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Abstract.1A novel eager encoding of the ALLDIFFERENT constraint 
over bit-vectors is presented in this short paper. It is based on 
1-to-1 mapping of the input bit-vectors to a linearly ordered set of 
auxiliary bit-vectors. Experiments with four SAT solvers showed 
that the new encoding can be solved order of magnitudes faster 
than the standard encoding in a hard unsatisfiable case. 

1 INTRODUCTION AND MOTIVATION 
Models of many real-life problems require a subset of modeling 
variables to be pair-wise distinct. This requirement is known as an 
ALLDIFFERENT constraint [5] in the constraint programming con-
text. As the SAT solving technology [1], [3], [6] is becoming a tool 
of choice in many practical applications, efficient manipulation 
with the ALLDIFFERENT constraint in SAT solvers is of interest. 
Unlike other works on translating the ALLDIFFERENT constraint 
into SAT that use direct encoding of variable’s domains [4], we 
study how to encode the constraint over the set of bit-vectors which 
essentially use binary encoding. We present a new eager encoding 
that maps the given set of bit-vectors to a linearly ordered set of 
auxiliary bit-vectors. We show that the new encoding is more 
efficient for hard unsatisfiable cases of the constraint on which 
SAT solvers struggle with the existent encoding for bit-vectors [2]. 

2 BACKGROUND – STANDARD MODEL 
Suppose to have a set of bit-vectors  each of length 
. Bit-vectors are interpreted as non-negative integers. The 

ALLDIFFERENT constraint over  - denoted as 
ALLDIFFERENT( ) - requires that numbers represent-
ed by the bit-vectors are all distinct. The standard encoding [2] 
basically follows the scheme where pair-wise differences are en-
coded: 

 

Trivially it is possible to encode the individual inequalities as 
follows. Let the -th bit of the -th bit-vector with  
and  be denoted as . 
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However, if unfolded into the CNF representation though the 
distributive rule it results into too many clauses which is impracti-
cal. Therefore encoding using auxiliary propositional variables is 
used. It follows the standard technique of Tseitin’s hierarchical 
encoding. A fresh propositional variable is introduced for each 
inequality between individual bits of the involved bit-vectors. That 
is, there is a new variable  for every  with  
and . The auxiliary variable indicates if the corre-
sponding bits in the inequality between bit-vectors differ or not. 
Thus, the following clauses are included to express this interpreta-
tion: 

� � � �  

Bit-vectors   and  differ if they differ in at least one posi-
tion; that is, following clauses should be included: . Notice 
that auxiliary variables are linked to the original bits only in one 
direction. If  is set to  then  and  are forced to differ. 
However, if  is  then  and  are left unconstrained. 

 

Proposition 1 (STANDARD ENCODING SIZE).  The standard encod-
ing of the ALLDIFFERENT constraint requires  propositonal 
variables to represent the bit-vectors and  auxiliary propo-
sitional variables; that is,  variables altogether. The num-
ber of clauses is ; that is,  . ■ 
 

 
Figure 1. Illustration of the standard and the bijection ALLDIFFERENT 
encodings. In the bijection encoding, a 1-to-1 mapping of the bit-vectors is 
found first. Then the values of bit-vectors are forced to be linearly ordered 
according to their position in the mapping. 

3 ALTERNATIVE BIJECTION ENCODING 
We observed that a SAT solver struggles over the standard encod-
ing especially in the unsatisfiable case according to our preliminary 
experiments. Therefore we developed an alternative encoding that 
is more suitable for this case. It maps the original bit-vectors to a 
linearly ordered set of auxiliary bit-vectors. First, a 1-to-1 mapping 
(bijection) between sets of bit-vectors needs to be modeled to 
enable this encoding style (see Figure 1 for illustration). 
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Let the new linearly ordered bit-vectors be denoted as  
. Additionally bit-vectors  and  

 of size  are introduced to model the bijection. The bit-
vector  indicates what  with  the original  
will be mapped to. Bit-vectors  are used to enforce that at most 
one original bit-vector is mapped to a single ordered bit-vector. 
The following integer constraints are to establish the bijection: 

