
Negotiating Concurrently with Unknown Opponents in
Complex, Real-Time Domains

Colin R. Williams and Valentin Robu and Enrico H. Gerding and Nicholas R. Jennings1

Abstract. We propose a novel strategy to enable autonomous agents
to negotiate concurrently with multiple, unknown opponents in real-
time, over complex multi-issue domains. We formalise our strategy
as an optimisation problem, in which decisions are based on proba-
bilistic information about the opponents’ strategies acquired during
negotiation. In doing so, we develop the first principled approach that
enables the coordination of multiple, concurrent negotiation threads
for practical negotiation settings. Furthermore, we validate our strat-
egy using the agents and domains developed for the International Au-
tomated Negotiating Agents Competition (ANAC), and we bench-
mark our strategy against the state-of-the-art. We find that our ap-
proach significantly outperforms existing approaches, and this dif-
ference improves even further as the number of available negotiation
opponents and the complexity of the negotiation domain increases.

1 INTRODUCTION

Recent years have seen an increasing interest in developing auto-
mated bargaining strategies that allow autonomous agents to negoti-
ate, on behalf of their owners, in complex, realistic environments. In
particular, these environments are characterised by having (1) con-
current negotiations with multiple opponents, who are in turn ne-
gotiating with other opponents; (2) negotiations involving multiple
issues; (3) continuous time, where negotiation proceeds in real time
as opposed to fixed rounds; and (4) agents with no prior knowledge
about their opponents. In this paper we deal with all these issues si-
multaneously and consider, for the first time, a principled negotiation
strategy for such complex environments.

In more detail, there is a growing body of work that considers
strategies for multi-issue negotiations against unknown opponents,
by employing a variety of machine learning and other AI techniques
[6, 7, 9]. However, a significant shortcoming of these works is that
they consider only bilateral, one-to-one negotiations. In practice,
agents are often required to negotiate concurrently with multiple
opponents. This is challenging since the strategy of one opponent
may depend on what is happening in other negotiation threads. Fur-
thermore, when negotiations are many-to-many, i.e. where all agents
have multiple negotiation opportunities, an agent may suddenly leave
the negotiations if they have reached an agreement with another op-
ponent. As a result, delays by the participants put them at risk of
failing to reach an agreement with a particular opponent. Finally, if
the protocol allows for decommitment, even if an offer is accepted,
an agent may continue to negotiate with other opponents in the hope
of reaching an even better deal.

In the existing literature, there have been several papers that inves-
tigate the problem of one-to-many (where the opponent is not negoti-
ating with any other agent) and many-to-many negotiations. Aknine

1 University of Southampton, United Kingdom, email: {crw104, vr2, eg,
nrj}@ecs.soton.ac.uk

et al. [1] propose an extension of the well-known contract net pro-
tocol which enables many-to-many negotiations to terminate quickly
and and is tolerant to crash failures. However, they do not consider
the negotiation strategies, but only the properties of the protocol (e.g.,
whether any deadlocks occur). Negotiation strategies are considered
by Giampapa et al. [6] who extend some of the concession heuristics
proposed for bilateral negotiation to account for dynamic, outside
options. However, their work does not consider the negotiation op-
ponents explicitly, only through exogenous probability distributions.

The most related prior works are An et al. [2], An et al. [3] and
Nguyen and Jennings [7]. An et al. [3] is the first work to consider
continuous-time, one-to-many negotiations. They propose a heuristic
negotiation strategy and focus on finding good waiting-time strate-
gies before making a proposal. However, their work only considers
single-issue negotiations and is based on combining a number of ad-
hoc heuristics containing a large number of parameters. In contrast,
we consider a more principled approach and environments with mul-
tiple issues. The latter increases the uncertainty about the opponent,
and so requires exploring the outcome space. This considerably re-
duces the benefit of waiting strategies. In a different work, An et
al. [2] derive Nash equilibrium strategies for agents participating in
one-to-many and many-to-many negotiations. However, their work
assumes single-issue negotiations, discrete time, and focuses primar-
ily on complete information settings. Thus their work is not appro-
priate for practical negotiation settings with multi-issue negotiations,
continuous time, and with no prior knowledge about the opponents.
In contrast, Nguyen and Jennings [7] propose a practical negotia-
tion heuristic for one-to-many negotiations with uncertainty about
the opponents. However, their approach only considers discrete time,
makes strong assumptions about the opponents, and requires consid-
erable prior knowledge about these opponents. In particular, they as-
sume that there is a small number of different opponent types, all
using a simple time-based concession strategy. Furthermore, they as-
sume that the probabilities of each type are known, as well as the pay-
off that will be obtained when negotiating against each type. In this
work, we use their approach as a benchmark, after considerably ex-
tending it to handle multi-issue domains and real time. Despite these
adjustments, and relying on prior knowledge, we show that our novel
strategy developed considerably outperforms the approach of [7].

