
Macros, Reactive Plans and Compact Representations

Christer Bäckström1 and Anders Jonsson2 and Peter Jonsson1

Abstract. The use and study of compact representations of objects
is widespread in computer science. AI planning can be viewed as
the problem of finding a path in a graph that is implicitly described
by a compact representation in a planning language. However, com-
pact representations of the path itself (the plan) have not received
much attention in the literature. Although both macro plans and re-
active plans can be considered as such compact representations, lit-
tle emphasis has been placed on this aspect in earlier work. There
are also compact plan representations that are defined by their access
properties, for instance, that they have efficient random access or effi-
cient sequential access. We formally compare two such concepts with
macro plans and reactive plans, viewed as compact representations,
and provide a complete map of the relationships between them.

1 INTRODUCTION

The concept of representations of objects that are much smaller than
the objects themselves is widespread in computer science; we use it
on a daily basis when we compress or uncompress files. Such repre-
sentations are often referred to as compact, compressed or succinct.
In some cases it is sufficient to compute a compact representation,
for instance, when archiving a file. In other cases the representation
must support various operations, like searching for or replacing data,
without first unpacking it. Performing an operation on a compact rep-
resentation of an object is typically harder than performing the same
operation on the original object. This is not always the case, though;
there are algorithms which are efficient because they use compact
representations. Two such examples are the use of succinct represen-
tations of visibility regions to efficiently answer visibility questions
for polygons [7], and succinct representations of solution sets for ef-
ficient solving of certain CSP problems [9]. Also AI planning can
be tractable in certain cases by exploiting compact representations
of the solutions [16, 19]. That is, using compact representations is
sometimes beneficial even if not motivated by saving space.

An archetypical example of compact representations is compres-
sion of strings, with results varying from optimizing the size of string
representations [12, 25] to efficient implementations of operations on
compressed strings [4, 18]. Compact representations of more struc-
tured objects than strings is also well studied in the literature. For
instance, compact representations of graphs have been studied both
in the general case [14] as well as in connection with graph search
motivated by AI applications [3]. Compact representations have been
studied in numerous other AI applications such as model check-
ing [23] and for analysing formalisms for knowledge representa-
tion [11]. AI planning is the application in focus of this paper.

1 IDA, Linköping University, SE-58183 Linköping, Sweden.
Email: christer.backstrom@liu.se peter.jonsson@liu.se

2 DTIC, Universitat Pompeu Fabra, 08018 Barcelona, Spain.
Email: anders.jonsson@upf.edu

Planning has a natural connection to compact representations, but
one which is often overlooked. A planning instance is an implicit
representation of a graph that is exponentially larger than its rep-
resentation and where the solutions, i.e. the plans, are paths in this
graph. That is, the problem instances themselves are compact rep-
resentations by definition. Yet, very little attention has been paid to
understanding and analysing compact representations also of the so-
lutions, which are usually explicitly represented. This is a surprising
asymmmetry, especially since many plan representations that can be
viewed as compact have been proposed in the literature; examples in-
clude macros, reactive plans, and contingent plans. Even though the
inventors themselves may not always have realized that these repre-
sentations are compact or invented them for that purpose, some of
them do serve this purpose perfectly well.

The main goal of this paper is to analyse and compare a number
of such representations taken from the literature. Although we argue
that saving space is not the only, or even the most important, aspect
of compact representations, it is not irrelevant even today. An obvi-
ous case is when the hardware is severly restricted, for one reason
or another, as in the case of many automotive or autonomous-agent
applications, cf. reactive plans in spaceships [27]. It is less obvious
that compact representations are highly relevant even when we con-
sider computing that is not hampered by severe hardware limitations.
However, also this is sometimes the case, at least if we do not draw
a rigid borderline between planning and search in general; Korf [21]
has very recently considered disk-based search algorithms and ar-
gued that representational compactness is highly relevant for search.
Another case is the use of large databases of plans or subplans, or
even just some piece of information for each plan, as in pattern data-
bases. These are used for heuristic search in planning and can become
so big that they need to be compressed [13, 26], yet they do not even
store the actual plans but only a heuristic value for each one! Clearly,
compact databases are useful and important also for case-based rea-
soning and many other memory-intensive applications.

Apart from the obvious purpose of saving space there are other,
often more interesting, reasons for considering compact represen-
tations. One reason is that compact representations can emphasize
what different plans or subplans have in common and how they dif-
fer from each other. This might be exploited for more efficient rea-
soning about plans, for instance, by abstracting actions with similar
function into equivalence classes [2]. Basically, compactness means
structure, which is a well-known information-theoretic fact. If an ob-
ject can be represented compactly, then it has some redundancy and
structure that might be possible to exploit for simpler and more effi-
cient reasoning. Furthermore, planning has a long tradition of invent-
ing new planning languages and plan representations. While there are
comparisons of languages in the literature, either from a knowledge-
representation viewpoint or from a computational viewpoint, very lit-
tle such work exists on comparing plan representations. We advocate

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-85

85

studying plan representations from the perspective of compactness
as one of several ways for doing such comparative work, motivated
by the relationship between compactness and structure.

