
Disambiguating Road Names in Text Route Descriptions
using Exact-All-Hop Shortest Path Algorithm

Xiao Zhang� � and Baojun Qiu�� and Prasenjit Mitra�† and Sen Xu‡
and Alexander Klippel‡ and Alan M. MacEachren‡ 1

Abstract. Automatic extraction and understanding of human-
generated route descriptions have been critical to research aiming
at understanding human cognition of geospatial information. Among
all research issues involved, road name disambiguation is the most
important, because one road name can refer to more than one road.
Compared with traditional toponym (place name) disambiguation,
the challenges of disambiguating road names in human-generated
route description are three-fold: (1) the authors may use a wrong or
obsolete road name and the gazetteer may have incomplete or out-
of-date information; (2) geographic ontologies often used to disam-
biguate cities or counties do not exist for roads, due to their linear
nature and large spatial extent; (3) knowledge of the co-occurrence
of road names and other toponyms are difficult to learn due to the
difficulty in automatic processing of natural language and lack of ex-
ternal information source of road entities. In this paper, we solve the
problem of road name disambiguation in human-generated route de-
scriptions with noise, i.e. in the presence of wrong names and incom-
plete gazetteer. We model the problem as an Exact-All-Hop Shortest
Path problem on a semi-complete directed k-partite graph, and de-
sign an efficient algorithm to solve it. Our disambiguation algorithm
successfully handles the noisy data and does not require any extra
information sources other than the gazetteer. We compared our algo-
rithm with an existing map-based method. Experiment results show
that our algorithm significantly outperforms the existing method.

1 Introduction
Human-generated route directions are text descriptions of routes

from specified origins to destinations. They contain sequences of
road names, landmarks, decision points and actions to take on the de-
cision points in order to travel from the origin to the destination. Such
text descriptions are often seen on the direction pages of web sites of
businesses, schools and other organizations. Human-generated route
directions have been studied in spatial information science, cogni-
tive psychology, geography and linguistics for understanding human
cognition of spatial information [11, 24, 8, 15]. They have also seen
potential application in improving the quality of routes generated by
automatic navigation systems [14, 22]. An automatic system to ex-
tract, understand text route directions and visualize them on the map,
if implemented successfully, could bring tremendous benefits to the
ongoing research and future applications.

One obstacle in building such a system is the ambiguities in road
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names in the text. A road is a unique artificial geographic feature
on the earth surface. However, their names are not unique. Multiple
roads can share the same road name. In a gazetteer or geographic
database, a road is often represented by a sequence of connected line
segments and/or curves, such as in OpenStreetMap [13]. Searching a
road name can yield more than one such sequence. Ambiguities are
often seen in local road names, such as “Main Street” and “Second
Street”. Ambiguities even exist for interstate highways. For example,
“Interstate 405” has three disconnected segments2 on the west coast
of the US, one bypass near Seattle, WA, one bypass near Los Ange-
les, CA and one loop in Portland, OR. Throughout this paper, we use
the term “road” for the unique artificial geographic feature, while the
term “road name” for the name, which oftentimes is ambiguous, as-
signed to the road. Road name disambiguation is to find the correct,
unique road referred to by the road name in the context.

Road name disambiguation belongs to the scope of toponym
(place name) disambiguation. Traditional toponym disambiguation
focuses on point or regional geographic features such as city names.
However, the unique characteristics of road names make the disam-
biguation task challenging. Heuristic rules used in existing work [19,
2] do not work on road names: population makes no sense for a road;
location qualifiers, such as state names or abbreviations are often
missing, e.g., “Atherton St.” is used instead of “Atherton St. PA”;
“PA 15” can be written as “15”. Ontologies of toponyms have been
used for disambiguation [4, 23]. Yet, these ontologies are built upon
regional features such as cities, states and countries, not for roads.
Data-driven methods use external information, such as Wikipedia,
about a place name to learn co-occurrences or probabilities of nearby
place names [17, 18]. However, it is difficult to find profile pages for
all or a majority of the roads of ambiguous road names. For example,
the Wikipedia page for “Main Street” only covers a limited number
of roads with the name “Main Street”3, thus limiting its power to be
used for disambiguation.