Against this background, our aim is to develop a practical nego-
tiation heuristic using a principled approach for negotiating concur-
rently against a range of unknown opponents. Specifically, we as-
sume that both the utility functions and the behaviours of the oppo-
nents are unknown. This work is the first to study many-to-many ne-
gotiations against unknown opponents in large, multi-issue domains.
In more detail, our contributions to the state-of-the-art are as follows:
• We propose a novel negotiation strategy that allows the coordina-

tion of multiple, concurrent negotiation threads against unknown
opponents, in complex multi-issue domains, and using a princi-

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-834

834

pled approach. In particular, we formulate the strategy as an op-
timisation problem where, in real time, the optimal utility level is
computed at which (multi-issue) offers are generated. The deci-
sions are made based on probabilistic information about the oppo-
nents, which is updated over time after observing offers received.

• We consider two variants of our strategy: one in which potentially
different utility levels are adopted in each negotiation thread, and
one in which the utility level is the same across all threads (and so
the optimisation problem is reduced to a single dimension).

• Using simulations, we extensively validate our approach against
opponents from the recent international negotiating agents com-
petition (ANAC), which we adapt to our setting. Moreover, we
benchmark the performance of the two variants of our strategy
against a simple strategy that randomly sets its target utility level,
as well as the state-of-the-art [7]. In particular, we show that we
outperform the random strategy by 20%-48% and [7] by 13%-
26%, depending on the number of concurrent negotiations.

The remainder of this paper proceeds as follows. Section 2 outlines
the negotiation protocol used, while Section 3 describes the novel
strategy that we designed for this setting. We evaluate the strategy in
Section 4 and finally, we conclude in Section 5.

2 CONCURRENT NEGOTIATION PROTOCOL

Our many-to-many negotiation protocol is similar to the ones de-
scribed in [2, 7]. Furthermore, as in [7] we allow for decommitment,
subject to a penalty, to allow for more flexibility and a fair compari-
son with the benchmark strategy.

In more detail, negotiation takes place in multiple, concurrent
threads, between pairs of agents. In each of these threads, the agents
use an alternating offers protocol, in which the possible actions are
OFFER, ACCEPT, CONFIRM, END and DECOMMIT. The negotiation
begins with the agents exchanging OFFER messages. Each offer, o,
represents a complete package and specifies the values for all nego-
tiable issues (e.g. price, delivery, penalties, quality of service). For-
mally, o = (v1, v2, . . . , vn), where vi is the value for issue i. Send-
ing an OFFER message in response to an OFFER from the opponent
constitutes a counteroffer and implicitly a rejection of the previous
offer. If an agent is satisfied with the most recent OFFER it received,
it can send an ACCEPT message in order to indicate that it wishes
to form an agreement. Following an ACCEPT message being sent in
a negotiation thread, no further OFFER messages can be sent. The
only messages allowed at this stage are CONFIRM and END. The
CONFIRM message is used to indicate that the agent confirms that a
binding agreement has been formed. Instead, the END message will
abort the negotiation thread.

The reason for including a CONFIRM message is as follows. In the
protocol, an agent is allowed to send offers to multiple opponents at
once. Therefore, it may find that, while waiting for a response from
them, more than one of these offers are accepted. If the ACCEPT
messages were to form a binding agreement at this point, the agent
may inadvertently reach more than one agreement, and it would need
to decommit from all but one of them, thereby incurring decommit-
ment penalties. In this case, the CONFIRM and END messages can
be used to select only one of them. Note that an agent could use
this strategically by delaying sending the CONFIRM message. How-
ever, the agent is expected to confirm the acceptance within a short
period of time (at most few seconds, depending on communication
delays). Moreover, the opponent who sent the acceptance is still free
to abort the agreement without penalty by using the END message.
Provided that an agent does not ACCEPT an opponent’s offer whilst
it is waiting for another agent to CONFIRM an acceptance (or END a
negotiation), the agent can avoid reaching multiple agreements.

oa→b,1

ACCEPT

CONFIRM

Concurrent Agent a Agent bAgent c

oa→c,1

oa→c,3

oa→c,5

CONFIRM

oc→a,2

oc→a,4

ACCEPT

Agreement 1

Agreement 2
DECOMMIT

Figure 1. Sequence diagram showing a simplified negotiation trace
between three agents, including two agreements and a decommitment.

