drugs. In addition, unknown parameters may

affect drug delivery effects to patients.

Despite the development, variations, and successes of PK/PD

models in drug control, further studies are still needed to improve and

evaluate their performance in more challenging situations. Choice of

PK/PD models for any computer-automated controllers is still con-

troversial [3] since they offer different population-based parameters

that needed to be tailored for a specific patient undergoing general

anesthesia.

4 BACKGROUND

4.1 Pharmacokinetics

v1v2 v3

Infusion

q1 q2

Effect Site Metabolism

qe q1

Figure 1: Three-compartment pharmacokinetic model. The central,

slow, and rapid compartments are represented by their volumes v1,
v2, and v3 respectively.

A pharmacokinetic (PK) model describes the drug concentration

time course in a patient [19], which can be represented by a n-
compartment mammillary model. Multiple PK models have been

developed for different populations. One of the most widely used

models is the Schnider PK model, which is characterized by the

central, slow, rapid, and effect site compartments.

First, as illustrated in Figure 1, drug is infused into the central

compartment v1, which is effectively the volume of blood within the

patient’s circulatory system [15]. Then, some concentration gradients

govern the subsequent transport of the drug concentrations to the

slow compartment v2 and the rapid compartment v3, which represent
the less and highly perfused organs respectively. The effect-site

compartment models the delayed drug effects for the blood-brain

interaction [15]. For the rest of the paper, we use ve to denote the

volume of the effect site compartment, which is used to compute the

drug concentration of the compartment.

Given a propofol infusion I (μg/min), the drug concentrations in
all four compartments are represented by the following differential

equations:

δψ1

δdt
=

1

v1
[I − (q1 + q2 + q3)ψ1 + q2ψ2 + q3ψ3] (1)

δψ2

δdt
=

q2
v2

(ψ1 − ψ2) (2)

δψ3

δdt
=

q3
v3

(ψ1 − ψ3) (3)

δψe

δdt
=

qe
ve

(ψ1 − ψe), (4)

where vi (ml), qi (ml/min), and ψi (μg/ml) represent the vol-

ume, clearance, and drug concentrations of the ith compartment

respectively. Similarly for the effect-site compartment, these three

parameters are denoted by ve, qe, and ψe respectively.

In the Schnider model, the volume and clearance parameters were

studied and derived from 24 volunteers (11 females, 13 males; weight

range 44–123 kg; age range 25–81 year; height range 155–196 cm)

[2]. The Marsh PK model [14] is also well-known in the literature. It

is characterized by 3-compartment mammillary model, where its pa-

rameters were derived from children. More PK models are presented

in [21, 12]. The superiority of a specific model is still debatable.

However, some researchers favor the Schnider model over the Marsh

Model as it takes patients’ ages into consideration to compute for the

parameters. Also, it targets the effect-site compartment in contrasts

to the Marsh model, which target plasma compartments [2].

4.2 Pharmacodynamics

A pharmacodynamic (PD) model is used to determine the effects

of drugs on a patient. It characterizes the relationship between

drug concentrations and their effects to a subject. Researchers have

discovered that they are non-linear and challenging to model. As in

pharmacokinetic, a pharmacodynamic model is usually developed

from a set of ideal patients which may consist of female, male, chil-

dren, elderly, etc. Then, the resulting model parameters are applied

to estimate the effects of drug concentrations in a random patient.

Pharmacodynamics are modeled using the effect site compartment as

shown in Figure 1 combined with a non-linear function that defines

relations between the effect site concentration and drug effect in

human brains [11]

Various PD models have been used in drug infusion control to

estimate drug effects on patients’ brains. In this study, we use the

Doufas’ PD model [8], which is a 3-layer artificial neural network

that was trained on healthy patients to compute for the appropriate

network layer connection weights. This artificial neural network

model approximates the non-linear function that characterizes the re-

lationship between drug concentrations and their effects on patients.

The collective application of a PK and a PDmodel (PK/PD) allows

us to estimate a general, population-based BIS response to propofol

infusion. In this case, the PK model estimates drug concentration in

different compartments. Then, the associated PD model calculates

the estimated drug-concentration effects in the effect site.

