
An Alternative Eager Encoding of
the All-Different Constraint over Bit-Vectors

Pavel Surynek 1,2

Abstract.1A novel eager encoding of the ALLDIFFERENT constraint
over bit-vectors is presented in this short paper. It is based on
1-to-1 mapping of the input bit-vectors to a linearly ordered set of
auxiliary bit-vectors. Experiments with four SAT solvers showed
that the new encoding can be solved order of magnitudes faster
than the standard encoding in a hard unsatisfiable case.

1 INTRODUCTION AND MOTIVATION
Models of many real-life problems require a subset of modeling
variables to be pair-wise distinct. This requirement is known as an
ALLDIFFERENT constraint [5] in the constraint programming con-
text. As the SAT solving technology [1], [3], [6] is becoming a tool
of choice in many practical applications, efficient manipulation
with the ALLDIFFERENT constraint in SAT solvers is of interest.
Unlike other works on translating the ALLDIFFERENT constraint
into SAT that use direct encoding of variable’s domains [4], we
study how to encode the constraint over the set of bit-vectors which
essentially use binary encoding. We present a new eager encoding
that maps the given set of bit-vectors to a linearly ordered set of
auxiliary bit-vectors. We show that the new encoding is more
efficient for hard unsatisfiable cases of the constraint on which
SAT solvers struggle with the existent encoding for bit-vectors [2].

2 BACKGROUND – STANDARD MODEL
Suppose to have a set of bit-vectors each of length
. Bit-vectors are interpreted as non-negative integers. The

ALLDIFFERENT constraint over - denoted as
ALLDIFFERENT() - requires that numbers represent-
ed by the bit-vectors are all distinct. The standard encoding [2]
basically follows the scheme where pair-wise differences are en-
coded:

Trivially it is possible to encode the individual inequalities as
follows. Let the -th bit of the -th bit-vector with
and be denoted as .

� �

1 Charles University in Prague, Malostranské náměstí 2/25, 118 00 Praha,

Czech Republic, email: pavel.surynek@mff.cuni.cz
2 Kobe University, 5-1-1 Fukae-minamimachi, Higashinada-ku,

Kobe 658-0022, Japan.

This work is supported by the Japan Society for the Promotion of Science (contract no.
P11743) and by the Czech Science Foundation (contract no. GAP103/10/1287).

However, if unfolded into the CNF representation though the
distributive rule it results into too many clauses which is impracti-
cal. Therefore encoding using auxiliary propositional variables is
used. It follows the standard technique of Tseitin’s hierarchical
encoding. A fresh propositional variable is introduced for each
inequality between individual bits of the involved bit-vectors. That
is, there is a new variable for every with
and . The auxiliary variable indicates if the corre-
sponding bits in the inequality between bit-vectors differ or not.
Thus, the following clauses are included to express this interpreta-
tion:

� � � �

Bit-vectors and differ if they differ in at least one posi-
tion; that is, following clauses should be included: . Notice
that auxiliary variables are linked to the original bits only in one
direction. If is set to then and are forced to differ.
However, if is then and are left unconstrained.

Proposition 1 (STANDARD ENCODING SIZE). The standard encod-
ing of the ALLDIFFERENT constraint requires propositonal
variables to represent the bit-vectors and auxiliary propo-
sitional variables; that is, variables altogether. The num-
ber of clauses is ; that is, . ■

Figure 1. Illustration of the standard and the bijection ALLDIFFERENT
encodings. In the bijection encoding, a 1-to-1 mapping of the bit-vectors is
found first. Then the values of bit-vectors are forced to be linearly ordered
according to their position in the mapping.

3 ALTERNATIVE BIJECTION ENCODING
We observed that a SAT solver struggles over the standard encod-
ing especially in the unsatisfiable case according to our preliminary
experiments. Therefore we developed an alternative encoding that
is more suitable for this case. It maps the original bit-vectors to a
linearly ordered set of auxiliary bit-vectors. First, a 1-to-1 mapping
(bijection) between sets of bit-vectors needs to be modeled to
enable this encoding style (see Figure 1 for illustration).

Standard Bijection

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-927

927

mailto:pavel.surynek@mff.cuni.cz

Let the new linearly ordered bit-vectors be denoted as
. Additionally bit-vectors and

 of size are introduced to model the bijection. The bit-
vector indicates what with the original
will be mapped to. Bit-vectors are used to enforce that at most
one original bit-vector is mapped to a single ordered bit-vector.
The following integer constraints are to establish the bijection:

It is crucial, that domains of bit-vectors and consists of
exactly values to ensure that the bijection is modeled correctly
(extra values are forbidden). The individual integer implication is
encoded with a single auxiliary propositional variable as fol-
lows:

Finally there are integer constraints enforcing the ordering:

The individual inequality is encoded as a strict lexicographic
ordering over the two bit-vectors. Now, fresh propositional varia-
bles with are introduced to indicate the first bit
where is less than . The ordering itself then just means
that there exists such a first bit where bit-vectors differ: .