In a negotiation where there are multiple opponents, it is possi-
ble that, after a binding agreement is reached, one of the remaining
opponents makes (or accepts) an offer that has a greater utility than
that of the existing agreement. In such a situation, it may be ben-
eficial to accept the new offer, and, at the same time, DECOMMIT
from the existing agreement. In order to discourage the agents from
decommiting unnecessarily, we introduce a decommitment penalty,
which is paid by the agent that chooses to decommit from a binding
agreement. Without such a penalty, all agreements would essentially
become non-binding, leading to a potentially unstable system. Before
a CONFIRM message has been sent within a thread, it is possible for
either agent to send an END message in order to walk away from the
negotiation thread without an agreement, and no penalty is payable.

To encourage the agents to negotiate without delay, there is a dead-
line which is known to both agents and is in real time, beyond which
no agreements can be formed. Furthermore, a discounting factor is
used to reduce the value of an agreement according to the time at
which it was formed. Formally, the final utility of an agreement of
outcome o at time t is given by Udisc(o, t) = U(o) · (t/tmax)

δ where
δ is the discounting factor, tmax is the deadline and U(o) is the undis-
counted utility of outcome o, provided that t ≤ tmax, otherwise the
utility is 0.

Figure 1 shows an example negotiation trace with three agents,
where agent a negotiates concurrently with agents b and c. After a
sends an offer to b, agent b accepts a’s offer. Agent a then confirms
and an agreement is reached. Agents a and c continue to negotiate,
aiming to find an agreement that is better than the existing one (taking
into account the decommitment penalty). After a total of five offers
have been exchanged, agent c accepts a’s offer. Agent a then con-
firms this agreement, and simultaneously decommits from the worse
agreement with agent b. In practice, negotiation traces are likely to
be considerably longer.

3 CONCURRENT NEGOTIATION STRATEGY

The strategy that we have developed consists of two key components,
which we refer to as the coordinator and the negotiation threads.
This structure is used in order to modularise the information flow
within the agent. In more detail, each negotiation thread is responsi-
ble for managing the negotiation with a single opponent, using infor-
mation learnt during the interaction with that opponent, along with
information provided by the coordinator. The coordinator is the only

C.R. Williams et al. / Negotiating Concurrently with Unknown Opponents in Complex, Real-Time Domains 835

Coordinator

Thread 1

Thread n

Opponent 1

Opponent n

Concurrent Negotiation Agent

t∗1 , u∗
1

t∗n, u∗
n

P1

Pn

... ...

Figure 2. Architecture of the concurrent negotiation agent.

component which deals directly with information provided by all of
the negotiation threads, in order to determine the best response across
the entire set of opponents. It then uses this information to adjust the
behaviour in the individual threads. We discuss the specific details
of each of these components in turn, in Sections 3.1 and 3.2, before
discussing our approach to handling decommitment in Section 3.3.

3.1 The Negotiation Threads

The strategy of each negotiation thread is an extension of a recently
published, principled, adaptive bi-lateral negotiation agent [9]. This
agent was designed to be used in a similarly complex environment,
but only for negotiations against a single opponent. In more detail,
each thread, i, performs Gaussian process regression in order to pre-
dict the future concession of its opponent. The prediction is based on
the offers received so far by this opponent, and is updated as more
offers are received. The Gaussian process enables the prediction to
be captured in the form of a probability distribution over the utility,
pi,t(ui) for all future time points, t ∈ [tc, tmax] (see [9] for details).
The probability distribution is then passed on to the coordinator,
which uses it (along with those from other threads) to determine, for
each thread i, the best time, t∗i , at which to reach an agreement, and
the best utility, u∗

i , at which the thread should aim to reach the agree-
ment. The way in which the coordinator calculates these values forms
a core part of the negotiation strategy, and is discussed in detail in
Section 3.2. For now, we will simply take these two values as given.

