
Advances in Distributed Branch and Bound
Lars Otten and Rina Dechter1

Abstract. We describe a distributed version of an advanced branch
and bound algorithm over graphical models. The crucial issue of load
balancing is addressed by estimating subproblem complexity through
learning, yielding impressive speedups on various hard problems us-
ing hundreds of parallel CPUs.

1 Introduction

Parallelizing search algorithms such as branch and bound using par-
allel tree search [4], distributing conditioned subproblems to differ-
ent CPUs, is highly challenging. Large variance and therefore un-
predictability of subproblem complexities makes load balancing ex-
tremely elusive, which can be devastating to parallel performance. As
documented in earlier work [citation withheld for anonymity], this is
particularly difficult for advanced algorithms geared towards sequen-
tial execution that are typically far from embarrassingly parallel. One
such state-of-the-art algorithm is AND/OR Branch and Bound [9],
which has been very competitive in recent inference competitions.2

This paper reports on a new distributed version of AOBB running
on a computational grid (a set of autonomous, loosely connected sys-
tems) using hundreds of CPUs – the only parallel search scheme in
a general graphical model framework to date that we are aware of
([1] is related, but parallelizes variable elimination and only provides
simulated results). Our load balancing is based on a complexity es-
timator learned offline from previously solved subproblems of the
same problem class. Preliminary results on a set of instances from
the domain of genetics are encouraging, in some cases reducing com-
putation time from many days to less than an hour.

2 Background

AND/OR Branch and Bound (AOBB) is an adaptation of branch
and bound search to the framework of AND/OR search spaces
over graphical models such as Bayesian networks or weighted con-
straint satisfaction problems. It exploits conditional independencies
through problem decomposition and avoids redundant computations
via caching of context-identical subproblems; worst-case time and
space complexity is exponential in the problem’s induced width [3],
which can imply exponential savings over traditional search spaces.
A mini bucket heuristic [5] is used to provide upper bounds (assum-
ing a maximization setting) on subproblem solutions which, together
with a lower bound from the current best solution maintained by the
algorithm, allows pruning of unpromising parts of the search space.
Our distributed implementation of AND/OR Branch and Bound is

based on the notion of parallel tree search [4], where a search tree is
explored centrally up to a certain depth and the remaining subtrees
are processed in parallel. In our context we solve the resulting condi-
tioned subproblems using a grid of computers. Figure 1 demonstrates
1 University of California, Irvine. {lotten,dechter}@ics.uci.edu
2 cf. UAI’ Inference Evaluation ’10 and Pascal Inference Challenge ’11

Figure 1: Example problem graph (left) and possible parallel search
space with eight parallel subproblems (right).

this concept on an example problem with six variables: conditioning
on A and B (in gray) yields eight independent subproblems.
The central decision in this parallelization scheme is clearly where

to place the parallelization frontier, which will determine the number
and shape of the parallel jobs. To establish the best possible overall
performance this choice needs to ensure effective load balancing, i.e.,
spreading the parallel workload evenly across all available CPUs.
The following section discusses our approach in more detail.

3 Load Balancing for Distributed AOBB

A first, natural choice for the parallelization frontier is a fixed depth
d in the conditioning search space that ensures a sufficient number of
subproblems to occupy all available CPUs. In practice, however, this
is often detrimental: even when the underlying subgraph structure is
identical across subproblems, the size of the explored subproblem
search spaces rooted at the same depth d is far from uniform due,
in large part, to the pruning power of AOBB. Thus often very few
subproblems dominate the overall runtime (cf. results in Section 4).
Detecting and mitigating these extreme cases requires more de-

tailed knowledge about a subproblem beforehand, namely we aim to
estimate its complexity. Prior work in this area goes back to [7] and
more recently [6], which predict the size of general backtrack trees
through random probing. Similar schemes were devised for Branch
and Bound algorithms [2], where search is run for a limited time and
the partially explored tree is extrapolated. All of these, however, de-
pend to a large extent on a substantial sample of the (sub)problem in
question, which quickly becomes prohibitive in our setup with hun-
dreds, if not thousands of subproblems to consider.
Our key progress in load balancing is due to an offline learning

step similar in spirit to [8]: we collect a set of several thousand sam-
ple subproblems from past experiments, extract a number of features
for each of them, and record their complexities using our AOBB al-
gorithm. The features are structural (e.g., subproblem variable count
and induced width) as well as cost function-related (e.g., subprob-
lem upper/lower bound). We apply statistical feature selection and
learn a linear regression model with subproblem log complexity as