5 RELATED WORK

One of the main reasons to consider POMDP in this application is

that a BIS value observed from a patient is known to exhibits some

noise [24]. Therefore, it is not surprising that determining the exact

patients’ states throughout a surgical operation is a daunting task for

any controllers — humans or computers. The best they can do, in

such case, is to apply a reliable filtering technique to minimize error

variances. Despite their successes in other applications, they have

limitations. Previously, a Kalman filter was introduced as a filtering

technique in propofol hypnosis control [19]. It is a well known state

estimation method, but the noise models are assumed to be well

defined; otherwise, error variances can affect the filtering, smoothing,

or predicting processes. These errors, however, are patient-specific

since patients’ responses to propofol rely on various factors (known

and unknown). Many other filtering approaches have since been

proposed: exponential, adaptive neural network [10, 5], Bayesian

filtering techniques [6, 7], etc.
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To deal with these problems, a POMDP model, which does not

use any filtering techniques, is introduced. POMDP is a framework

for planning in partially observable environments, where observed

data exhibit some uncertainties. Therefore, the proposed POMDP

controller does not require a filtering process, which are necessary

in other computer-automated controllers. In contrast, this new con-

troller computes a control policy using the noisy measurements.

5.1 Previous Stochastic Controllers

Our work follows from previous approaches by Hu et al. [11], where

they proposed a 3-compartment stochastic PK/PD control model.

They introduce this new approach to improve previous controllers

that separate state estimation and the control process , where they

tend to ignore variability when computing for policy [11]. To avoid

the assumption that patient’s state is known with certainty, Hu et

al. suggested a more robust technique that consider uncertainties

in patient’s PK/PD parameters. The patient’s state was represented

as s = (m1, · · · ,mk). Due to the curse of dimensionality that

plague stochastic controllers, they performed a 3-point discretization

on each parameter of interest in s. For example, for i ∈ [1, k] and
a deviation σ, mi can be discretized into mi, mi − σ, or mi + σ,
which reduces the number of all possible states to 3k. This process
makes value function computations feasible.

Our approach avoids this discretization problem by sampling

important sates from a closed-form of the state space. We use a

Monte Carlo method to approximate state value functions, and only

important states that can be visited during simulations are consid-

ered. Also, we chose the POMCP planner by Silver [22] because it

does not require a full computation of the belief update, which is

computationally expensive for a problem with very large number of

states as the one we are trying to solve. Instead, it estimates b(s)
using particle filters. Also, it has been claimed to be able to solve

problems up to 1056 number of states [22]. More information about

POMCP can be seen in [22].

6 TECHNIQUES

6.1 Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) is a

framework that models interactions between an agent and a stochas-

tic partially observable environment [23]. It can be denoted as a tuple

(S,A,Z, T ,O,R, γ, ), where S , A, and Z represent the set of all

possible states, actions, and observations respectively. At every time

step, the agent resides in a state s ∈ S, which is partially observable,
and performs an action a ∈ A to receive an expected reward

r(b, a) =
∑

sR(s, a)b(s), where b is a probability distribution

over the set of states. The agent, then, moves to a state s′, where s′

can be the same as the previous state s. The transitional probability
T (s′, s, a) = Pr(s′ | s, a) determines the results of a stochastic

action a in state s. Finally, upon reaching a new state, the agent

perceives an observation z ∈ Z , where O(z, s′, a) = Pr(z | s′, a)
is the probability of observing z in the state s′ after taking action a
in state s. Given the agent’s incomplete information about its current

state, it maintains a belief : a probability distribution over all states.

Suppose the agent’s current belief state is denoted by b(s), where
s ∈ S. Then, after taking an action a and receiving an observation z,

the agent’s new belief to be in state s′ can be computed as follows:

b′(s′) = τ(b, a, z)(s)

= ηO(z, s′, a)
∑
s∈S

T (s′, s, a)b(s)

= ηPr(z|s′, a)
∑
s∈S

Pr(s′|s, a)b(s), (5)

where η is the normalizing factor. Due to the curse of dimensionality,

computing and updating the agent’s belief is only feasible for

problems with very small number of states, and this process is

known to be O(|Z||S|2). Other factors that can affect algorithms’

performance include: problem description, data structure, etc. To

have better performances, some solvers use factored belief state,

action, or observation representations to approximate the value of

the agent’s belief. In POMDP, history represents the sequence of

actions performed and observations received overtime. For example,

a history ht = (aozo, a1z1, ..., atzt) list in details the action and

observation pairs taken and perceived respectively up to time step t.

6.2 Online Planner

ba1z1 banzn banz1 banzn

b

a1 an

zmz1 z1 zm

rba1
rban

Figure 2: This figure illustrates an AND-OR tree, where beliefs are

represented as OR-nodes and actions as AND-nodes. From b, the
agent chooses one action, a1 for example, and receives a reward rba1

. Then from a1, it considers all possible observations zk, where 1 ≤
k ≤ |Z|, which give new sets of possible belief states ba1

zk .