Given its target time, t∗i , and target utility, u∗
i , at that time, a ne-

gotiation thread needs to: (1) determine the target utility at which
to generate offers and to accept incoming offers right now2 and, (2)
generate multi-issue offers at the current target utility. Now, to deter-
mine the target utility, uτ , at the current time, tc, each thread uses
polynomial time-dependent concession, where the concession rate is
set such that the target utility level reaches u∗

i at time t∗i .3 By scaling
the utility between 0 and 1, the current target utility is given by:

uτ (tc) = 1− (1− Umin)(tc/tmax)
1/β (1)

where Umin is the minimum utility that the thread will concede to,
tc is the current time, and tmax is the agent’s deadline. In our ex-
periments, we set Umin = 0.5 since, given the scaling of the utility
function between 0 and 1, in the multi-issue negotiations we consider
an efficient agreement would give at least as much to the opponent.

2 Note that our strategy does not simply delay until t∗i before making any
offers, but uses the intervening time to try and get an even better offer by
setting the utility level above u∗

i , and then conceding towards u∗
i .

3 Note that, importantly, u∗
i and t∗i are constantly updated by the coordinator,

even before the target time is reached, resulting in the concession rate being
adjusted as well. Therefore, in practice, the concession over longer periods
of time will not be polynomial.

Therefore, since we are interested in obtaining at least as much util-
ity as our opponent, even though we don’t know the opponent’s util-
ity function, the agent should never concede below this value. Fur-
thermore, β is set such that (if possible) Equation 1 passes through
[t∗i , u

∗
i]. Formally,4

β = log(t∗i /tmax)/log(1− u∗
i /1− Umin) (2)

Finally, since we are concerned with multi-issue negotiation, it is
necessary to generate a multi-issue offer, o, such that U(o) ≈ uτ . We
use the same approach as [9], which is to generate random offers un-
til one is found which has a utility, U(o) ∈ [uτ −0.025, uτ +0.025].
If an offer cannot be found within this range, the range is expanded,
until a solution is found. Furthermore, if the target drops below the
highest value of the offers made by the opponent, we instead propose
the package with that utility that was offered by the opponent. This is
since we assume that, for a set of possible offers with utility greater
than uτ , the one which is most likely to be accepted is the one which
has previously been offered by the opponent. It may be possible to
improve the selection of offers by modelling the preferences of the
opponents. However, due to the real-time aspect to the negotiations
we consider, we found that using this simple, fast approach to select-
ing an offer produced very good results.

3.2 The Coordinator

The role of the coordinator is to calculate the best time, t∗i and utility
value, u∗

i at that time, for each thread. To do so, it uses the probabil-
ity distributions received from the individual threads, which predict
future utilities offered by the opponents. In the following, we use
Pi,t(u) to denote the cumulative probability distribution function,
which is the (predicted) probability that the utility of an offer by the
opponent will be at least u at time t, and pi,t(u) is the corresponding
density function. In addition, recall that the negotiations are many-
to-many, and so the opponents may exit the negotiations prematurely
if they reach an agreement elsewhere. Since these values cannot be
learned during a single negotiation (but can be learned by experimen-
tation from repeated negotiations), we assume that the coordinator
has prior knowledge of Pc,i(t, tc), which denotes the probability that
opponent i will still be in the negotiation at time t > tc, given that it
is in the negotiation at the current time, tc .

Given this, we formulate the above problem as an optimisation
problem, and we consider two related approaches:

1. The first approach is to allow the optimiser to find a different
optimal target utility, u∗

i , for each thread. This is a more gen-
eral approach but, due to the number of variables (one per op-
ponent), finding a solution results in a multi-dimensional optimi-
sation problem and is more computationally intensive. We refer to
this approach as the multiple u∗ strategy.

2. The second approach is to constrain the optimiser to use the same
u∗ value for all the threads. This is less flexible, as it results in the
same behaviour being adopted in all threads. The main benefit is
computational, since it results in a single-dimensional optimisa-
tion problem. We refer to this approach as the single u∗ strategy.