To narrow in to more concrete examples of compact plan represen-
tations, macros is an obvious starting point. They have been widely
used in planning for a long time, but seldom for this purpose. An
exception is Giménez and Jonsson [16, 19] who study classes of
planning problems that may have solutions of exponential length, but
where a macro representation of a solution can always be generated
in polynomial time. Macro plans are intimately related to the con-
cept of compressed grammars, thus having close ties with the previ-
ously mentioned work on compact string representations. There are
also compact representations that are characterised by their access
properties, either efficient random access (CRAR [2] and TA [22])
or efficient sequential access (CSAR [2] and SA [22]). All these are
different ways of representing one long plan compactly.

Another case is representing a large set of plans compactly, rather
than one single long plan. This occurs in plan recognition, where
we may have to consider an exponential number of candidate plans
that share the same initial prefix [15]. Another example is reactive
plans (also known as universal plans or reactive systems). Although
seldom described in such terms, a reactive plan is actually a repre-
sentation of a (usually large) set of plans: there is one plan for each
state from which the goal can be reached. In both these examples,
there will typically be a lot of redundant information, for instance, in
the form of plan segments that are shared between several different
plans. Representing such plan sets in a more compact way can be
beneficial and, in large real-world examples, absolutely necessary.
This is also how it is often done in practice; for instance, a reactive
plan is often compactly described as an algorithm or a state machine.

A third case is representing a single plan that is big, but not neces-
sarily long. A typical example of this is contingent plans [6] (or other
branching plans) where each branch may be of moderate length but
the number of branches may grow exponentially. Also here, we can
often expect that different branches share sub-branches which can be
exploited as described for sets of plans.

These three cases are not distinct and isolated from each other. For
instance, representing a single plan compactly or representing a set of
plans compactly can sometimes be viewed as two different sides of
the same coin. This idea has been used for obtaining non-trivial com-
plexity results, cf. Bäckström and Jonsson [2] or Liberatore [22]. An-
other example is when a contingent plan, which is a branching plan,
is represented as one long conformant plan, which does not branch,
as described by Bonet [5]. Hence, studying compact representations
of a single plan is not as limited and restrictive as it may seem. It
should also be noted that although this paper is restricted to STRIPS

planning, this is not necessary for compact representations to be im-
portant and interesting. For instance, solutions to POMDPs may be
thought of as a probabilistic variant of reactive plans and compact-
ness of representations is important also in this case [8]. Furthermore,
an HTN planning instance can alternatively be viewed as a grammar
that expands to the set of plans for itself.

This paper focuses on four compact representations of plans:
macro plans, CRARs, CSARs, and reactive plans. The main result
is a full investigation of how these four types of representations re-
late to each other, which essentially results in a number of subclass
and separation results. The results can be summarized and illustrated
as in Figure 1. Loosely speaking, X �p Y (or X �∀

p Y) means that
representation Y is a strictly more expressive compact representa-
tion than X (formal definitions follow later). For instance, we see
that macro plans (MACR) are a strict subclass of CRAR. This means

MACR CRAR

CSAR

REAC

�p

�p

�∀
p

incomp.

Figure 1. Summary of results.

that there is no plan that has a compact macro representations but
does not have a CRAR. On the other hand, since the relationship
is strict there must be plans that have compact representations with
polynomial-time random access, yet do not have any compact macro
representation. Thus, there are classes of plans that have more struc-
ture than macros can express but that still have CRARs. This says that
it is not pointless to look for compact representations that are more
expressive than macro plans, but that are still clearly structured and
admit polynomial-time random access. One attempt in that direction
is the concept of automata plans [1], which are highly structured and
strictly more expressive than macro plans, although their relation-
ship to CRARs remains to be precisely determined. We also see, for
instance, that reactive plans are incomparable with both macro plans
and CRARs. Among other things, this implies that they cannot be rep-
resented with macros or admit polynomial-time random access and
still be compact; they are fundamentally different from both macro
plans and CRARs, since the latter can represent things that reactive
plans cannot. In short, the results tell us that all four types of repre-
sentation have sufficiently different properties that none of them can
be considered redundant. With these results we thus start to formally
stake out a space of plan representations with varying properties.

These results are based on the one hand on a type of subclass re-
lationship, and on the other hand on separation results. For the sep-
aration results it has been necessary to use a number of quite differ-
ent techniques. Some of these have previously been used by Libera-
tore [22], but his techniques are not sufficient in all cases, so we also
had to invent substantially different ones. For instance, we sometimes
prove separation by demonstrating that plan validation has different
complexity depending on the representation. This reveals a some-
what surprising connection between plan validation and compact-
ness, which seems fruitful to investigate further. Among other things,
this opens up for entirely new methods to classify planning problems
into different complexity classes based on the properties of compact
solutions for them. Some further discussion about this can be found
in Section 6. Finally, the different techniques we have used provide
a toolbox of tested methods that will most likely be useful also for
investigations and comparisons of other plan representations.

The rest of the paper is organized as follows. Section 2 introduces
some general notation and terminology, while Section 3 contains for-
mal definitions of the four compact representations and the subsump-
tion relations used to express their relationships. Section 4 analyses
the complexity of plan validation for macro plans and CRARs, which
is needed for the main results but is also interesting in its own right.
Section 5 contains the main theorem along with some further results
required. The paper ends with a discussion in Section 6.