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-917

917



Number of CPUs
inst n k w h seq 10 20 50 100 200 300 400
ped7 1068 4 32 90 26:11 02:49 01:29 00:39 00:21 00:12 00:09 00:09
ped9 1118 7 27 100 16:26 01:57 00:59 00:24 00:13 00:07 00:06 00:05
ped13 1077 3 32 102 28:42 02:51 01:28 00:42 00:24 00:16 00:13 00:13
ped19 793 5 25 98 105:11 13:48 07:38 03:17 01:56 01:14 00:50 00:42
ped31 1183 5 30 85 121:25 12:43 06:38 02:43 01:23 00:43 00:31 00:24
ped34 1160 5 31 102 12:34 02:05 00:54 00:24 00:13 00:08 00:06 00:05
ped41 1062 5 33 100 13:07 01:34 00:48 00:23 00:16 00:10 00:11 00:11
ped44 811 4 25 65 26:52 03:28 01:58 00:54 00:32 00:18 00:13 00:11
ped51 1152 5 39 98 46:13 04:54 02:31 01:06 00:36 00:22 00:21 00:19

Figure 2: Parallel performance (left, times in hh:mm) and corresponding parallel speedup (right) on nine pedigree instances for varying number
of CPUs. seq is time of sequential AOBB, n no. of problem variables, k max. domain size, w induced width, h guiding pseudo tree height.

the target, to account for the exponential nature of the search. The
resulting regression model can then be used by the parallel scheme
to very quickly compute complexity estimates; our policy is to iter-
atively grow the frontier by splitting the (estimated) most complex
subproblem, until the desired number of subproblems is obtained.

4 Experimental Results

We note that “perfect” load balancing is not attainable in practice
even if we had full prior knowledge of subproblem complexities (a
hard problem we aim to solve as well), since splitting a given sub-
problem into its children often yields large jumps in complexity. This
also makes perfect, linear speedup elusive, which is further impeded
by grid-induced overhead and delays.

Overall parallel performance. Figure 2 shows parallel performance
and speedup on nine very hard pedigree instances (encoding genetic
haplotyping problems) for different number of CPUs. The hardest
problems ped19 and ped31 in particular show impressive improve-
ments from 4.5 and 5 days, respectively, to under one hour each. For
easier problems the impact of the parallelization overhead is more
pronounced and speedups level off somewhat, as expected.

Figure 3: Subproblem statistics for fixed-depth (top) and regression-
based frontier (bottom). Dashed lines: 0, 20, 80 and 100 percentile.

Load balancing. Figure 3 compares the two alternative policies for
subproblem selection, fixed-depth (top) and using the complexity es-
timates to build the frontier (bottom). We notice a handful of sub-
problems that clearly dominate overall performance for the fixed-
depth frontier (note the log scale); using the regression estimates
avoids these extreme outliers, thereby reducing overall runtime by
over 40%. A number of other test cases exhibited similar behavior.

5 Summary & Future Work

We have presented a new distributed branch and bound scheme over
graphical models that works on hundreds of computers, to our knowl-
edge the first of its kind. The crucial issue of load balancing is ad-
dressed through offline learning of a complexity model, which has
yielded impressive speedups on several hard problem instances.
Ongoing and future research directions include extending and an-

alyzing the quality of the complexity prediction as well as studying
its applicability across problem domains. More generally we plan to
evaluate the distributed scheme on a wider range of problems and
investigate how varying levels of parallelism impact performance.
For instance, given p CPUs we can generate k ·p subproblems and
assign k subproblems to each processor, exploiting stochasticity in
subproblem runtime for better load balancing.

REFERENCES
[1] David Allouche, Simon de Givry, and Thomas Schiex, ‘Towards parallel

non serial dynamic programming for solving hard weighted csp’, in CP,
pp. 53–60, (2010).

[2] Gérard Cornuéjols, Miroslav Karamanov, and Yanjun Li, ‘Early esti-
mates of the size of branch-and-bound trees’, INFORMS Journal on
Computing, 18(1), 86–96, (2006).

[3] Rina Dechter and Robert Mateescu, ‘AND/OR search spaces for graph-
ical models’, Artif. Intell., 171(2-3), 73–106, (2007).

[4] Ananth Grama and Vipin Kumar, ‘State of the art in parallel search tech-
niques for discrete optimization problems’, IEEE Trans. Knowl. Data
Eng., 11(1), 28–35, (1999).

[5] Kalev Kask and Rina Dechter, ‘A general scheme for automatic genera-
tion of search heuristics from specification dependencies’, Artif. Intell.,
129(1-2), 91–131, (2001).

[6] Philip Kilby, John Slaney, Sylvie Thiébaux, and TobyWalsh, ‘Estimating
search tree size’, in AAAI, pp. 1014–1019. AAAI Press, (2006).

[7] Donald E. Knuth, ‘Estimating the efficiency of backtrack programs’,
Mathematics of Computation, 29(129), 121–136, (1975).

[8] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham, ‘Empiri-
cal hardness models: Methodology and a case study on combinatorial
auctions’, Journal of the ACM, 56(4), 1–52, (2009).

[9] RaduMarinescu and Rina Dechter, ‘AND/OR Branch-and-Bound search
for combinatorial optimization in graphical models’, Artif. Intell.,
173(16-17), 1457–1491, (2009).

L. Otten and R. Dechter / Advances in Distributed Branch and Bound918