To find the optimal strategy, we begin by computing the best time
to reach agreement, and then consider the best utility (or utilities),
to offer at that time. We do the first part by computing the expected
utility of an agreement at a given time, and choose the time with
the highest expected utility. Although the protocol allows for de-
commitment, when we compute the expected utility, we simplify

4 In practice, we also bound β ∈ [0.01, 2] to ensure that the agent never
concedes too fast.

C.R. Williams et al. / Negotiating Concurrently with Unknown Opponents in Complex, Real-Time Domains836

the equations by implicitly assuming that we terminate all other
threads once an agreement is reached.5 As a result, a single best time,
t∗ ∈ [tc, tmax], is computed for all negotiation threads, as follows:

t∗ = argmaxt∈[tc,tmax]
EUrec(t) (3)

where EUrec(t) is the expected utility when reaching an agreement
at time t, given by:

EUrec(t) =
1

|A|
∑
i∈A

Pc,i(t, tc)

∫ 1

0

upi,t(u)du (4)

where A is the set of remaining negotiation threads (i.e. those that
have not terminated), and Pc,i(t, tc) is as defined above. Note that
the expected utility is computed as the average expected utility for
each thread. This is because, since we implicitly assume no decom-
mitment, the expected utility assumes we are committed to the first
thread that gives us an agreement. Thus, if multiple opponents were
to form agreements at roughly the same time, there is an equal prob-
ability that any one of those agreements will be formed.

We now look at how u∗ is set, given t∗, firstly by introducing the
multiple u∗ approach, then discussing the simpler, single u∗ one.

3.2.1 Multiple u∗

Given the target agreement point, t∗, we would like to find the opti-
mal utility level for each thread at which to produce offers. To this
end, we first specify the expected utility for a given vector of util-
ity levels, one for each (remaining) opponent. We calculate this by
assuming that the probability distributions from the various threads
are independently sampled6. Furthermore, as before, we implicitly
assume that no decommitment is allowed.

Given this, the expected utility of proposing offers at utility levels
�u at time t can be expressed as:

EUoffer(�u, t) =
∑

A′∈P(A)

⎛
⎝f(�u,A

′
)
∏
i∈A′

Pi,t(ui)
∏

i∈A\A′
(1− Pi,t(ui))

⎞
⎠
(5)

where A is the set of remaining opponents, ui is the utility of the
offer made to opponent i, P(A) is the powerset of A, Pi,t(ui) is the
probability that opponent i will accept an offer of utility ui at time
t. Note that the right part of the equation denotes the probability of
reaching an agreement with exactly the agents in the set A′ by the
time negotiations reach time t. Then, f(�u,A′) is the utility obtained
if this occurs. For the same reasons as given above, since we implic-
itly assume no decommitment, the utility of this event is given by
the average of each ui, i ∈ A′ (since, given that all opponents in A′

will accept the offer, the order in which the opponents accept them is
equally likely) written formally as f(�u,A′) =

∑
i∈A′

ui
|A′| .

Given this, we find the set of best values, �u∗, to offer to the oppo-
nents by maximising the expected utility. Formally:

�u∗ = argmax�u∈[0,1]|A|EUoffer(�u, t
∗) (6)

Since the EUoffer function is nonlinear, we use a nonlinear optimisa-
tion package (specifically, the Ipopt interior point optimizer [8]) to
find the solution to Equation 6.
5 In practice, we do continue to negotiate (as explained in Section 3.3) but

this is not captured by the expected utility. In principle, the equations can
be extended to include the additional expected utility from decommitment,
but this can become computationally intensive to compute, and we leave
this for future work.

6 Note that this is a simplifying assumption and applies to settings where the
opponents have widely different strategies and/or preferences. In domains
where opponents are similar, these distributions tend to be more correlated.

3.2.2 Single u∗

In the simpler, single u∗ variant of our coordinator, all negotiation
threads are provided with the same value for u∗. As a result, Equa-
tion 5 can be simplified to:

EUoffer(u, t) =
∑

A′∈P (A),A′ �=∅

⎛
⎝u

∏
i∈A′

Pi,t(u)
∏

i∈A\A′
(1− Pi,t(u))

⎞
⎠

(7)
By further simplification, we get:

EUoffer(u, t) = u ·
(
1−

∏
i∈A

(1− Pi,t(u))

)
(8)

In this case, u∗ = argmaxu∈[0,1]EUoffer(u, t
∗).

The benefit of this simplification is that it makes the optimisation
problem easier to solve while, depending on the domain, the impact
on the optimal expected utility may be limited.

3.3 Handling Decommitment

Although the expected utility does not take into account the possi-
bility of decommitment, in order to benefit from the decommitment
option, the agent continues to negotiate with other agents even when
an agreement is reached, but will only accept offers which provide a
significant improvement even after decommitment penalties are de-
ducted. Since an agent can only ever reach one agreement with each
opponent, it is important for the agent to avoid agreements which
only provide marginal improvements. This is because any agreement
reduces the number of remaining opportunities.