2 PRELIMINARIES

The number of objects in a set or sequence X is denoted |X| and the
size of the representation of an object X is denoted ||X||. Sequence
concatenation is denoted “;” and X∗ is the set of all sequences, in-

C. Bäckström et al. / Macros, Reactive Plans and Compact Representations86

cluding the empty one, over a set X . Function composition is denoted
f ◦g, where (f ◦g)(x) = f(g(x)). DTM and NTM denote determin-
istic and nondeterministic Turing machines, respectively. We use x to
denote the negation of a propositional atom x, which extends to liter-
als such that x = x and to sets of literals such that Y = {� | � ∈ Y }.
If X is a set of atoms, then L(X) = {x, x | x ∈ X}, i.e. the literals
over X . Let X be a universe of atoms. Then a set Y ⊆ L(X) is con-
sistent if either x �∈ L(X) or x �∈ L(X) for all x ∈ X and Y is total
if exactly one of x and x is in Y for every x ∈ X . The closed-world
assumption is thus made explicit, which is a purely techincal matter.
The operator � is defined as X�Y = (X−Y)∪Y for all consistent
sets X and Y of literals.

We use propositional STRIPS with negative goals (PSN).

Definition 1. A PSN frame is a tuple f = 〈V,A〉 where V is a
set of propositional atoms and A is a set of actions. The state space
is S(f) = {s ∈ 2L(V) | s total} and its members are called states.
Each action a in A has a precondition pre(a) ⊆ L(V) and an effect
eff(a) ⊆ L(V), which are both consistent. The notation a : X ⇒
Y defines an action a with pre(a) = X and eff(a) = Y . For all
s, t ∈ S(f) and actions a ∈ A: 1) a is valid in s if pre(a) ⊆ s and
2) action a is from s to t if a is valid in s and t = s � eff(a). A
sequence ω = 〈a1, . . . , a�〉 ∈ A∗ is a plan from s0 to s� if either
1) ω = 〈〉 and s0 = s� or 2) there are s1, . . . , s�−1 ∈ S(f) such
that ai is from si−1 to si for all i, where 1 ≤ i ≤ �. A PSN instance
is a tuple p = 〈V,A, I,G〉 such that f = 〈V,A〉 is a PSN frame,
I ∈ S(f) and G ⊆ L(V) is consistent. A plan for p is a plan from I
to some s ∈ S(f) such that G ⊆ s,

3 COMPACT REPRESENTATIONS

This section starts with a brief recapitulation of macro plans and their
access properties as well as of the CRAR and CSAR concepts. Macro
plans are also cast as a compact representation in an analogous way
and a subsumption relation is defined for comparing the expressive
power of such representations. This is followed by a recapitulation of
reactive plans and a generalisation of the subsumption relation that
makes it possible to compare reactive plans, which are actually sets
of plans, with representations of single plans.

A macro is a symbol with a definition that is a sequence of ele-
ments, where each element is either an action or a macro. A macro
is expanded by replacing it with its defining sequence. A macro plan
is a system of macros with acyclic expansion and a designated root
macro, such that the root macro can be recursively expanded into a
single well defined action sequence. This is essentially identical to a
compressed grammar, which implies that macro plans have efficient
random access properties.

Proposition 2. (Bäckström and Jonsson [2], Proposition 31) There
is a polynomial p such that for every PSN frame 〈V,A〉 and every
macro plan μ for a sequence ω ∈ A∗, μ can be used to random
access any action in ω in p(||μ||) time.

We now recapitulate the definition of the CRAR and CSAR con-
cepts [2] and define a similar concept for macro plans. A DTM M
runs with delay f , for some function f , if for all inputs x it generates
each succesive output symbol in f(||M ||+ ||x||) time.

Definition 3. Let f be an arbitrary function, let f = 〈V,A〉 be
an arbitrary PSN frame and let ω = 〈a1, . . . , a�〉 ∈ A∗. Then a
representation ρ of ω is a DTM. Furthermore:

1) ρ is f -compact if ||ρ|| ≤ f(||f ||) and it runs in f(||f ||) space.

2) ρ is an f -compact sequential-access representation (f -CSAR)
of ω if it is f -compact and it generates ω sequentially with delay
f(||ρ||). When finished, ρ outputs ⊥ and then terminates.

3) ρ is an f -compact random-access representation (f -CRAR) of
ω if it is f -compact and for an arbitrary index i (where 1 ≤ i ≤ |ω|)
as input, it outputs action ai of ω in time f(||ρ||). Furthermore, ρ
returns ⊥ for all input not in the range [1, |ω|].

4) ρ is an f -macro representation (p-MACR) for ω if it is an
f -compact macro plan for ω.

That ρ runs in f(||f ||) space means the total of input, working and
output tapes (which implies that an f -CRAR ρ cannot represent a
plan longer than 2f(||ρ||)). We consider the output tape as cleared
between actions so the output is a single action, not the sequence
ω. We write only MACR, CRAR etc. when referring to the whole
family of representations of a particular type. We proceed to define
a subsumption relation that can be used to describe the relationship
between different plan representations.

Definition 4. Let X and Y be representations of PSN action se-
quences. Then: X �p Y if there is a polynomial-time function g such
that for all PSN frames f = 〈V,A〉 and all ω ∈ A∗, if ρ is an X
representation of ω then g(ρ) is a Y representation of ω.