In addition, human-generated route directions introduces a noisy
environment. The authors of the directions may use wrong or obso-
lete road names and the gazetteers are often incomplete. Examples
of missing roads in Google Maps can be easily seen in its help fo-
rum 4. OpenStreetMaps [13] consists of user-contributed data and is
constantly updated. It is very likely that the search results of a road
name do not contain the true road. The presence of inaccurate data
and incomplete gazetteer make this problem even more challenging.

In this paper, we present our work in solving the problem of
road name disambiguation in human-generated route directions. We

2 http://en.wikipedia.org/wiki/Interstate 405
3 http://en.wikipedia.org/wiki/Main Street (disambiguation)
4 http://www.google.com/support/forum/p/maps
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model the problem using a semi-complete directed k-partite graph
(defined formally and illustrated in Section 3). The disambiguation
problem in noisy environment is then generalized to an Exact-All-
Hops Shortest Path (EAHSP) problem on this graph, informally, min-
imizing the path weight and maximizing the number of hops on this
path. Although the general multi-constrained shortest path problem
is NP-complete [10], given the characteristics of our graph, we devel-
oped a polynomial time solution for the EAHSP problem. The time
complexity is O(k3n2) where n is the number of vertices in each of
the k set. The contributions of our research are listed below:
• To the best of our knowledge, ours is the first work to solve the

toponym disambiguation problem given noisy data.
• Our disambiguation algorithm is a computation-based method.

We achieved a high F1 score of 82% for retrieval of the correct
roads of ambiguous road names, even without any auxiliary
information, such as Wikipedia or ontologies, or annotated
training data.

• We propose a novel approach to model the ambiguities in
sequential toponyms, i.e. using semi-complete k-partite graph;
and generalize the disambiguation problem to an exact-all-hop
shortest path (EAHSP) problem.

• We propose an efficient algorithm which runs in polynomial time
to solve the EAHSP problem on semi-complete k-partite graph.

2 Preliminaries
In human-generated route directions, a complete route description

consists of origin, destination and route instructions [24]. A route
instruction contains a sequence of road names. The road names, if
searched in a gazetteer, often yields more than one roads. For ex-
ample, in OpenStreetMaps [13], there are four roads with the name
“Atherton”, two in the US, one in Australia and one in the UK. The
address or city and state of the destination, if found in the text, can
be used for disambiguation. However, such information may be men-
tioned in other web pages and the authors of the direction page as-
sume the readers can infer it. In some cases, the address found in a
direction page may be misleading, e.g. the address is for the head-
quarter of a company and the directions are for one branch office in
another state.

Road names in directions are placed in a sequence because they
are connected to one another. Each road name corresponds to a set
of more than one road in a gazetteer. Ideally, we can find one road
in each set, such that if they are ordered according to the road name
sequence, they are either connected to the next one in the sequence,
or have a small distance to the next one (due to the existence of er-
rors in the latitudes or longitudes of roads in the database). It can
be computed by existing Shortest Path algorithms. However, as dis-
cussed before, the search result of a road name may not include the
true road. Such road names in the sequence will severely influence
the result of Shortest Path algorithms. Figure 1 gives an example.

Figure 1: Simple methods fail in noisy environment
Three road names A, B and C each yields a set of actual roads in

the gazetteer: {a1, a2}, {b2} and {c1, c2} respectively. The correct
roads are {a1, b1, c1}. If b1 is missing, the algorithm will select b2
and c2, thus missing the true answer c1. The noisy environment re-
quires the disambiguation algorithm to allow one or more road names
to be missing from the answer, while still keep the number of in-
cluded road names high. The path selection is therefore subject to
two objectives: (1) cover as many road names as possible and (2)
minimize the sum of distances to transit from one road to the next in
sequence.

3 Problem Formalization

We begin with the following definition:
Problem Statement 1. Given a text route direction and a list of k
road names from it r1, r2, ..., rk, and a gazetteer, road name disam-
biguation is to find for each ri(1 ≤ i ≤ k) the correct road referred
to by ri from the gazetteer.

Each road returned by searching the gazetteer is a linear spatial ob-
ject representing a road. In the following discussion, a linear spatial
object (road) is abstracted to be a point or an object. The distance
between two roads is defined to be the minimum distance between
them. Therefore, the distance between two points (objects) does not
satisfy the triangle inequality. Each road name yields a set of points
(objects) when searched for in the gazetteer. These road names, if put
in the order they appear in the text, form a sequence. We continue by
defining the following terms:
Definition 1. A sequence of length K, seq = (c1, c2, ..., ck), is an
ordered list of k sets, where each set ci (1 ≤ i ≤ k) is non-empty, i.e.
|ci| ≥ 1. A subsequence of seq is seq′ = (ci1 , ci2 , ..., cil), where
1 ≤ i1 < i2 < ... < il ≤ k. Note that a subsequence is also a
sequence.