Compared to offline techniques, online algorithms combine both

planning and policy execution at each time step. First, the agent

determines its current belief bt, which is updated from bt−1. Then,

it computes a local policy by performing value iterations, policy

iterations, or simulation based techniques to determine the optimal

or near optimal action to execute in bt. Some online approaches

construct AND-OR trees where, as illustrated in Figure 2, the AND

and OR nodes are represented by the agents’ actions and belief

states respectively. In Figure 2, the agent’s current belief bt serves

as the root node of the tree, and the outgoing edges represent the

choices it can make by performing any possible actions. Then, the

actions would lead the agent to consider all possible observations,

as they will yield a new set of reachable belief states. In this case,

V (b), the value of a belief state b, is computed while traversing and

constructing the tree. In some cases, this value is denoted differently

as V (τ(bt, a, z)), which basically means a value of new belief bt+1

after taking action a and observing z i.e. bt+1 = τ(bt, a, z).
Let Q(b, a) represents the value of taking an action a in some

belief state b; therefore, the value of b can be computed as follows:

V (b) = max
a

Q(b, a) (6)
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where

Q(b, a) = r(b, a) + γPr(z|b, a)V (τ(b, a, z)) (7)

These techniques mainly differ on how to expand the search tree.

Monte Carlo Rollout methods, for example, perform a certain num-

ber of simulations, then average the returned rewards in order to

approximate the Q-action values. The value of the current belief

state is nothing but the maximum average returned value by the

simulations. Throughout the simulation, the agent can choose the

action to be executed at every belief node randomly or according

to a predefined policy π. Similarly, the observations are sampled

according to the observation probability distribution Pr(z|s′, a). In
this case, the value of the current belief state b is estimated as follows:

Ṽ (b) =
1

K

K∑
i=1

R(Simi) (8)

, whereR(Simi) is the reward returned by the i
th simulation andK

is the total number of simulations. The accuracy of Ṽ (b), of course,
depends on the number of simulations and the method of choosing

the actions during the exploration. Also, using an offline policy, in

this case, can also improve the policy quality, especially if applied

with enough number of simulations.

Other methods that maintain lower and upper bounds values in

order to prune non-optimal actions are discussed in [18, 4].

6.3 Partially Observable Monte Carlo Planning

A partially observable Monte Carlo Planning (POMCP) is based on

a partially observable version of UCT (PO-UCT), which is known as

an Upper Confidence Bound technique for the Bandit problems, and

it uses AND-OR trees [13] (Figure 2) to approximate value functions.

It constructs a Monte Carlo Tree search, where histories instead of

belief states are used to represent nodes. Similar to UCT in fully

observable Markov processes, the value of a history node V (h) is

defined by the number of times it was visited during the simulations

N(h). PO-UCT also uses the UCB method:

â = argmax
a

V (ha) + c

√
logN(h)

N(ha)
(9)

to select the actions to take while traversing a tree and uses a rollout

policy when outside the tree [16]. As mentioned earlier, updating a

belief can be a burden for both offline and online solvers. Instead

of computing τ(b, a, z), POMCP [22] approximate this value by

maintaining unweighted particle filters during simulations. More

information on UCT and POMCP are presented in [13, 22].

6.4 POMDP Model

We utilize the Schnider pharmacokinetic (PK) model [20] to describe

the time-dependent distribution of propofol within the surgical pa-

tient. It is a multi-compartment distribution model that permits the

estimation of propofol concentration in various regions of the patient.

The model provides an effect site compartment to model the point of

propofol’s action on the central nervous system. By estimating the

concentration of propofol at this site of influence, the hypnotic effect

can also be estimated.

To estimate the hypnotic effect of propofol concentrations, we

utilized the Doufas pharmacodynamic (PD) model [8]. Propofol’s

dose response curve is non-linear and sigmoid-like; to smoothly

approximate this curve, we trained a three-layer feed-forward neural

network using the observations of [8].

In this study, at every episode, the agent tries to achieve a certain

BIS value, which we will refer for the rest of the paper as the BIS

target (BIStarget). Throughout the process, multiple targets might be

set at different time intervals. In general, these values range from

40 to 60, where the former is set for a patient to undergo a deeper

hypnotic state, and the later for lighter purpose anesthesia [15]. In

this case, lower targets would require more amount of propofol while

higher targets require less. As mention earlier, it is very challenging

to determine the exact amounts of propofol to be administered to a

patient in order to achieve these targets. In this section, we present

a POMDP model that aims to tackle this control problem by taking

advantages of the underlying probabilistic model of the anesthesia

control.