Therefore, once an agreement has been reached, we introduce a
minimum utility, umin, for generating offers and accepting an oppo-
nent’s offer, which is given by the following rule-of-thumb:

umin = (uexisting +D) ∗ γ, (9)

where uexisting is the utility of the current best agreement, D is the
decommitment penalty, and γ > 1 is a parameter which ensures that
the benefit received from the new agreement is sufficiently large. In
our agent, we set γ = 1.1, which means that any new agreement
must be worth at least 10% more than the existing one, after paying
the penalty. We found this value to work well in practice although, as
future work, we hope to set the utility level in a more principled way,
by extending the expected utility equations in Section 3.2.

4 EVALUATION

In order to evaluate the performance of our strategy in a realistic and
flexible automated negotiation environment, we use the resources
provided as part of the GENIUS framework [5]. GENIUS provides
a common environment for the development of negotiating agents,
and includes a repository of state-of-the-art agents, which we use as
negotiation opponents, as we will discuss in Section 4.1. It also pro-
vides a range of scenarios, some of which we use in our evaluation
(as discussed in Section 4.2). We compare our agent against an ex-
isting concurrent negotiation strategy [7], which is less flexible and
requires some prior information about the negotiation scenarios and
against a simple benchmark (as discussed in Section 4.3). The results
of our evaluation are discussed in Section 4.4.

4.1 Evaluation Opponents

To test our strategy in a situation where the behaviour of the oppo-
nent is unknown, we require a range of different opponent strategies.
To this end, we use the 7 independently developed, state-of-the art

C.R. Williams et al. / Negotiating Concurrently with Unknown Opponents in Complex, Real-Time Domains 837

strategies that were finalists in the most recent Automated Negotiat-
ing Agent Competition (ANAC2011)7 [4]. These strategies were all
designed for use in complex, real-time negotiations, but against only
a single opponent. In order to adapt these agents for the one-to-many
protocol, they need to be capable of sending CONFIRM messages.
Since the only rational reason not to confirm an acceptance is if the
agent has already reached another agreement, adding this functional-
ity to the existing agents is straightforward.

Furthermore, in a true many-to-many negotiation situation, each
of the opponents may be negotiating with a number of competitors
to our agent. Since we are not interested in the performance of these
competitors, we simulate them by including a break-off probability.
This resembles the way outside options are modelled in [6]. How-
ever, note that, in contrast to [6], we simulate the actual opponents
in our evaluation, and only our opponents have probabilistic outside
options which are not actual agents. The result of this break-off prob-
ability is that any of the opponents may leave the negotiations before
the deadline, simulating their agreement with one of our competitors.

We model the probability of break off using a time-invariant func-
tion. In more detail, at any time in the negotiation, the break-off prob-
ability during a future time period is given by a function which de-
pends only on the length of that future period. We achieve this by
using an exponential function to calculate the probability that an op-
ponent continues to negotiate. Furthermore, we assume that all oppo-
nents have the same probability. Specifically, the continuation prob-
ability for a given period is given by:

∀i ∈ A,Pc,i(ta, tb) = αtb−ta (10)

where ta, tb > ta are respectively the start and end of the period, and
α is a constant which determines the rate of break off. In our exper-
iments, we set α = 1/n, where n is the total number of opponents.
This ensures that, on average, there will be one agent remaining in
the negotiation by the deadline.

4.2 Evaluation Scenarios

We initially evaluated the agents in all scenarios used in the
ANAC2011 competition [4]. However, we found that most of these
scenarios were not very competitive, and it was often easy to reach
agreements with a high utility (for both sides), even using a very sim-
ple strategy. This then becomes even easier in a one-to-many negoti-
ation setting against a range of opponents, as it only takes one weak
(concessive) opponent to allow any strategy to reach a good agree-
ment. As a result, such scenarios fail to offer sufficient challenge in
a concurrent negotiation setting. To address this shortcoming, we se-
lected the largest three scenarios (in terms of the size of their outcome
spaces) from the previous two competitions, specifically, the Travel
scenario from ANAC2010 and the Energy and ADG scenarios from
ANAC2011. Moreover, to make them more competitive, we ensure
that the preferences of both parties are strictly opposing. That is,

∀vi,x, vi,y ∈ V, Ua,i(vi,x) ≤ Ua,i(vi,y) ⇔ Ub,i(vi,x) ≥ Ub,i(vi,y)
(11)

To generate a variety of scenarios, we choose the values for each is-
sue by sampling from a uniform distribution, and sorting them such
that the strict opposition constraint in Equation 11 is satisfied. Fur-
thermore, the weights for each issue are also sampled from a uni-
form distribution, normalised such that they sum to one. Since we
can generate any number of scenarios using this approach, we refer
to the underlying characteristics as the scenario type. The details of

7 We exclude IAMhaggler2011 as an opponent, since our strategy is based on
that strategy.

the scenario types are given in Table 1. We note that, in each partic-
ular negotiation, all opponents had the same preferences, but were
using a different strategy (as described below).