Note that the size of g(ρ) is polynomially bounded in the size of
ρ since g runs in polynomial time. We further write X �p Y when
X �p Y holds but not Y �p X . While it may seem overly strong
to require that we can transform representations in polynomial time
and not just look at the size, this enables proving more results. Not
all proofs make use of the time requirement, though.

A planning algorithm computes a whole plan from an intial state
to a goal state while a reactive plan takes a state as input and outputs
a single action to execute in that state, thus generating a plan incre-
mentally, action by action. This definition follows Jonsson et al. [20].

Definition 5. A PSN goal frame is a tuple g = 〈V,A,G〉 such
that 〈V,A〉 is a PSN frame and G ⊆ L(V) is consistent. Let g =
〈V,A,G〉 be a PSN goal frame. Define Sext = S(〈V,A〉)∪ {⊥,}
and Aext = A ∪ {a⊥, a�}. The virtual actions a⊥ and a� are de-
fined such that for all states s ∈ Sext: 1) a⊥ is valid in s if s �= and
s� eff(a⊥) = ⊥. 2) a� is valid in s if s �= ⊥ and s� eff(a�) = .
A reactive plan for g is a function ρ : Sext → Aext. Define the corre-
sponding function σρ : Sext → Sext such that σρ(s) = s�eff(ρ(s))
for all s ∈ Sext. The reactive plan ρ is:

Sound if for all s ∈ Sext, 1) ρ(s) is valid in s and 2) ρ(s) = a�
iff either G ⊆ s or s = .

Acceptance-complete if for all s ∈ S such that 〈V,A, s,G〉 has a
plan there is an integer k such that σk

ρ (s) = .
Rejection-complete if for all s ∈ S such that 〈V,A, s,G〉 has no

plan there is an integer k such that σk
ρ (s) = ⊥.

For all s ∈ Sext, define ρ0(s) = 〈〉 and ρk(s) =
(ρ(s); ρk−1(σρ(s))) for all k ≥ 1. Further define πρ =
{〈s, ρk(s)〉 | k > 0, σk

ρ (s) ∈ S(g) and σk+1
ρ (s) ∈ {⊥,}}.

The function σρ aggregates ρ with applying its result to the current
state. A reactive plan encodes exactly one action sequence for each
state and the set πρ is the set of all such sequences, keyed with their
initial states. We specialize this general definition into a concept of
compact representation, REAC, similar to the previous ones, which
essentially captures PT,SAR universal plans [20] in the case where
f is a polynomial. We also define a generalisation of the �p relation
since a REAC is a set of plans.

C. Bäckström et al. / Macros, Reactive Plans and Compact Representations 87

Definition 6. Let f be an arbitrary function and let g = 〈V,A,G〉
be an arbitrary PSN goal frame. Then an f -REAC ρ is an f -compact
reactive plan for g that is sound, acceptance-complete, rejection-
complete and runs in f(||ρ||) time.

Definition 7. Let X be an action-sequence representation. Then:
1) REAC �∀

p X if there is a polynomial-time function g such that
for all PSN goal frames g = 〈V,A,G〉, if ρ is a REAC for g then
g(ρ, s) is an X representation of ω for every 〈s, ω〉 ∈ πρ.

2) X ∀�p REAC if there is a polynomial p such that for all func-
tions f and for all PSN goal frames g = 〈V,A,G〉, if every
〈V,A, s,G〉 with a plan has an f -X for some plan then g has a
(p ◦ f)-REAC.

3) X and REAC are incomparable if neither REAC �∀
p X nor

X ∀�p REAC holds.

The definition of �∀
p is analogous to �p but requires that we can

generate one X representation for every action sequence the REAC

can generate. However, ∀�p has no obvious analogous definition
since there can be many different plans from a state to the goal but a
REAC can represent at most one plan for each state.

4 PLAN REPRESENTATION VALIDATION

This section analyses the complexity of validating a plan that is given
as either a MACR or a CRAR. These results are required later to
prove separation between the two concepts, although they are also
interesting as stand-alone results. Especially important is the result
that macro plans allow for efficient plan validation, in addition to ef-
ficient random access. Plan validation for arbitrary type R of plan
representation is defined as follows.

Plan Validation for R
INSTANCE: A PSN instance p = 〈V,A, I,G〉 and an R-
representation ρ of a sequence ω ∈ A∗.
QUESTION: Is ω a plan for p?

The complexity of validation is measured in ||p||+ ||ρ||.
A macro is commonly treated as a compound action described by

its cumulative precondition and effect, which is sufficient informa-
tion to describe the macro [17], as follows.

Definition 8. Let 〈V,A〉 be a PSN frame. Then consistency and cu-
mulative precondition and effect for action sequences is defined as
follows: 1) 〈〉 is consistent and pre(〈〉) = eff(〈〉) = ∅. 2) Let
ω ∈ A∗ and a ∈ A. Then: a) (ω; a) is consistent if both ω and
eff(ω) ∪ pre(a) are consistent, b) pre(ω; a) = pre(ω) ∪ (pre(a)−
eff(ω)) and c) eff(ω; a) = eff(ω)� eff(a).