Definition 2. Given a sequence seq = (c1, c2, ..., ck), a route of
this sequence is an ordered list of points r = (p1, p2, ..., pk), where
pi ∈ ci, 1 ≤ i ≤ k. The hop count of the route is k − 1, since it
takes k − 1 hops to reach the end of the route. The distance of route
r is defined as dist(r) =

∑k−1

i=1
dist(pi, pi+1), where dist(·, ·) is

a distance function which takes two points (objects) as input and
returns the distances between them.

Note that the distance of a route in the above definition corre-
sponds to the total distances in transition from one road to the next,
not the total traveling distance along the roads. With the above defi-
nitions, the problem can be formalized as:
Problem Statement 2. Given a sequence seq = (c1, c2, ..., ck), a
distance threshold d, and a distance function dist(·, ·), find a subse-
quence seq′ = (ci1 , ci2 , ..., cil) and a route r = (p1, p2, ..., pl) of
seq′, where 1 ≤ i1 < i2 < ... < il ≤ k and pj ∈ cij , such that the
following two conditions are satisfied:
1. The distance of route r is below the threshold d. i.e.: dist(r) ≤ d
2. The hop count of the subsequence l is the maximum among all

routes satisfying Condition 1.
If more than one route satisfy both conditions, select the ones with
the minimum distance.

Figure 2 shows an example. A sequence of 4 sets is given as
seq = (P,Q,R, S), where P = {p1, p2, p3}, Q = {q1, q2},
R = {r1, r2} and S = {s1, s2}. The distance threshold is d = 3.
The distances between some pairs of points are given by the length
of the lines connecting the pair of points. All points are on a 2-
dimensional area. In this example, only the subsequence of points
(p1, q1, s1) and (p3, r1) satisfy Condition 1. Since (p1, q1, s1) gives
a hop count of 2, which is larger than the hop count of (p3, r1), it is
selected and returned as the result.
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Figure 2: A simple example
To solve this problem, we use a k-partite graph to model it. Each

point corresponds to a vertex in the graph. Each road name corre-
sponds to a set of more than one vertices, representing the ambiguity.
In order to allow skipping sets, we connect each vertex to all vertices
in all other sets. Edges are directed to represent the sequential nature
of the sets. Edge weights corresponds to the distance between two
objects. Thus a sequence is converted to be a semi-complete directed
k-partite graph, defined as follows and illustrated in Figure 3:
Definition 3. A semi-complete directed k-partite graph is a graph
G = (V,E), where V = {V1, V2, ..., Vk} are k disjoint sets of
vertices. E = {(u, v) : ∀u ∈ Vi,∀v ∈ Vj ,∀1 ≤ i < j ≤ k}
are a set of directed edges.

Figure 3: graph model
Problem Statement 3. Given a positive number W , a semi-
complete directed k-partite graph G, and a non-negative weight
function on all edges w(·, ·) ∈ {0} ∪ �+, find a path p in G, such
that (1) the weight of the path p is smaller than or equal to W , (2)
the number of hops on p is the maximum among all paths satisfying
Condition (1).

4 Related Work

4.1 Geographic Term Disambiguation
Place name disambiguation has been studied extensively. Most

methods can be categorized into two groups: rule-based and data-
driven [16]. In [20], a distance-based method was introduced. The
heuristic is that locations mentioned in the context (a sentence, a
paragraph or a whole document) often are close together (details will
be shown in Section 6.2). In [4], each place name is mapped onto an
ontology [1], the places selected are the ones yielding the maximum
conceptual density. Other heuristics include: (a)looking for qualifiers
in context, (b) using the location with the largest population, (c) if
multiple spots of the same place name has only one disambiguated
spot, its meaning delegates to others, and etc. Such rules have been
used in combination [19, 2]. However, none of them is designed for
the noisy environment we are facing.

Data-driven methods train statistical machine-learning models on
a set of annotated data, then use the trained model for disambigua-
tion. However, annotated data are expensive to obtain. To remedy this

problem, a bootstrapping method was proposed [21] which produces
accurate results while using a small set of annotated data. In addition,
external information sources have also been used, such as Wikipedia
entity pages, were employed for building the disambiguation mod-
els, such as [3, 17, 18]. These methods rely on annotated data sets
and/or external information sources. However, such information is
extremely difficult to obtain for road entities.