� � � �

� � �

Proposition 2 (BIJECTION ENCODING SIZE). The bijection encoding
requires propositional variables to represent the bit-vectors,

 variables to represent the bijection, and
auxiliary propositional variables; that is proposi-
tional variables altogether.

The number of clauses is ;
that is, . ■

Table 1. Comparison of sizes of the standard and the bijection encoding.
#bit-vectors

(16-bits)
Standard Bijection

#Variables #Clauses #Variables #Clauses
64 67584 133056 9968 176943

128 266240 536448 28400 690031
256 1056768 2154240 90096 2756591

4 EXPERIMENTAL EVALUATION
As shown in Table 1, the bijection encoding has fewer variables
while the number of clauses is slightly higher than in the standard
encoding. Nevertheless, we also need runtime comparison. A setup
where a transition-phase behavior was observed is presented. We
used 32 bit-vectors consisting of 6 bits. Additionally, there was a
lower bound and an upper bound per each bit-vector. If ,

 is a given domain size, then the lower bound and the
upper bound for the bit-vector were generated random-
ly as follows: was selected uniformly from and
was set to . Thus, is enforced for each .
Finally, a single ALLDIFFERENT over 32 bit-vectors was added.

Three SAT solvers were used in the evaluation: MINISAT [3],

GLUCOSE [1], and CRYPTOMINISAT [6]. The runtime was measured
for different domain sizes ranging from to - Figure 2. For
small unsatisfiability could be checked easily; for large the
same could be done for satisfiability. The most interesting behavior
occurred around which represent difficult cases.

None of the tested SAT solvers was able to solve all the instanc-
es over the standard encoding in the time limit of 1 hour (wall
clock limit per instance). The best performing over the standard
encoding was GLUCOSE which solved 29 instances out of 33 and
was also the fastest. Over the bijection encoding, MINISAT and
CRYPTOMINISAT solved all the instances and very importantly the
runtime of CRYPTOMINISAT was always below 2 seconds. GLU-
COSE also performed relatively well compared to the standard
encoding with 30 solved instances.

Generally, the standard encoding can be solved faster in the sat-
isfiable case. However, the bijection encoding is significantly
better in the hard unsatisfiable case. This is because it can be
checked more easily for this encoding if there are enough values in
domains of bit-vectors to establish the required pair-wise differ-
ence (at least by some SAT solvers). A single linearly ordered set
of bit-vectors is matched into the domains while in case of the
standard encoding all the orderings (permutations) of the original
bit-vectors may be checked.

Figure 2. Instances are sorted according to the increasing runtime.

5 CONCLUSION
A new encoding for the ALLDIFFERENT constraint over bit-vectors
based on 1-to-1 mapping has been proposed. It has fewer variables
and it is more efficient in difficult unsatisfiable cases than the
existent encoding [2] that uses pair-wise differences. In the future
work, it would be also interesting to investigate how the presented
eager encodings performs with respect to the strong ALLDIFFERENT
propagators [5] integrated with the solver lazily via the SMT
framework and also how it performs in applications.

REFERENCES
[1] G. Audemard, L. Simon, ‘Predicting Learnt Clauses Quality in

Modern SAT Solver’, Proceedings of IJCAI 2009, (2009).
[2] A. Biere, R. Brummayer, ‘Consistency Checking of All Different

Constraints over Bit-Vectors within a SAT Solver’, Proceedings of
FMCAD 2008, 1-4, (2008).

[3] N. Eén, N. Sörensson, ‘An Extensible SAT-solver’, Proceedings of
SAT 2003, 502-518, (2003).

[4] P. Nightingale, I. Gent, ‘A New Encoding of AllDifferent into SAT’,
CP 2004 Workshop on Modelling and Reformulating CSPs, (2004).

[5] J.-C. Régin, ‘A Filtering Algorithm for Constraints of Difference in
CSPs’, Proceedings of AAAI 1994, 362-367, (1994).

[6] M. Soos, K. Nohl, C. Castelluccia, ‘Extending SAT Solvers to Cryp-
tographic Problems’, Proceedings of SAT 2009, 244-257, (2009).

0.001

0.01

0.1

1

10

100

1000

10000

1 5 9 13 17 21 25 29 33

Ru
nt

im
e

(s
ec

on
ds

)
Runtime over ALLDIFFERENT Encodings Crypto(BJT)

Crypto(STD)
Minisat(BJT)
Glucose(BJT)
Glucose(STD)
Minisat(STD)

�

where
 �

 � � � �

�

Instances

Hard SAT/UNSAT

Easy SAT/UNSAT

Very Hard UNSAT

Very Easy SAT

P. Surynek / An Alternative Eager Encoding of the All-Different Constraint over Bit-Vectors928