Proposition 9. Let f = 〈V,A〉 be a PSN frame, ω ∈ A∗ and s, t ∈
S(f). Then ω is a plan from s to t if and only if all the following
holds: 1) ω is consistent, 2) pre(ω) ⊆ s and 3) t = s� eff(ω).

Hence, the root of a macro plan describes the whole plan, which
enables us to prove the following result.

Theorem 10. Plan Validation for MACR is in P.

Proof sketch. Let p = 〈V,A, I,G〉 be a PSN instance and let μ be a
MACR with root macro r for some sequence ω ∈ A∗. According to
Proposition 9 it is sufficient to check that the expansion of r is con-
sistent, that pre(r) ⊆ I and that I� eff(r) ⊆ G to decide whether μ
represents a plan for p or not. It is straightforward from Definition 8
that there is a polynomial-time algorithm for computing consistency
and cumulative conditions for all macros in a macro plan. Validating
I and G against r is obviously no harder than this preprocessing.

We will next prove that validation is harder for CRAR than for
MACR but first need some further machinery. We define a family of
generic PSN instances, then prove that this family corresponds to the
class Πp

2 in the polynomial hierarchy and that these instances always
have a plan with a polynomial CRAR.

Construction 11. Let F = ∀x1, . . . , xm∃y1, . . . , yn . φ be a ∀∃-
3SAT formula where φ = (c1 ∧ . . . ∧ ch) and ci = �1i ∨ �2i ∨ �3i is
a 3-literal clause for all i such that 1 ≤ i ≤ h. Construct the PSN
instance pF = 〈V,A, I,G〉 such that V = {mix,miy,mvc,mvl,
okx, oky, x1, . . . , xm, y1, . . . , yn, vc0, . . . , vch}, I = {mix, miy,
mvc, mvl, x1, . . . , xm, y1, . . . , yn, vc0, . . . , vch, okx, oky}, G =
{miy, x1, . . . , xm} and A has the following actions:

abv : {mvc, vc0} ⇒ {vc0, oky}
avcj : {mvc,mvl, vcj−1, vcj} ⇒ {mvl, vcj}
avt1j : {mvl, vcj , �

1
j} ⇒ {mvl}

avt2j : {mvl, vcj , �1j , �
2
j} ⇒ {mvl}

avt3j : {mvl, vcj , �1j , �
2
j , �

3
j} ⇒ {mvl}

avfj : {mvl, vcj , �1j , �
2
j , �

3
j} ⇒ {mvl, oky}

aet : {mvc,mvl, vch, oky} ⇒ {miy,mvc, vc0, . . . , vch, okx}
aef : {mvc,mvl, vch, oky} ⇒ {miy,mvc, vc0, . . . , vch}
aiyi : {miy, yi, yi−1, . . . , y1} ⇒ {miy,mvc, yi, yi−1, . . . , y1}
ary : {miy, yn, . . . , y1, okx} ⇒ {mix,miy, yn, . . . , y1, okx}
aixi : {mix, xi, xi−1, . . . , x1} ⇒ {mix,mvc, xi, xi−1, . . . , x1}
Let X(i) be the binary encoding of i using the x variables and Y (i)
analogous. Define the action sequence ωF hierarchically such that

ωF = E0, aix, E1, aix, . . . , aix, E2m−1

Ei = V 0
i , aiy, V

1
i , aiy, . . . , aiy, V

2n−1
i , ary

V j
i = abv, avc1, avx1, avc2, avx2, . . . , avch, avxh, aex

where 1 ≤ i ≤ 2m−1 and 1 ≤ j ≤ 2n−1. For each i, the aix action
following Ei is aixk where k is the largest number k′ such that i
mod 2k

′−1 = 0. For each i and j, the aiy action following V j
i is

aiyk where k is the largest number k′ such that j mod 2k
′−1 = 0.

For each V j
i , aex = aet if c1, . . . , ch are all satisfied in X(i)∪Y (j)

and otherwise aex = aef . For each V j
i and each k, action avxk is

avxk =

⎧
⎪⎪⎨

⎪⎪⎩

avt1k if �1k ∈ X(i) ∪ Y (j)

avt2k if {�1k, �2k} ⊆ X(i) ∪ Y (j)

avt3k if {�1k, �2k, �3k} ⊆ X(i) ∪ Y (j)
avfk otherwise

Lemma 12. There is a polynomial p such that for every ∀∃-3SAT
formula F , with pF and ωF as defined in Construction 11: 1) ωF is
a plan for pF if and only if F is satsifiable and 2) ωF has a p-CRAR

ρF that can be constructed in polynomial time from p.

The proof is omitted, but the crucial part of it is the algorithm
in Figure 2, which is a polynomial CRAR satisfying the claims for
ρF , where LV = 2h + 2 is the length of a V j

i block and LE =
2n(LV + 1) is the length of an Ei block.

Note that ωF always exists for pF but is not always a plan. Fur-
thermore, despite its clear hierarchical structure and regularity, ωF is
not an obvious candidate for a macro plan. The reason is that each
Ei block contains an exponential number of V j

i blocks that might
differ so much that it is unlikely that we can always represent them
with a polynomial number of macros. We now have the necessary
prerequisites to prove the complexity of CRAR validation.

