
Evolutionary Clustering on CUDA

Pavel Krömer and Jan Platoš and Václav Snášel1

Abstract. Unsupervised clustering of large data sets is a compli-

cated task. Due to its complexity, various meta-heuristic machine

learning algorithms have been used to automate the clustering pro-

cess. Genetic and evolutionary algorithms have been deployed to find

clusters in data sets with success. The GPU computing is a recent

programming paradigm introducing high performance parallel com-

puting to general audience. This work presents an acceleration of a

genetic algorithm for density based clustering on the GPU using the

nVidia compute unified device architecture (CUDA).

1 INTRODUCTION

Clustering represents a fundamental data analysis task of separation

of objects to classes with a plenty of practical applications. The most

often used clustering approaches include the hierarchical clustering,

the centroid (medoid) based clustering, and the density based clus-

tering [7]. The density based clustering is popular for its ability to

discover clusters with arbitrary shapes. Informally, a density based

cluster C is a set of points in the problem space that are density con-

nected, i.e. for each pair of points in C there is a chain of points with

distance between two consecutive points smaller than a constant ε.

Various evolutionary algorithms have been used to find meaning-

ful clusters in data [5, 3]. The design of an evolutionary algorithm for

clustering involves, among others, the definition of candidate solu-

tion (clustering) encoding and the choice of suitable fitness function

that would evaluate the quality of candidate solutions.

2 GENETIC ALGORITHM FOR CLUSTERING
ON CUDA

The genetic algorithm (GA) for clustering proposed in this study uses

real encoded chromosomes with variable length, a parallel density

based clustering approach, and the Dunn index (DI) as cluster va-

lidity measure. The real encoding [5] uses real numbers to encode

arbitrary points in the problem domain. The points provide a repre-

sentation of clusters in the encoded partitioning. The DI is an internal

clustering validity measure defined by [4]:

D = min
1≤i≤n

{
min

1≤j≤n,i �=j

{
d(i, j)

maxi≤k≤n d′(k)

}}
(1)

where d(i, j) is the distance between clusters i and j and d′(k) is the

diameter of cluster k:

d(i, j) = min
a∈i,b∈j

{dist(a, b)}, d
′(k) = max

a,b∈k
{dist(a, b)} (2)

The Euclidean distance dist(a, b) was used to express the distance

between objects in the data set and a pre-computed N ×N distance

1 VŠB - Technical University of Ostrava & IT4 Innovations, Ostrava, Czech
Republic, email: {pavel.kromer,jan.platos,vaclav.snasel}vsb@cz

matrix D defined by Dij = dist(i, j) was used to avoid repeated

evaluation of the distances.

Three CUDA-C kernels implement the clustering algorithm. The

cudaPlacePins kernel maps all cluster representatives (pins) encoded

in the chromosome to the closest object in the data set (seed). It calcu-

lates the distance between the pin and every object in the data set be-

cause the distance matrix D cannot be used as the location of the pins

changes during the evolution. The parallel implementation launches

a thread block for each pin in the chromosome and uses each thread

in the block to compute the distance between the pin and a number

of objects in the data set.

The cudaFormClusters kernel implements the formation of the

density-based clusters. Each cluster is expanded using a stack

breadth-first search (BFS). The expansion starts with the seeds found

in the previous step and it iteratively appends to the cluster all ob-

jects that are directly density connected to the cluster. There are sev-

eral BFS implementations for the GPU (e.g. [8]), however, they do

expect a single BFS instance running at the same time while we run

k BFS instances in parallel. Similar approach was recently presented

in [2]. This implementation uses only a simple collision detection and

avoids locking and atomic operations to improve the performance. A

point that is density reachable from more forming clusters is assigned

to one of them. Such a situation is a sign of poor clustering with clus-

ters too close to each other that will be awarded with a low fitness and

it will not survive in the evolution.

The cudaDunnIndex kernel implements the DI evaluation. It finds

the minimum distance between every two clusters and maximum dis-

tance between any two points in the same cluster at the same time by

a single parallel scan of the distance matrix. The kernel was imple-

mented with minimum branching to optimize the performance.

3 EXPERIMENTAL EVALUATION

We have tested the performance and correctness of the GA for den-

sity based clustering on the GPU. The experiments were conducted

on a PC with a 2.6 GHz CPU and an nVidia Tesla C2050 card with

448 cores at 1.15 GHz. Several data sets containing 100 to 15000

objects were generated to test the performance of the kernels. They

were based on the data 3 2 data set from [1] which was extended by

generating additional points within the shape of its original clusters.

We have measured the time needed to compute the DI and to form

clusters. The kernel cudaDunnIndex is not data bound and it was ex-

ecuted with the largest block size (1024). The kernel cudaFormClus-

ters was executed with different number of threads per block because

it is data bound. The execution time of the DI computation and clus-

ter formation on the CPU and GPU is shown in fig. 1(a) and fig. 1(b).

Clearly, the DI computation on the GPU is faster than the sequential

implementation. The GPU is 2.64 to 15.20 times faster than the CPU

when computing the DI. The speedup in cluster formation achieved

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-909

909

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 [

m
s
]

Data set size

CPU
Tesla C2050

(a) DI computation time.

 0.1

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 [

m
s
]

Data set size

CPU
Tesla C2050 (t=64)
Tesla C2050 (t=90)
Tesla C2050 (t=128)
Tesla C2050 (t=160)
Tesla C2050 (t=256)
Tesla C2050 (t=512)
Tesla C2050 (t=1024)

(b) Cluster formation time.