 

It is crucial, that domains of bit-vectors  and  consists of 
exactly  values to ensure that the bijection is modeled correctly 
(extra values are forbidden). The individual integer implication is 
encoded with a single auxiliary propositional variable  as fol-
lows: 

 
 
 
 
 
 
 
Finally there are integer constraints enforcing the ordering: 

 

The individual inequality is encoded as a strict lexicographic 
ordering over the two bit-vectors. Now,  fresh propositional varia-
bles  with  are introduced to indicate the first bit 
where  is less than . The ordering itself then just means 
that there exists such a first bit where bit-vectors differ: . 
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Proposition 2 (BIJECTION ENCODING SIZE).  The bijection encoding 
requires  propositional variables to represent the bit-vectors, 

 variables to represent the bijection, and  
auxiliary propositional variables; that is  proposi-
tional variables altogether. 

The number of clauses is ; 
that is, . ■ 

 

Table 1. Comparison of sizes of the standard and the bijection encoding. 
#bit-vectors 

(16-bits) 
Standard Bijection 

#Variables #Clauses #Variables #Clauses 
64 67584 133056 9968 176943 

128 266240 536448 28400 690031 
256 1056768 2154240 90096 2756591 

4 EXPERIMENTAL EVALUATION 
As shown in Table 1, the bijection encoding has fewer variables 
while the number of clauses is slightly higher than in the standard 
encoding. Nevertheless, we also need runtime comparison. A setup 
where a transition-phase behavior was observed is presented. We 
used 32 bit-vectors consisting of 6 bits. Additionally, there was a 
lower bound and an upper bound per each bit-vector. If ,

 is a given domain size, then the lower bound  and the 
upper bound  for the bit-vector  were generated random-
ly as follows:  was selected uniformly from  and  
was set to . Thus,   is enforced for each . 
Finally, a single ALLDIFFERENT over 32 bit-vectors was added. 

Three SAT solvers were used in the evaluation: MINISAT [3], 

GLUCOSE [1], and CRYPTOMINISAT [6]. The runtime was measured 
for different domain sizes  ranging from  to  - Figure 2. For 
small  unsatisfiability could be checked easily; for large  the 
same could be done for satisfiability. The most interesting behavior 
occurred around  which represent difficult cases. 

None of the tested SAT solvers was able to solve all the instanc-
es over the standard encoding in the time limit of 1 hour (wall 
clock limit per instance). The best performing over the standard 
encoding was GLUCOSE which solved 29 instances out of 33 and 
was also the fastest. Over the bijection encoding, MINISAT and 
CRYPTOMINISAT solved all the instances and very importantly the 
runtime of CRYPTOMINISAT was always below 2 seconds. GLU-
COSE also performed relatively well compared to the standard 
encoding with 30 solved instances. 

Generally, the standard encoding can be solved faster in the sat-
isfiable case. However, the bijection encoding is significantly 
better in the hard unsatisfiable case. This is because it can be 
checked more easily for this encoding if there are enough values in 
domains of bit-vectors to establish the required pair-wise differ-
ence (at least by some SAT solvers). A single linearly ordered set 
of bit-vectors is matched into the domains while in case of the 
standard encoding all the orderings (permutations) of the original 
bit-vectors may be checked. 
 

 
Figure 2. Instances are sorted according to the increasing runtime. 

5 CONCLUSION 
A new encoding for the ALLDIFFERENT constraint over bit-vectors 
based on 1-to-1 mapping has been proposed. It has fewer variables 
and it is more efficient in difficult unsatisfiable cases than the 
existent encoding [2] that uses pair-wise differences. In the future 
work, it would be also interesting to investigate how the presented 
eager encodings performs with respect to the strong ALLDIFFERENT 
propagators [5] integrated with the solver lazily via the SMT 
framework and also how it performs in applications. 
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