C. Bäckström et al. / Macros, Reactive Plans and Compact Representations88

function ρF (t)
i := � t−1

LE+1
�, oE := t− i(LE + 1)

j := � oE−1
LV +1

�, oV := oE − j(LV + 1)

if t < 1 or t > 2m(LE + 1)− 1 then a = ⊥
elsif oE = LE + 1 then (action is type aix)
k := max{k′ | i mod 2k

′−1 = 0}, a := aixk

else (action is in Ei)
if oV = LV + 1 then (action is type aiy or ary)

if j = LV + 1 then a := ary
else k := max{k′ | j mod 2k

′−1 = 0}, a := aiyk
else (action is in V j

i)
k := (oV − 1)/2
if oV = 1 then a := abv
elsif oV = LV + 1 then

if c1, . . . , ch are all satisfied in X(i) ∪ Y (j) then

a := aet
else a := aef

elsif oV is odd then a := avck
elsif �1k ∈ X(i) ∪ Y (j) then a := avt1k
elsif {�1k, �2k} ⊆ X(i) ∪ Y (j) then a := avt2k
elsif {�1k, �2k, �3k} ⊆ X(i) ∪ Y (j) then a := avt3k
else a := avfk

return a

Figure 2. Algorithm for the CRAR ρF .

Theorem 13. Plan Validation for p-CRAR is 1) in Πp
2 for all poly-

nomials p and 2) Πp
2-hard for all polynomials p ∈ Ω(nc) for some

constant c.

Proof sketch. (1 Membership): Let p be an arbitrary polynomial. Be-
fore proving the main result, we consider the following problem X.

INSTANCE: A PSN instance p = 〈V,A, I,G〉, a p-CRAR for
some sequence ω = 〈a1, . . . , an〉 ∈ A∗, a literal � ∈ L(V)
and two integers i, j such that 1 < i < j < 2p(||p||).
QUESTION: Is there an integer k s.t. i < k < j and � ∈ eff(ak)?

X is in NP since it is sufficient to guess a k between i and j and verify
that � ∈ eff(ak). Hence, the complementary problem C of deciding
if a literal does not change between ai and aj is in coNP.

To prove the main result, first consider its complementary prob-
lem, deciding if ρ does not encode a plan for p. If ω is not a plan for
p, then there must be two integers i and j and a literal � such that
1) i < j, 2) � ∈ pre(aj), 3) � ∈ eff(ai) and 4) � �∈ eff(ak) for all
k such that i < k < j. Verify that ω is not a plan by using an NTM
with an oracle for C as follows. First guess i, j and �. Check that con-
ditions 1–3 are satisfied and then use the oracle to verify condition
4, which is an instance of C. Since C is in coNP this whole proce-
dure is a problem in NPcoNP. Hence, the complementary problem
of verifying that ω is a plan is in coNPcoNP = coNPNP = Πp

2 . The
initial state and goal are handled similarily.

(2 Hardness): Let p be a polynomial satisfying Lemma 12. Let
F be an arbitrary ∀∃-3SAT formula and ωF as in Construction 11.
Lemma 12 then says there is a p-CRAR ρF for ωF . The tuple
〈 pF , ρF 〉 is an instance of Plan Representation Validation for p-
CRAR and it follows from Lemma 12 that ωF is a plan for p if and
only if F is satisfiable. Furthermore, since we can compute both pF

and ρF for arbitrary F in polynomial time, there is a polynomial re-
duction from ∀∃-3SAT to Plan Representation Validation for p-
CRAR. Hence Plan Representation Validation for p-CRAR is Πp

2-

hard since ∀∃-3SAT is Πp
2-hard.

If we do not know if a string is a CRAR over an action set, then we
must check that first. We leave it without proof that this problem is
in coNP and, thus, does not add to the complexity of plan validation.

5 RELATIONSHIP RESULTS

We now finally prove some further necessary results and then head
for the main theorem, which formally states the relationship results
earlier claimed.

Lemma 14. All of MACR ∀��p REAC, CRAR ∀��p REAC and
CSAR ∀��p REAC hold unless PH collapses.

Proof sketch. Jonsson et. al. [20, Lemma 12–13 and Theorem 14]
construct a generic PSN goal frame gn = 〈Vn, An, Gn〉 for every
positive integer n, and prove that there is no polynomial p such that
for all n > 0, gn has a reactive plan ρn that is acceptance-complete,
p-compact and runs in in p(||gn||) time. However, they also show
that for all n > 0 and all s ∈ S(gn), if 〈Vn, An, s, Gn〉 has a plan
then this has at most 8n3 + 2n actions.

Lemma 15. REAC ��∀
p CRAR unless PH collapses.

Proof sketch. Bylander [10, Theorem 3.1] demonstrated a polyno-
mial reduction from PSPACE to PSN planning by constructing a
PSN instance p for an arbitrary polynomial-space bounded DTM M
and input x such that p has a plan if and only if M(x) accepts. Fur-
thermore, if M(x) accepts in n steps, then the plan has 3n+1 steps,
and at most one action is applicable in any state. Hence, finding the
right action in a state, if there is one, is polynomial-time. Since M
is bounded there is a predictable limit k for the maximum number of
machine steps if M(x) accepts, and thus also a limit 3k + 1 for the
plan length. It follows that there is a polynomial p such that for every
M(x), the corresponding p has a p-REAC.

