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Abstract. UCT, a state-of-the art algorithm for Monte Carlo tree
search (MCTS) in games and Markov decision processes, is based
on UCB1, a sampling policy for the Multi-armed Bandit problem
(MAB) that minimizes the cumulative regret. However, search dif-
fers from MAB in that in MCTS it is usually only the final “arm
pull” (the actual move selection) that collects a reward, rather than
all “arm pulls”. In this paper, an MCTS sampling policy based on
Value of Information (VOI) estimates of rollouts is suggested. Em-
pirical evaluation of the policy and comparison to UCB1 and UCT is
performed on random MAB instances as well as on Computer Go.

1 Introduction

MCTS, and especially UCT [9] appears in numerous search appli-
cations, such as [4]. Although these methods are shown to be suc-
cessful empirically, most authors appear to be using UCT “because it
has been shown to be successful in the past”, and “because it does a
good job of trading off exploration and exploitation”. While the lat-
ter statement may be correct for the Multi-armed Bandit problem and
for the UCB1 algorithm [1], we argue that a simple reconsideration
from basic principles can result in schemes that outperform UCT.

The core issue is that in MCTS for adversarial search and search in
“games against nature” the goal is typically to find the best first action
of a good (or even optimal) policy, which is closer to minimizing the
simple regret, rather than the cumulative regret minimized by UCB1.
However, the simple and the cumulative regret cannot be minimized
simultaneously; moreover, [3] shows that in many cases the smaller
the cumulative regret, the greater the simple regret.

We begin with background definitions and related work. VOI es-
timates for arm pulls in MAB are presented, and a VOI-aware sam-
pling policy is suggested, both for the simple regret in MAB and for
MCTS. Finally, the performance of the proposed sampling policy is
evaluated on sets of Bernoulli arms and on Computer GO, showing
the improved performance.

2 Background and Related Work

Monte-Carlo tree search was initially suggested as a scheme for
finding approximately optimal policies for Markov Decision Pro-
cesses (MDP). MCTS explores an MDP by performing rollouts—
trajectories from the current state to a state in which a termination
condition is satisfied (either the goal or a cutoff state).

Taking a sequence of samples in order to minimize the regret of a
decision based on the samples is captured by the Multi-armed Ban-
dit problem (MAB) [11]. In MAB, we have a set of K arms. Each
arm can be pulled multiple times. When the ith arm is pulled, a
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random reward Xi from an unknown stationary distribution is en-
countered. In the cumulative setting, all encountered rewards are col-
lected. UCB1 [1] was shown to be near-optimal in this respect. UCT,
an extension of UCB1 to MCTS is described in [9], and shown to
outperform many state of the art search algorithms in both MDP and
adversarial search [5, 4]. In the simple regret setting, the agent gets
to collect only the reward of the last pull.

Definition 1. The simple regret of a sampling policy for MAB is
the expected difference between the best expected reward μ∗ and the
expected reward μj of the empirically best arm Xj = maxi Xi:

Er =

K∑

j=1

Δj Pr(Xj = max
i

Xi) (1)

where Δj = μ∗ − μj .

Strategies that minimize the simple regret are called pure explo-
ration strategies [3].

A different scheme for control of sampling can use the princi-
ples of bounded rationality [8] and rational metareasoning [10, 6]. In
search, one maintains a current best action α, and finds the expected
gain from finding another action β to be better than the current best.

3 Upper Bounds on Value of Information

The intrinsic VOI Λi of pulling an arm is the expected decrease in the
regret compared to selecting the best arm without pulling any arm at
all. Two cases are possible:

• the arm α with the highest sample mean Xα is pulled, and Xα

becomes lower than Xβ of the second-best arm β;
• another arm i is pulled, and Xi becomes higher than Xα.

The myopic VOI estimate is of limited applicability to Monte-Carlo
sampling, since the effect of a single sample is small, and the myopic
VOI estimate will often be zero. However, for the common case of a
fixed budget of samples per node, Λi can be estimated as the intrinsic
VOI Λb

i of pulling the ith arm for the rest of the budget. Let us denote
the current number of samples of the ith arm by ni, and the remaining
number of samples by N :

Theorem 1. Λb
i is bounded from above as

Λb
α ≤ NXβ

N+nα
Pr(X

′
α ≤ Xβ) ≤ NXβ

nα
Pr(X

′
α ≤ Xβ) (2)

Λb
i|i �=α ≤ N(1−Xα)

N+ni
Pr(X

′
i ≥ Xα) ≤ N(1−Xα)

ni
Pr(X

′
i ≥ Xα)

where X
′
i is the sample mean of the ith arm after ni +N samples.