6.4.1 States

In this problem, a state is represented as of a 7-dimensional feature

vector s = (v1, v2, v3, q1, q2, q3, qe), where the parameters are

taken from Equations 1 — 4. We are not considering ve as a state

parameter because, it can be computed from v1 as ve = v1/10000.
In their work [11], Hu et al. included two more parameters in their

feature vector. We only consider 7 parameters because we utilize

the Doufas PD model [8], which estimates propofol effects with a

trained neural network. These state parameters vi and qi represent
the volume and the clearance of the ith compartment respectively,

so the resulting state space is continuous. Hence, the total number

of states are infinite. Previous techniques that share similarities to

ours tackled this problem using discretization techniques. In our

approach, POMCP samples for states during transitions; therefore,

it only considers important states that were visited when building the

OR-tree to approximate the value functions. It is worth to mention

that POMCP only computes value functions for sampled histories

rather than all possible states.

6.4.2 Actions

The decision maker can choose from the following propofol rates:

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

4.0 5.0 6.0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

in (ml/min).
Also, when an action is chosen, it is applied without interruption

for a predefined time duration, which range from 15 to 45 seconds.

Usually, lower propofol rates are applied longer since they have

smaller effects to patients. On the other hands, higher rates should be

applied cautiously as the drug effects vary from patients to patients.

As in any Markov model, the agent transitions to a new state s′,
which is sampled from T (s, a, s′) after performing action a in state

s. This transition is stochastic, and the agent does not fully know in

which of all the possible states it is currently in. To learn better about

the current state it requests an observation from the controller.
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6.4.3 Observations

After performing an action at, the agent receives a BIS value

measured from the patient. As a BISmeasured alone does not suffice in

determining if a target has been reached; therefore, both BISmeasured

and BIStarget at every episode are used. Each observation is an error

that represents a distance to the BIStarget. A positive BISerror means

that the observed value is above the target, and a negative indication

represents a lower value than a current assigned BIStarget. Since a BIS

value is bounded in [0, 100], the maximum number of observations

possible in this model is 201, and they are determined as follows:

Z = {−100,−99, · · · , 0, · · ·+ 99,+100}

It is known that the number of observations affect the perfor-

mance of a POMDP solver. For many years, researchers have tried

to alleviate this sort of problem by factorizing observations that

share some similarities. Observation factorization can yield good

results for some problems, especially the ones that exhibit similar

characteristics.

Also, as stated earlier, only certain ranges of BIS are targeted for

general anesthesia. These values range from 40 to 60. Therefore, the
number of observations can be reduced further. For example, given

thatBIStarget ∈ [40, 60], possible observations range from 40 below
target to 60 above target. The observation set can be reduced further

to:

Ẑ = {−40,−39, · · · , 0, · · ·+ 59,+60}

6.4.4 Rewards

In this model, the reward function is set to minimize a control error

by maximizing the following equation:

r = 100− | BIStarget − BISmeasured |

6.4.5 Solving the Partially Observable Markov Decision
Process model

The POMDP model is solved using the POMCP solver in [22]. At

every decision step, it runs simulations for the anesthesia control

process to build and update a history tree. The agent runs simulations

on PK/PD models to test multiple actions and record observation

after each action. The total number of visits to an observation during

simulations define the quality of action that would likely lead to the

observation. In POMCP, each node in the tree represent a history

h, and it records number of visits N(h) throughout all simulations

and estimated value V (h) of a history h. This a combination of

a Monte Carlo method and Upper Confidence Tree methods on

histories rather than states. This is basically the idea behind the

POMCP method. More information can be seen in [22].

The POMCP solver uses particle filters to approximate the value

of the new belief state b′. In this case, the solver generate a set of

unweighted state particles to represent the current belief state. To

update the belief state after taking an action a in state s, simulations

are run to sample for possible next state particles s′ i.e. s′ ∼ G(s, a),
where G is a transition model that is defined by the pharmacokinetic

model (1–4).

To solve the POMDPmodel, action values are approximated based

on how many times they were suggested by the simulations during

trials. During simulations, POMCP updates information values of all

node visited until the process terminates. For example, suppose the

previous history is ht−1, and the simulation suggests to apply at of

propofol. After some updates, the simulation proposes an observation

ztt. In this case, the number of visits to node ht = (ht−1, at, zt) is
incremented.