Suppose REAC �∀
p CRAR. Let M(x) be a polynomial-space

bounded DTM with input, let p = 〈V,A, I,G〉 be the correspond-
ing PSN encoding of M(x) and let ρ be a corresponding p-REAC

as described above. Suppose M(x) accepts. Then p has a plan ω of
length 3k + 1 or shorter. By assumption, we can construct a CRAR

for ω from ρ in time q(||ρ||) for some fixed polynomial q, so ω has
a (q ◦ p)-CRAR. We can, thus, verify that M(x) accepts by guessing
a string w of size at most (q ◦ p)(||p||) and verify that it is a plan
for p, which is in Πp

2 according to Theorem 13. Hence, finding a p-

CRAR for some plan for p is in NPΠ
p
2 = Σp

3 . However, this means
that deciding if M(x) accepts is in Σp

3 so PSPACE ⊆ Σp
3 , which is

impossible unless the polynomial hierarchy collapses. It follows that
REAC ��∀

p CRAR.

Theorem 16. If the polynomial hierarchy does not collapse, then:
1) MACR �p CRAR �p CSAR; 2) REAC �∀

p CSAR; 3) CRAR and
REAC are incomparable; 4) MACR and REAC are incomparable.

Proof of Theorem 16. 1) CRAR �p CSAR and CSAR ��p CRAR are
immediate from Bäckström and Jonsson [2, Theorems 29 and 30];
MACR �p CRAR follows from Proposition 2 and Definition 3;
while CRAR ��p MACR follows from Theorems 10 and 13.
2) REAC �∀

p CSAR is trivial and CSAR ∀��p REAC follows from
Lemma 14. 3) Follows from Lemmas 14 and 15. 4) MACR ∀��p REAC

follows from Lemma 14. For the opposite direction, suppose
REAC �∀

p MACR. Then REAC �∀
p CRAR since MACR �p CRAR.

However, this contradicts Lemma 15 so REAC ��∀
p MACR holds un-

less PH collapses.

C. Bäckström et al. / Macros, Reactive Plans and Compact Representations 89

6 DISCUSSION

While it is possible to imagine other concepts than our subsumption
concept for relating representations, we have tested the strength of
it by achieving the results in this paper. It is furthermore a natural
concept that has many similarities with Liberatore’s concepts [22]. It
is also worth noting that in some cases, like Lemma 14, we prove a
much stronger form of separation than Definition 4 requires. Instead
of proving that there is no polynomial function g from X to Y we
prove that there does not even exist a polynomially bounded Y rep-
resentation for every X representation. Liberatores results [22] do no
immediately fit into our analysis. For instance, his separation results
are weaker than ours since he uses a more powerful circuit-based
action representation. Furthermore, although his TA representation
is essentially identical to the CRAR concept, his SA representation
resembles the CSAR concept but is more like a reactive plan that rep-
resents only a single plan.

The CRAR and CSAR concepts might, perhaps, seem very theoret-
ical compared to concepts like macro plans and reactive plans, which
have been frequently used in practice. There is no such clear distinc-
tion, however. A macro plan has a clear and simple structure. This
makes it easy to use and understand, but at the expense of limited
expressive power. Reactive systems, on the other hand, are often de-
scribed as algorithms in one form or another, without much structure
imposed on them in the general case. This is no different from de-
scribing a CRAR with an algorithm, as in this paper. It is, however,
obvious that structured representations have many advantages and
that more expressive ones than macro plans can be useful. A recent
attempt in that direction is the concept of automata plans [1]. One
should, thus, primarily consider CRAR and CSAR as yardsticks for
the classification of other, more structured, representations.

Although the purpose of this paper is to compare the expressive
power of some different types of compact representations, the results
also hint at another possible use of this type of results. Plan rep-
resentations and their properties open up for an entirely new way
to define classes of planning problems. For instance, the class of
planning instances that have polynomial-size macro plans as solu-
tions is in NP, since plan validation is in P for macro plans. On the
other hand, the class of planning instances that have polynomial-size
CRARs as solutions cannot be in P unless the polynomial hierarchy
collapses. That is, the latter class is more expressive. This is related
to the compilation-based classification by Nebel [24], but he primar-
ily studies how various features in a planning languages affect the
size of instances, rather than the size of plans.

In this paper we only consider compact plan representations that
are exact representations of some explicit plan. However, it is also
common to use plans which are compact because they are not exact
representations. An example is abstraction, where the planning pro-
cess uses an abstraction of the search space to guide the planning,
either by explicitly constructing a plan in this abstract space or by
somehow implicitly computing a heuristic value for it. This abstract
plan is typically shorter and easier to compute, but sacrifices certain
correctness criteria. We believe that further study of the relationship
between such inexact compact plans and exact compact ones may
cast new light on abstraction.

It should finally be noted that although we draw a separating line
between representations that are polynomial and those that are not,
this is just a first coarse classification. In the future it might be in-
teresting to make similar studies of relationships and separations be-
tween representations of different polynomial degrees.