The probabilities can be bounded from above using the Hoeffding
inequality [7]:
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Theorem 2. The probabilities in equations (2) are bounded from
above as

Pr(X
′
α ≤ Xβ) ≤ 2 exp

(−ϕ(nα)(Xα −Xβ)
2nα

)

Pr(X
′
i|i �=α ≥ Xβ) ≤ 2 exp

(−ϕ(ni)(Xα −Xi)
2ni

)
(3)

where ϕ(n) = 2( 1+n/N

1+
√

n/N
)2 > 1.37.

Corollary 1. An upper bound on the VOI estimate Λb
i is obtained by

substituting (3) into (2).

Λb
α ≤ Λ̂b

α =
2NXβ

nα
exp

(−1.37(Xα −Xβ)
2nα

)

Λb
i|i �=α ≤ Λ̂b

i =
2N(1−Xα)

ni
exp

(−1.37(Xα −Xi)
2ni

)
(4)

4 VOI-based Sample Allocation

Following the principles of rational metareasoning, for pure explo-
ration in Multi-armed Bandits an arm with the highest VOI should
be pulled at each step. The upper bounds established in Corollary 1
can be used as VOI estimates. In MCTS, pure exploration takes place
at the first step of a rollout, where an action with the highest util-
ity must be chosen. MCTS differs from pure exploration in Multi-
armed Bandits in that the distributions of the rewards are not sta-
tionary. However, VOI estimates computed as for stationary distribu-
tions work well in practice. As illustrated by the empirical evaluation
(Section 5), estimates based on upper bounds on the VOI result in a
rational sampling policy exceeding the performance of some state-
of-the-art heuristic algorithms.

5 Empirical Evaluation

5.1 Selecting The Best Arm
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Figure 1. Random instances: regret vs. number of samples

The sampling policies are first compared on random Multi-armed
bandit problem instances. Figure 1 shows results for randomly-
generated Multi-armed bandits with 32 Bernoulli arms, with the
mean rewards of the arms distributed uniformly in the range [0, 1],
for a range of sample budgets 32..1024, with multiplicative step of 2.
The experiment for each number of samples was repeated 10000
times. UCB1 is always considerably worse than the VOI-aware sam-
pling policy.

5.2 Playing Go Against UCT

The policies were also compared on Computer Go, a search domain
in which UCT-based MCTS has been particularly successful [5]. A
modified version of Pachi [2], a state of the art Go program, was
used for the experiments. The UCT engine was extended with a VOI-
aware sampling policy, and a time allocation mode ensuring that both

the original UCT policy and the VOI-aware policy use the same aver-
age number of samples per node was added. (While the UCT engine
is not the most powerful engine of Pachi, it is still a strong player; on
the other hand, additional features of more advanced engines would
obstruct the MCTS phenomena which are the subject of the experi-
ment.) The engines were compared on the 9x9 board, for 5000, 7000,
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Figure 2. Go: winning rate — VOI against UCT

10000, and 15000 samples per ply, each experiment was repeated
1000 times. Figure 2 shows the winning rate of VOI against UCT vs.
the number of samples. For most numbers of samples per node, VOI
outperforms UCT.

6 Summary and Future Work

This work suggested a Monte-Carlo sampling policy in which sam-
ple selection is based on upper bounds on the value of information.
Empirical evaluation showed that this policy outperforms heuristic
algorithms for pure exploration in MAB, as well as for MCTS.

MCTS still remains a largely unexplored field of application of
VOI-aware algorithms. More elaborate VOI estimates, taking into
consideration re-use of samples in future search states should be con-
sidered. The policy introduced in the paper differs from the UCT
algorithm only at the first step, where the VOI-aware decisions are
made. Consistent application of principles of rational metareasoning
at all steps of a rollout may further improve the sampling.
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