Table 1. Characteristics of different scenario types.

Name
Number of

issues
Number of values

for each issue
Number of

potential outcomes
Energy 8 5 390,625
Travel 7 4-8 188,160
ADG 6 5 15,625

Furthermore, in order to ensure that decommitment is a viable op-
tion for the participants, but is not completely free, we set D = 0.1.
Moreover, in each negotiation, there is a deadline of 3 minutes, which
is common to all participants.

4.3 Evaluation Benchmarks

We tested our agent using a state-of-the-art agent and a very simple
agent as benchmarks. In more detail, as the state-of-the-art agent, we
use the strategy developed by Nguyen [7]. A limitation of this strat-
egy is that it requires prior knowledge about the payoffs of various
strategies against different opponent classes (i.e., tough, linear, and
conceder). To determine these values in a principled manner, we used
the results from a set of negotiations between simple time-dependent
strategies, in a bi-lateral negotiation setting. In more detail, we ran
many negotiations between tough, linear and conceder strategies, in
all ANAC2011 domains, averaging the results across those domains
in order to produce the payoff matrix required by Nguyen’s strategy.

As an additional benchmark, we developed an agent which makes
random offers above a fixed threshold (which is chosen randomly in
each negotiation session).

4.4 Evaluation Results

For each of the four agents (the two variants of our strategy, Nguyen’s
strategy, and the random strategy), we run experiments with differ-
ent numbers of opponents. Each experiment consists of 105 different
negotiations per scenario type (totalling 315 negotiations per value
of n and per agent). In each negotiation, any opponent strategy from
the ANAC competition appears at most once. At the same time, we
select the set of opponent strategies in a particular negotiation such
that they are equally represented within the experiment. For example,
since we have 7 different opponents, if n = 3, each opponent appears
in exactly 45 out of 105 negotiations. If n = 7, then each opponent
appears in all negotiations, etc. The value of 105 was chosen since it
allows for equal representation for any n ∈ [2, 7].

The results of these tests are shown in Figure 3, averaged over all
scenarios. The error bars show the 95% confidence intervals. More
specifically, Figure 3(a) shows the average utilities achieved across
all negotiations, including those in which no agreement was reached,
whereas in Figure 3(b), we exclude negotiations which did not lead to
an agreement. The error bars in Figure 3(a) are large, since these re-
sults include a considerable number of outcomes in which no agree-
ment is reached (and therefore have a utility of zero). In contrast, the
error bars in Figure 3(b) are smaller since they exclude the disagree-
ment outcomes. Both figures show that, for all numbers of opponents,
our strategy achieves a higher average utility than both Nguyen’s
strategy and the random strategy. In Figure 3(a) our agent achieves a
utility between 13% and 26% higher than Nguyen’s strategy, increas-
ing with the number of opponents. When considering the utility only
in negotiations where agreements were reached (Figure 3(b)), this
improvement ranges from 25% to 49%. If we consider the increase

C.R. Williams et al. / Negotiating Concurrently with Unknown Opponents in Complex, Real-Time Domains838

2 3 4 5 6 7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

U
til

ity

Number of Opponents

Multiple u*
Single u*
Nguyen
Random

(a) All negotiations.

2 3 4 5 6 7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

U
til

ity

Number of Opponents

Multiple u*
Single u*
Nguyen
Random

(b) All negotiations which resulted in an agreement being formed.

Figure 3. Average results, according to the number of opponents, for a range of different strategies. Error bars indicate the 95% confidence intervals.

2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

Number of Opponents

ADG
Travel
Energy

Figure 4. Average utility improvements of our multiple u∗ strategy over
Nguyen’s strategy, according to the number of opponents and domain.

in utility separately in each of the three domains (see Figure 4), we
observe these results hold in all domains considered. However, the in-
crease is more significant in the domains with larger outcome spaces
(the Travel and Energy domains). Specifically, in the largest domain,
with 7 opponents, our strategy achieved a utility 37% greater than
that of Nguyen’s strategy.