Figure 1. Performance of the GPU implementation

by the GPU is shown in table 1. As expected, the CPU was faster

Table 1. Cluster formation speedup on the GPU.

Block size

N 64 90 128 160 256 512 1024

100 0.56 0.56 0.43 0.37 0.25 0.14 0.07
500 2.09 2.72 1.61 1.35 0.93 0.58 0.30

1000 3.03 4.29 3.77 2.47 1.77 1.38 0.71
5000 1.55 3.11 3.25 2.56 3.35 2.28 1.07

10000 1.69 3.59 3.98 3.36 5.1 4.19 2.12
15000 1.71 3.71 4.25 3.75 6.1 5.64 3.04

for the smallest data set because it can benefit from its architecture.

The GPU was able to speed up the cluster formation 2.7 to 6.1 times.

However, the performance evaluation is rather illustrative because

the performance of the kernel is data bound, i.e. the speedup factor

will be different for other data sets.

The ability of the GPU accelerated GA to find good partitioning of

different data sets with irregular clusters was tested on the modified

Chameleon data [6]. Four data sets were created from Chameleon by

noise reduction: rt4 with 4231 objects, rt5 with 4407 objects, rt7 with

5305, and rt8 with 4877 objects. The GA used a population of 100

candidate solutions, neighborhood size ε = 10, crossover probability

0.8, and mutation probability 0.6. The GA was executed for different

number of generations with thread block sizes 90 and 256.

The performance comparison of the CPU and GPU implementa-

tion for different data sets is shown in table 2(a) and the speedup for

different number of generations is shown in table 2(b). The speedup

is for all four data sets and both block sizes almost the same. The

total execution time of the algorithm on the GPU is approximately

5-6 times shorter. Moreover, the average speedup is consistent at dif-

ferent generations. The GA was in most cases able to identify correct

Table 2. Average speedup on the GPU for different block sizes (BS).

(a) For different data sets

dataset BS 90 BS 256

t4 5.28 5.34
t5 5.74 5.76
t7 6.14 6.21
t8 5.76 5.77

(b) For different generations

gen. BS 90 BS 256

200 5.72 5.71
500 5.75 5.80
1000 5.72 5.79

partitioning of the data before reaching 500 generations. Both, the

CPU and GPU implementations delivered correct results. The largest

clusters were identified and the remaining outlying points were gath-

ered in the remainder cluster. The clusters found by the GA acceler-

ated by the GPU are shown in fig. 2. Let us note that the left circle

inside the ellipse in rt7 is density connected to the ellipse, the two

triangles in rt8 really are density connected, and the upper left clus-

ter and the sparse vertical clusters in rt8 are composed of multiple

clusters.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

(a) Clusters in the rt4 data set.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 100 200 300 400 500 600 700 800

(b) Clusters in the rt5 data set.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700

(c) Clusters in the rt7 data set.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700

(d) Clusters in the rt8 data set.

Figure 2. Clusters in the chameleon dataset.

4 CONCLUSIONS AND FUTURE WORK

This study presents a design and initial implementation of a GA for

clustering accelerated by the GPU. A simple density based clustering

and the DI were used as GPU powered building blocks of the algo-

rithm that was shown to outperform its sequential counterpart more

than 5 times.

The cudaComputeDunn kernel can be improved to store the colli-

sion matrix to shared or texture memory. A better v of the clustering

algorithm less sensitive to noise will be implemented and the per-

formance of the CPU and GPU based GA for clustering without the

pre-computed distance matrix will be compared.

ACKNOWLEDGEMENTS

This paper has been elaborated in the framework of the

IT4Innovations Centre of Excellence project, reg. no.

CZ.1.05/1.1.00/02.0070 supported by Operational Programme

’Research and Development for Innovations’ funded by Structural

Funds of the European Union and state budget of the Czech Republic

and supported by SGS, VŠB – Technical University of Ostrava,

under the grant no. SP2012/58.

REFERENCES

[1] S. Bandyopadhyay and U. Maulik, ‘Genetic clustering for automatic evo-
lution of clusters and application to image classification’, Pattern Recog-
nition, 35(6), 1197 – 1208, (2002).

[2] C. Böhm, R. Noll, C. Plant, and B. Wackersreuther, ‘Density-based clus-
tering using graphics processors’, in Proc. of the 18th ACM conference
on Information and knowledge management, CIKM ’09, pp. 661–670,
New York, NY, USA, ACM, (2009).

[3] S. Das, A. Abraham, and A. Konar, ‘Metaheuristic pattern clustering an
overview’, in Metaheuristic Clustering, vol. 178 of Studies in Comp. In-
telligence, pp. 1–62, Springer, (2009).

[4] J. C. Dunn, ‘Well separated clusters and optimal fuzzy-partitions’, Jour-
nal of Cybernetics, 4, pp. 95–104, (1974).

[5] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. Ponce
Leon F. De Carvalho, ‘A survey of evolutionary algorithms for cluster-
ing’, Trans. Sys. Man Cyber Part C, 39, pp. 133–155, (2009).

[6] G. Karypis, E.-H. Han, and V. Kumar, ‘Chameleon: hierarchical cluster-
ing using dynamic modeling’, Computer, 32(8), pp. 68 –75, (1999).

[7] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, ‘Density-based clus-
tering’, Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 1(3), pp. 231–240, (2011).

[8] L. Luo, M. Wong, and W.-M. Hwu, ‘An effective gpu implementation of
breadth-first search’, in Proc. of the 47th Design Automation Conf., DAC
’10, pp. 52–55, New York, NY, USA, ACM, (2010).

P. Krömer et al. / Evolutionary Clustering on CUDA910