4.2 Hop-constrained Shortest Path Algorithms
Traditional shortest path algorithms, such as Dijkstra and

Bellman-Ford algorithms, minimize the path weight only, but not
taking into consideration the number of hops. However, our prob-
lem, in addition to minimizing the path weight, has to maximize the
number of hops. Our problem belongs to the multiple-constrained
shortest path problems, which is known to be NP-complete [10].

A number of special constraints, such as hop count, are amenable
to tractable solutions. In [12], the authors proposed a polynomial
time solution to the AHOP problem, i.e. to find the shortest path
whose hop count is below any given number. In [6], not 1 but k
shortest paths bounded by a given maximum hop count are found.
However, these paths are only bounded by a given maximum hop
count, but not maximizing the hop count. In [7], the authors intro-
duced the exact all hops shortest path (AHSP) problem. Given a hop
count, source and destination, AHSP finds a shortest path between
source and destination with the exact number of hops. A polynomial
time solution is theoretically proven to exist. However, no actual

algorithms were given.

4.3 Route Extraction from Text
The problem of automatic route information extraction from text

was studied in [24]. However, the authors focused on text informa-
tion extraction. No actual routes were extracted. In [9], the authors
recovered routes on maps based on text route descriptions. They ex-
tracted landmarks along the routes, then recover the routes by con-
necting the landmarks. According to the authors, they “try to by-
pass the important problem of ambiguity” by using IE techniques.
In human-generated, as well as machine-generated route directions,
road transitions are usually described without other landmarks, thus
making this method unsuitable.

5 Algorithm Description

5.1 Notations
The input graph G is a semi-complete directed k-partite graph,

i.e. G = (V,E), where V = {V1, V2, ..., Vk} and E = {(u, v) :
∀u ∈ Vi,∀v ∈ Vj , ∀1 ≤ i < j ≤ k}. A weight function w(·, ·),
where (u, v) ∈ E, returns the non-negative weight of the edge, i.e.
w(·, ·) ∈ {0} ∪ �+.

Our algorithm relies on two important arrays associated with each
vertex u to store important path information: (1) a min-weight ar-

ray Du and (2) a successor array Su. For a vertex u, the h-th entry
of its min-weight array, i.e. Du[h], corresponds to the weight of the
exact-h-hop shortest path starting from u; while the h-th entry of its
successor array, i.e. Su[h], corresponds to the first-hop destination
vertex on the exact-h-hop shortest path starting from u. For exam-
ple, suppose path p=¡u, v1, v2¿ is the exact-2-hop shortest path start-
ing from u, with v1 being the first-hop destination and v2 being the
second-hop destination. Then Du[2] = wp = w(u, v1) + w(v1, v2)
is the total weight of path p, and Su[2] = v1 since v1 is the first-hop
destination on the path. For each vertex u, Du and Su have the same
length. The minimum array index value is 0, meaning we stay at ver-
tex u and no hops are made. The maximum array index equals to the
maximum number of hops that can be made from u. For example,
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if u ∈ Vi, 1 ≤ i ≤ k, the maximum number of hops can be made
starting from u is k − i, because after making k − i hops along the
directed edges, one will reach a vertex in the last set Vk, then no more
hops can be made. Thus h ranges from 0 to k − i for Du and Su.

5.2 Algorithms

Algorithm 1 INITIALIZATION

Input: dag k-partite graph G = (V,E)
Output: initialize Dv and Sv for each v ∈ V
Procedure:

1: for i = 1 → k do

2: for each v ∈ Vi do

3: Dv[0] = 0;
4: if i < k then

5: Dv[1...(k − i)] = +∞;
6: end if

7: Sv[0...(k − i)] = NIL;
8: end for

9: end for

Algorithm 2 gives the relaxation step on an edge (u, v). It tests
whether we can improve the shortest path by one comparison. How-
ever, unlike the traditional relaxation technique used by Dijkstra and
Bellman-Ford algorithms, our relaxation (1) uses u as the start of the
path and v as the first-hop destination on the path, and (2) updates the
min-cost and the immediate successor of the exact i-hop path starting
from u.