At each decision step, the agent computes propofol rates to apply

by searching the tree according to the most recent histories. At this

point, the agent only chooses the action that has highest value by

applying the following equation:

â = argmax
a

V (ha) + c

√
logN(h)

N(ha)
, (10)

which is know as the Upper Confidence Based (UCB) policy for the

multi-armed bandit problem [13]. In Eq. 10, N(h) represents the

total number of visits to a history node h, V (ha) is the value of

taking action a from node h, and c is UCB parameters that weight

confidence to future actions.

7 Experiments

Table 1: Demographics of Simulated patients

Range

Age [18 , 45] yrs

Weight [45 , 90] kg

Height [150 , 190] cm

To test the efficiency of these POMDP controllers, we run simu-

lations on 1000 simulated intraoperative patients, which are chosen

randomly. The overall demographics data about the patients are

shown in Table 1. As before, parameters for these simulated patients

were designed to closely follow real world scenarios of patients

undergoing general anesthesia. During the experiments, patient’s

profiles were represented as combination of patient’s age, height,

gender, weight, and random noises to challenge the controller. The

Schnider’s pharmacokinetic [20] was used to estimate propofol con-

centrations in all compartments. The Doufas’ pharmacodynamic [8]

was utilized to estimate propofol effects. The effects were measured

as BIS values given the current estimate of propofol concentrations

in patient’s body compartments and their non-linear effects to the

patient.

For each patient, a study lasts at most about 250 minutes, where

the controller is assigned to achieve randomly chosen 1, 2, or 3

anesthesia depth targets. The agent estimates a patient’s state, then

apply the action that would give the highest long-term rewards.

In this case, it will try to reduce the errors as much as possible

throughout the study. Results from the new POMDP controller are

compared against the performance from a reinforcement learning

controller that uses an adaptive neural network filter (RL-ANNF) [5].

The POMDP model is solved online with a future reward discount

γ = 0.69 that we chose after running multiple trials.

7.1 Results

As shown in Table 2, the new POMDP controller delivered im-

proved control performance in most steady state control metrics.

The MDAPE and Woble were reduced from 3.15% to 0.13%. The

controlled metric, which indicates the percentage of BISmeasured to be

within±5BIS, was improved from 93.49% to 99.69%. These results

show that the new POMDP controller produces good control quality.
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Table 2: Simulated steady-state performance metrics.

POMDP RL-ANNF

MDPE‡ −0.04 −0.124
MDAPE‡ 0.13 3.15

Wobble‡ 0.13 3.15

Divergence� 0.000 0.001

Controlled ‡ 99.69 93.49

Tpeak
† 2.0 3.45

Tss
† 3.25 7.5

RMSE § 0.14 0.43

†(min), ‡(%), �(%/hr), §(BIS)

The RSME metric was reduced from 4.1 BIS to 0.14 BIS. These

moderate control quality improvements highlight the efficiency of a

POMDP model when applied to anesthesia hypnosis control. Errors

were reduced because the POMDP controller relies on probabilistic

values rather than modes, which is the case in current controller that

utilizes patient state filter.

8 CONCLUSION

In this paper, a POMDP population-based controller is introduced

to tackle observation uncertainties in patient’s PK/PD parameters.

The control model uses a 7-dimension state vector, and it considers

deviations from a control target as observations. It is solved with the

POMCP solver by Silver et al., which has been claimed to be able

to solve problems up to 1056 number of states [22]. We tested this

new approach on randomly selected simulated patients and compared

results to a controller that assumes fully observability.

8.1 Discussion

The proposed model in this paper is based on the PK/PD models,

which are population-based models. Therefore, the efficiency of

the new controller depends on the variability of the population

parameters. Also, various factors affect the response of propofol on a

patient. For example, height, weight, gender, ethnicity, and patient’s

health are known to challenge good control.

To improve the new controller, we suggest to develop a POMDP

model that relies on drug effects measurements i.e. BISmeasured.

In this case, the model will be able to adapt to broader patients.

However, the lack of robust state transition and observation models

complicate the application of more patient-specific POMDP model.

We anticipate that these challenges can be resolved with further

study.
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M. Morari, ‘On-line estimation of propofol pharmacodynamic parame-
ters’, in IEEE Engineering in Medicine and Biology Society, Shanghai,
China, (Sept. 2005).

[20] T Schnider, C F Minto, P L Gambus, C Andresen, D B Goodale, S L
Shafer, and E J Youngs, ‘The influence of method of administration
and covariates on the pharmacokinetics of propofol in adult volunteers’,
Anesthesiology, 88(5), 1170–1182, (May 1998).
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