ACKNOWLEDGEMENTS

A. Jonsson is partially supported by grants TIN2009-10232,
MICINN, Spain, and EC-7PM-SpaceBook.

REFERENCES

[1] C. Bäckström, A. Jonsson, and P. Jonsson, ‘From macro plans to au-
tomata plans’, in 20th European Conf. Artif. Intell. (ECAI’12), Mont-
pellier, France, (2012).

[2] C. Bäckström and P. Jonsson, ‘Algorithms and limits for compact plan
representations’, J.Artif. Intell. Res., 44, 141–177, (2012).

[3] J. Balcázar, ‘The complexity of searching implicit graphs’, Artif. Intell.,
86(1), 171–188, (1996).

[4] P. Bille, G. Landau, R. Raman, K. Sadakane, S. Satti, and O. Weimann,
‘Random access to grammar-compressed strings’, in 22’nd ACM-SIAM
Symp. Discrete Algorithms (SODA’11), San Fransisco, CA, USA, pp.
373–389, (2011).

[5] B. Bonet, ‘Conformant plans and beyond: Principles and complexity’,
Artif. Intell., 174(3-4), 245–269, (2010).

[6] B. Bonet and H. Geffner, ‘Planning with incomplete information as
heuristic search in belief space’, in 5th Int’l Conf. Artif. Intell. Plan-
ning Systems (AIPS’00), Breckenridge, CO, USA, pp. 52–61, (2000).

[7] P. Bose, A. Lubiw, and I. Munro, ‘Efficient visibility queries in simple
polygons’, Comput. Geom., 23(3), 313–335, (2002).

[8] C. Boutilier and D. Poole, ‘Computing optimal policies for partially
observable decision processes using compact representations’, in 13th
Nat’l Conf. Artif. Intell. (AAAI’96), Portland, OR, USA, volume 2, pp.
1168–1175, (1996).

[9] A. Bulatov and V. Dalmau, ‘A simple algorithm for Mal’tsev con-
straints’, SIAM J. Comput., 36(1), 16–27, (2006).

[10] T. Bylander, ‘The computational complexity of propositional STRIPS
planning’, Artif. Intell., 69(1-2), 165–204, (1994).

[11] M. Cadoli, F. Donini, P. Liberatore, and M. Schaerf, ‘Space efficiency
of propositional knowledge representation formalisms’, J.Artif. Intell.
Res., 13, 1–31, (2000).

[12] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sa-
hai, and A. Shelat, ‘The smallest grammar problem’, IEEE Trans. In-
formation Theory, 51(7), 2554–2576, (2005).

[13] A. Felner, R. Korf, R. Meshulam, and R. Holte, ‘Compressed pattern
databases’, J. Artif. Intell. Res., 30, 213–247, (2007).

[14] H. Galperin and A. Wigderson, ‘Succinct representations of graphs’,
Information and Control, 56(3), 183–198, (1983).

[15] C. Geib, ‘Assessing the complexity of plan recognition’, in 19th Nat’l
Conf. Artif. Intell. (AAAI’04), San José, CA, USA, pp. 507–512, (2004).

[16] O. Giménez and A. Jonsson, ‘The complexity of planning problems
with simple causal graphs’, J.Artif. Intell. Res., 31, 319–351, (2008).

[17] P. Haslum and P. Jonsson, ‘Planning with reduced operator sets’, in 5th
Int’l Conf. Artif. Intell. Planning Systems (AIPS’00), Breckenridge, CO,
USA, pp. 150–158, (2000).

[18] J. Jansson, K. Sadakane, and W-K. Sung, ‘Compressed random access
memory’, ArXiv, abs/1011.1708v2, (2012).

[19] A. Jonsson, ‘The role of macros in tractable planning’, J. Artif. Intell.
Res., 36, 471–511, (2009).

[20] P. Jonsson, P. Haslum, and C. Bäckström, ‘Towards efficient universal
planning: A randomized approach’, Artif. Intell., 117(1), 1–29, (2000).

[21] Richard E. Korf, ‘Linear-time disk-based implicit graph search’,
J. ACM, 55(6), (2008).

[22] P. Liberatore, ‘Complexity issues in finding succinct solutions of
PSPACE-complete problems’, ArXiv, abs/cs/0503043, (2005).

[23] P. Liberatore and M. Schaerf, ‘On the size of data structures used in
symbolic model checking’, ArXiv, abs/1012.3018, (2010).

[24] B. Nebel, ‘On the compilability and expressive power of propositional
planning formalisms’, J. Artif. Intell. Res., 12, 271–315, (2000).

[25] W. Rytter, ‘Application of Lempel-Ziv factorization to the approxima-
tion of grammar-based compression’, Theor. Comput. Sci., 302(1-3),
211–222, (2003).

[26] E. Schreiber and R. Korf, ‘Using partitions and superstrings for loss-
less compression of pattern databases’, in Proc.25th AAAI Conf. Artif.
Intell., (AAAI’11), San Francisco, CA, USA, (2011).

[27] B. Williams and P. Pandurang Nayak, ‘A reactive planner for a model-
based executive’, in 15th Int’l Joint Conf. Artif. Intell. (IJCAI’97),
Nagoya, Japan, pp. 1178–1185, (1997).

C. Bäckström et al. / Macros, Reactive Plans and Compact Representations90