Algorithm 2 RELAX

Input: vertices u, v such that (u, v) ∈ E, integer h (1 ≤ h ≤ k)
Output: update Du and Su for u
Procedure:

1: if Du[h] > w(u, v) +Dv[h− 1] then

2: Du[h] = w(u, v) +Dv[h− 1];
3: Su[h] = v;
4: end if

Algorithm 3 fills in Du and Su with proper values for each
u ∈ V . Line 2 and 3 show that the algorithm processes the ver-
tices in high-ordered vertex sets to low-ordered vertex sets, i.e. ver-
tices in Vk−1 are processed first, then vertices in Vk−2, and etc.,
until we finish processing vertices in V1. Lines 4 - 10 fill in the
min-weight array and successor array for a vertex u ∈ Vi. Note
that each vertex v ∈ Vk, Vk−1, · · · , Vi+1 can be used as the first-
hop destination on a exact-1-hop path starting from u. Therefore,
each vertex v ∈ Vk, Vk−1, · · · , Vi+1 have to be examined for relax-
ation of the exact-1-hop shortest path from u. Similarly, each vertex
v ∈ Vk−1, Vk−2, · · · , Vi+1 can be used as the first-hop destination
on an exact-2-hop path starting from u, thus should be examine for
relaxation of the exact-2-hop shortest path from u. We do so for all
possible number of hops of paths from u.

After Algorithm 3 is finished, the min-weight array Dv and suc-
cessor array Sv are filled for each vertex v ∈ V . For each v, Dv[i]
gives the weight of the shortest path starting from v with exactly

i hops (0 ≤ i < length of Dv); Sv[i] is the second vertex on
the shortest path starting from v with exact i hops, whose weight is
given by Dv[i]. Given a weight threshold W , we simply examine the
min-weight array Dv for each v to find the entries no larger than w.
Since the index of the entry in the array gives the number of hops, we
choose the largest index imax of the qualified entries. Suppose ver-

Algorithm 3 exact all-hops shortest path on semi-complete directed
k-partite graph

Input: semi-complete directed k-partite graph G = (V,E), weight
function w(·, ·) ∈ {0} ∪ �+

Output: Dv and Sv for each v ∈ V
Procedure:

1: INITIALIZATION();
2: for i = (k − 1) → 1 do

3: for each vertex u ∈ Vi do

4: for j = 1 → (k − i) do

5: for each vertex v ∈ Vi+j do

6: for h = 1 → (k − i− j + 1) do

7: RELAX(u, v, h);
8: end for

9: end for

10: end for

11: end for

12: end for

tex v is such a vertex: Dv[imax] ≤ W and imax is the largest index
among all indices of qualified entries. The answer to our problem is
a path starting from v. The second vertex along the path is given by
v2 = Sv[imax]; and the third vertex is v3 = Sv2 [imax−1]. By using
the successor arrays, we can easily recover all vertices on the path.

5.3 Proof of Correctness
Algorithm 3 is a dynamic-programming solution. The algorithm

starts with v ∈ Vk−1, which only has exact-1-hop paths. Then, for
each vertex set Vi with i < k − 1, the solution is built by examining
the weights of the out-going edges and the information stored in the
arrays of vertices in higher numbered sets Vi+j . We now prove the
optimal substructure of the exact-i-hop shortest path:

Lemma 1. Given a semi-complete directed k-partite graph
G = (V,E), where V = {V1, V2, · · · , Vk}, with weight function
w : E → {0} ∪ �+. Let p1 =¡v1, v2, · · · , vh¿ be the exact-h-hop
shortest path starting from v1, then p2 =¡v2, v3, · · · , vh¿ is the
exact-(h− 1)-hop shortest path starting from v2.

Proof. The correctness can be shown by a proof-by-contradiction:
if path p′2 =< v2, v

′
3, · · · , v′h > 
= p2 is the exact-(h − 1)-hop

shortest path starting from v2, we can construct another exact-h-hop
path p′1 =< v1, v2, v

′
3, · · · , v′h > starting from v1. Since w(p2) >

w(p′2), we havew(p1) = w(v1, v2)+w(p2) > w(v1, v2)+w(p′2) =
w(p′1). Then p1 is not the exact-h-hop shortest path starting from v1,
which contradicts to the assumption.