We also considered the situation in which decommitment was
strongly discouraged, by making the decommitment penalty in-
finitely large. The effect of this is a minor reduction in utility
achieved (of no more than 0.04), across the different strategies and
numbers of opponents. This shows that decommitment has very little
impact on the outcome. The random strategy was the one which was
most affected by this change, since, due to its potential to make ini-
tial agreements with very low utility, the opportunity to make further,
better agreements could affect the utility by a greater amount than is
possible for a less concessive approach.

Interestingly, we did not find a statistically significant difference
between the performance of our two strategies. This suggests that,
even though a more complex strategy which allows for a different
utility level in each thread could, in theory, achieve a higher util-
ity, in practice a simpler strategy performs equally well. This can be
partly explained since the more complex strategy is more compu-
tationally expensive, and therefore can generate fewer offers within
the same time span compared to the simpler strategy. This is partic-
ularly relevant in multi-issue negotiations, where exploring the ne-
gotiation space is important. Nevertheless, even though the complex
strategy shows no performance gains on average, the additional flex-
ibility could provide benefits in specific domains.

5 CONCLUSIONS AND FUTURE WORK

This paper proposes a novel agent-based strategy for concurrent
negotiation against unknown opponents in complex, real-time do-
mains. We formulate our strategy as an optimisation problem un-
der uncertainty, where the decisions are based on probabilistic in-
formation about the opponents acquired during the negotiation. Our
method coordinates decisions and computes optimal target utility
levels across multiple bilateral negotiation threads. We validate our
approach against a set of benchmarks, and we show that it outper-
forms the state-of-the-art in this field [7] by a significant amount,
which increases as the number of concurrent negotiation opportuni-
ties and the size of the outcome space increases.

In future work, we plan to study in more detail the issue of decom-
mitment, such as adapting our optimisation strategy to also take into
account the utility of future decommitment decisions. Moreover, the
computational experiments focus on the one-to-many aspect of the
negotiation, modelling the outside options of the opponents simply
as probability distributions. In future work, we plan to simulate the
many-to-many aspect of complex negotiations more directly. Finally,
we see this work as a potential contribution towards the development
of a specialised one-to-many negotiation track at the international
negotiating agents competition (ANAC).

REFERENCES
[1] S. Aknine, S. Pinson, and M. F. Shakun, ‘An extended multi-agent negotiation

protocol’, Aut. Agents & Multi-Agent Syst., 8(1), 5–45, (2004).
[2] B. An, N. Gatti, and V. R. Lesser, ‘Extending alternating-offers bargaining in

one-to-many and many-to-many settings’, Proc. of IEEE/ WIC/ACM Conf. on
Intelligent Agent Technology, 423–426, (2009).

[3] B. An, K.M. Sim, L.G. Tang, S.Q. Li, and D.J. Chen, ‘Continuous-time negotia-
tion mechanism for software agents’, IEEE Transactions on Systems, Man, and
Cybernetics, (Part B), 36(6), 1261–1272, (2006).

[4] T. Baarslag, K. Hindriks, C. M. Jonker, S. Kraus, and R. Lin, ‘The second auto-
mated negotiating agents competition (ANAC 2011)’, Studies in Computational
Intelligence (to appear), Springer, (2012).

[5] K. Hindriks, C. M. Jonker, S. Kraus, R. Lin, and D. Tykhonov, ‘GENIUS: negoti-
ation environment for heterogeneous agents’, Proc. 8th Int. Conf. on Aut. Agents
and Multiagent Syst., 2, 1397–1398, (2009).

[6] C. Li, J. A. Giampapa, and K. P. Sycara, ‘Bilateral negotiation decisions with
uncertain dynamic outside options’, IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 36(1), 31–44, (2006).

[7] T. D. Nguyen and N. R. Jennings, ‘Managing commitments in multiple concur-
rent negotiations’, Electronic Commerce Res. and Appl., 4, 362–376, (2005).

[8] A. Wächter and L. T. Biegler, ‘On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming’, Mathematical
Programming, 106, 25–57, (2006).

[9] C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings, ‘Using gaussian
processes to optimise concession in complex negotiations against unknown op-
ponents’, Proc. of the 22nd Int. Joint Conf. on Artif. Intell., 1, 432–438, (2011).

C.R. Williams et al. / Negotiating Concurrently with Unknown Opponents in Complex, Real-Time Domains 839