Theorem 1. Given a semi-complete directed k-partite graph
G = (V,E), where V = {V1, V2, · · · , Vk}, with weight function
w : E → {0} ∪ �+. Let the proposed exact all-hops shortest path
algorithm run on this graph, when the algorithm terminates, for
each vertex u ∈ V , Du contains the weights of exact all-hops
shortest path starting from u; Su contains the first-hop destinations
of exact all hops shortest path starting from u.

Proof. We first show that Lines 4 - 10 finds the weights and immedi-
ate successors of exact all hops shortest paths starting from u. Given
a vertex u ∈ Vi, where 1 ≤ i ≤ (k − 1), any vertices in a vertex set
with a set number higher than i, i.e. v ∈ Vi+j where j ∈ [1, (k− i)],
can be the first-hop destination of an exact-m-hop path starting from
u, where m ∈ [1, (k − i − j + 1)]. That is to say, ∀u ∈ Vi and
∀v ∈ Vi+j , ∃p =¡u, v, · · ·¿, where the number of hops of p from u
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is m ∈ [1, (k − i− j + 1)]. Suppose path p′ =¡v, · · ·¿ is the exact-
(m − 1)-hop shortest path starting from v, according to Lemma 1,
p = (u, v) + p′ is the exact-m-hop shortest path with u being the
starting vertex and v being the first-hop destination. Lines 4 - 10 it-
erates through all vertices v and use them to relax the exact-m-hop
paths of u, for all possible values of m. Thus, at the end of Lines 4
- 10, the computation of the shortest paths of all possible number of
hops starting from u is finished.

The computation for vertices in Vk is trivial and is performed by
the initialization step. Line 2 and 3 iterate through vertex sets from
higher-numbered to lower-numbered, i.e., Vk−1, Vk−2, ..., V1. This
particular order is chosen in order to guarantee that when computing
the shortest paths of vertices in a particular vertex set, all shortest
paths starting from any vertices in a higher-numbered vertex set have
been found and ready to be used to construct the solution to the big-
ger problem. Therefore, it guarantees to generate the shortest paths
of all possible numbers of hops starting from all vertices.
5.4 Time Complexity Analysis

Due to the space limitation, we provide a brief analysis of time
complexity. Without loss of generality, we assume that each disjoint
vertex set has the same number of vertices, i.e. |V1| = |V2| = ... =
|Vk| = n. The lengths of min-weight array Dv and successor array
Sv decreases as vertex set number increases. In V1, the lengths are k.
In Vk, the lengths are 1. The total number of entries in all these arrays
is 2kn+2(k−1)n+ ...+2n =

∑k

i=1
2in = k(k+1)n = O(k2n).

The initialization step fills in each entry of the two arrays for all
vertices. The answer generation process after Algorithm 3 examines
each entry in the arrays once. The running time of both are O(k2n).

Line 4 - 10 finds exact-all-hops shortest paths starting at u ∈ Vi
and fills in Du and Su for u. The for-loop on Line 6 calls relaxation
(k − i − j + 1) times. Line 4 iterates through values of j from 1 to
(k− 1). Line 5 iterates all n vertices in Vi+j , thus adding a constant
factor n. Therefore, Line 4 - 10 calls relaxation

∑k−i

j=1
(k − i − j +

1)×n times. One relaxation procedure takes only constant time. The
for-loop on Line 2 iterates values of i from (k−i) to 1; Line 2 iterates
through all vertices in set Vi, thus the total running time of Line 2 -
12 of Algorithm 3 is:

T =

1∑
i=k−1

(
n×
( k−i∑

j=1

(
k − i− j + 1

)
× n
))

=

1∑
i=k−1

(
(k − i)2 + (k − i)

2
× n2
)

(m=k−i)
=

k−1∑
m=1

(
m2 +m

)
× n2

2
= O(k3n2) (1)

6 Experiments

6.1 Data Collection
The collection of human-generated route directions is built using

the method described in [24]. We randomly chose 53 out of 10,000
direction documents, one route description from each document. For
each route, we manually extracted the road names in order. We used
OpenStreetMap [13] as the gazetteer and search for road names. Ta-
ble 1 gives the statistics.

6.2 Evaluation Results
A map-based algorithm was proposed in [20] and evaluated in [5].

We compare our disambiguation algorithm (EAHSP) with the map-
based algorithm. The map-based algorithm consists of the following
procedures: let t1, t2, ..., tk be the k toponyms in the text.
• For each toponym ti, find all its possible geographic locations
si. The locations for all toponyms form a set S.

number of route descriptions 53
number of road names 202
total number of roads in gazetteer 8464
Average number of roads per name 41.9
Maximum number of roads 704
Minimum number of roads 1

Table 1: Statistics
• Calculate the centroid c of all locations in S.

• Remove from S all locations si such that the distance between
si and c is larger than 2σ, where σ is the standard deviation of
the set of locations. The remaining locations form a set S′.

• Calculate the centroid c′ of all locations in S′.

• For each ti, select its closes location to c′ to represent its actual
location.

Our algorithm generates two sets of results for each route descrip-
tion: given a maximum path weight allowed, (1) we find a path p
with the maximum number of hops, say h hops. If multiple paths are
found, we select the one with the minimum path weight. (2) After
finding the first path p, we find an (h − 1)-hop path p′ such that its
path weight is smaller than the weight of p and p′ is not obtained
by cutting off one vertex in p. If multiple paths are found, we select
the one with the minimum path weight. We extract such two paths to
evaluate the trade-off between path weights and the number of hops.
The requirement that p′ is not obtained by simply cutting off one
vertex in p will enable the algorithm to find more vertices, instead of
choosing a subset of vertices in the already found path. We ran the
algorithm on 5 values of the maximum allowed path weight (called
max weight): 0, 1600, 3200, 8000 and 16000, in meters. We com-
pare the two algorithm on three metrics: (1) precision, (2) recall and
(3) F1 score.

Figure 4 shows the results when the algorithm generates a path
with the maximum number of hops; figure 5 shows the results when
the algorithm generates a path with one less hop but a smaller path
weight. Note the the map-based algorithm remains a straight line in
each figure since it is not affected by the maximum allowed path
weight.

In the setting where the algorithm finds the longest path p for
each route description, under all different values for max weight,
the EAHSP algorithm achieves high precisions ranging from 79.7%
to 90%, while the map-based only achieved a precision of 21.13%.
Recall of EAHSP increases when max weight increases. This is
because of the errors in the latitudes and longitudes of the roads in
the gazetteer. Two roads that are connected in the real world may
have a small gap in the gazetteer. When max weight increases, the
ability to tolerate errors increases, therefore the recall increases. The
recall is 57.4% when max weight = 0, but increases immediately
to 76.6% when max weight = 1600, and keeps increasing. Recall
of map-based algorithm is only 31.92%. The F1 score of EAHSP
when max weight = 0 is 69.0%, while under other max weight
values, EAHSP algorithm achieves a high F1 score from 81.0% to
82.8%; while the f1 score of map-based is only 25.4%.

In the setting where the algorithm finds p′, the second longest but
with smaller weight than p, the performance of EAHSP is sensitive to
the value of max weight. When max weight = 0, since the path
cannot be a strict subsequence of p, it is forced to select other vertices
and pushed away from the correct roads. It also fails to find such a
path for many files since no path can satisfy the conditions while not
being part of p. Thus the precision and recall drops below the map-
based algorithm. However, as max weight increases, p′ has more
overlapping vertices with p, therefore, the performance improves.
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Figure 5: Paths with the Second Largest Number of Hops
7 Conclusion and Future Work

Road name disambiguation is an important research issue
in achieving automatic extraction, understanding and visualizing
human-generated route directions. It is a difficult research topic be-
cause road names in the text display different characteristics from
traditional toponyms such as city or country names. In addition, the
presence of errors in the names introduced by human beings and
missing data in gazetteers have further increased the difficulty in
solving this problem. Although toponym disambiguation has been
studied extensively and the achievements in this research topic are
fruitful, existing methods do not apply well on our problem in a
noisy environment. Based on the heuristic that the correct road of
a road name is spatially close to the road of the next road name in the
sequence. We introduced a novel approach of modeling the ambigu-
ities and noise, i.e., using a semi-complete directed k-partite graph.
The disambiguation problem is then converted to a hop-constrained
shortest path problem. We further designed an efficient algorithm to
solve this shortest path problem. The effectiveness of our algorithm
has been confirmed by evaluation on real data and comparison with
an existing method.

In the future, we will incorporate spatial reasoning and natural lan-
guage processing into our work. We will use language cues to iden-
tify turns and merges of roads. Using cardinal directions, such as
“north” and “south”, combined with spatial information of the roads,
we can infer the directions of the route and prune uninvolved road
segments. Our final goal is to truly recover a route description from
text form to digital maps.
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