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Abstract. Setting the values of rewards in Markov decision pro-
cesses (MDP) may be a difficult task. In this paper, we consider two
ordinal decision models for MDPs where only an order is known over
rewards. The first one, which has been proposed recently in MDPs
[23], defines preferences with respect to a reference point. The sec-
ond model, which can been viewed as the dual approach of the first
one, is based on quantiles. Based on the first decision model, we give
a new interpretation of rewards in standard MDPs, which sheds some
interesting light on the preference system used in standard MDPs.
The second model based on quantile optimization is a new approach
in MDPs with ordinal rewards. Although quantile-based optimality
is state-dependent, we prove that an optimal stationary determinis-
tic policy exists for a given initial state. Finally, we propose solution
methods based on linear programming for optimizing quantiles.

1 INTRODUCTION

Planning under uncertainty is an important task in Artificial Intelli-
gence (AI) [19]. Such problems can be modeled as Markov decision
processes (MDP) [16]. In standard MDPs, uncertainty is described
by probabilities and preferences are represented by numeric rewards.
MDPs have proved to be very powerful to solve many different plan-
ning problems. However, in some real-life problems, setting the nu-
meric parameters (probabilities and rewards) may be a difficult task.
As optimal solutions could be impacted by even slight variations of
the parameter values, it should not be considered lightly.

This observation has motivated much work on uncertain parame-
ter MDPs and on robust MDPs. In [12], parameters are represented
by intervals and an interval version of value iteration is proposed. In
[1, 15, 5], the case where only probabilities are not accurately known
is considered and solving methods are proposed for searching for ro-
bust solutions, i.e. optimizing the worst case. More generally, a uni-
fying extension of MDPs allowing for different kinds of uncertainty
have been proposed by [21]. Recently, the dual case where only re-
wards are partially known has been studied. The approach developed
in [17, 24] is based on the minimax criterion. In that setting, finding
an optimal stationary deterministic policy is NP-hard, which makes
this approach difficult to put into practice for large size problems for
the moment. Assuming that rewards can only be ranked, [23] pro-
posed a decision model based on reference points.

Following [23], we also assume that uncertainty is probabilistic
and rewards are ordinal. While probabilities can be estimated (exper-
iments, observations. . . ), setting numeric rewards may be difficult.
This is especially the case when rewards do not represent some phys-
ical measure (e.g., money, length, weight, duration. . . ) to be opti-
mized. The problem of assessing rewards, called preference or utility
elicitation in decision theory, is known to be a troublesome task [3].
Besides, the assumption that only ordinal information is known about
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rewards follows a long tradition in AI [4, 11, 10, 9, 2] where quali-
tative preference models and representations have been investigated.
Our work could allow the integration of those qualitative preference
representations (e.g. CP-nets) with MDPs.

In the framework of MDPs with ordinal rewards, we consider two
preference systems that could be seen as dual one to the other: the
first based on reference points and the second based on quantiles.
Thanks to the first, we give a new interpretation of the preference
system of standard MDPs. The second based on quantiles is a new
preference model in MDPs with ordinal rewards. It enjoys some nice
properties. For instance, no assumption is made about the commen-
surability between preferences and uncertainty. Here, it allows for
completely ordinal rewards with probabilistic uncertainty. The pref-
erences it defines are more robust than those in standard MDPs, in
the sense that slight variations away from the quantile does not im-
pact optimal solutions. As a consequence, quantiles do not depend
on extreme values. [8] also proposed to optimize quantiles in MDPs.
However, our works differ in so far as quantiles in [8] are defined
over distributions of cumulated rewards while we define quantiles
over distributions of ordinal rewards. Thus, contrarily to their ap-
proach, we do not need to assume the quantitative nature of rewards.

The paper is structured as follows. In Section 2, we recall some
needed definitions and give some motivation to our work. In Sec-
tion 3, we present MDPs with ordinal rewards and how one can in-
terpret the value of a policy in a state as a distribution over ordinal
rewards. In Section 4, we present two decision models that can be
exploited in this ordinal setting. Finally, we present in Section 5 a
solving method for quantile maximization.

2 BACKGROUND

We now recall the model of Markov decision processes (MDP). It
is defined as a quadruplet (S,A, T, r) [16] where S is a finite set of
states, A is a finite set of actions, T : S×A×S → [0, 1] is a transition
function and r : S × A → X ⊂ IR is a reward function. The transi-
tion function gives the probability that a future state occurs after per-
forming an action in a state, i.e., for all s, a,

∑
s′∈S T (s, a, s′) = 1.

The reward function gives the immediate reward received after ex-
ecuting an action in a state. The set X , a finite set as S and A are
finite, represents the set of all possible rewards.

A decision rule δ indicates which action to choose in each state
for a given step. It can be deterministic: δ : S → A is then a function
from the set of states S into the set of actions A. However, it can also
be randomized: δ : S → P(A) is then a function from the set of
states S into the set of probability distributions over actions P(A).

A policy π at an horizon h is a sequence of h decision rules, de-
noted π = (δ1, . . . , δh) where each δi is a decision rule. It is said
to be deterministic when it only contains deterministic decision rules
and randomized otherwise. At the infinite horizon, a policy is simply
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an infinite sequence of decision rules. A policy is said stationary if
at each decision step, the same decision rule is applied.

Solving an MDP amounts to determining a preferred policy for a
certain preference system. We now recall how those preferences are
defined in the standard framework. A history γ starting from state
s0 ∈ S corresponds to a sequence γ = (s0, a1, s1, a2, s2, . . .) where
∀i ∈ IN, (ai, si) ∈ A× S. The value of history γ can be defined by:

rβ(γ) =
∞∑
i=0

βir(si, ai+1) (1)

where β ∈ [0, 1[ is a discount factor. A decision rule δ from an initial
state s induces a probability distribution over histories (of length 1).
As a value can be associated to every history, δ also induces a proba-
bility distribution over the set X of possible rewards. This probability
distribution is equal to T (s, δ(s), .) in initial state s. By induction, a
policy π in a given initial state s can be associated to a probability
distribution over histories. Hence, a policy also induces a probability
distribution over the values of histories. Consequently, it is possible
to define the expected cumulated reward that a policy can yield from
an initial state. The function vπ : S → IR, which associates to each
state s the expected reward that can be obtained by the policy π is
called the value function of π:

vπ(s) = Eπ
s (r

∗(Γ)) (2)

where Eπ
s is the expectation with respect to the probability distribu-

tion induced by the application of π from state s and Γ is a random
variable over histories. Then, a policy π is preferred to a policy π′:

• from an initial state s if π �s π′ ⇔ vπ(s) ≥ vπ
′
(s)

• from any initial state if π � π′ ⇔ ∀s ∈ S, π �s π′

In the standard framework, the preference relation defined with Eq. 2
guarantees that an optimal stationary deterministic policy exists. In
this paper, for a preference relation �, we will denote � (resp. ∼) its
asymmetric (resp. symmetric) part.

Solving Method. There are three main approaches for solving
MDPs at the infinite horizon. Two are based on dynamic program-
ming: value iteration and policy iteration. The third is based on linear
programming. We recall the last approach as it is needed for the ex-
position of our solving methods. The linear program (P) for solving
MDPs can be written as follows:

min
∑
s∈S

μ(s)v(s)

s.t. v(s)− β
∑
s′∈S

T (s, a, s′)v(s′) ≥ r(s, a) ∀s, ∀a

where weights μ can be interpreted as the probability of starting in
a given state. The dual (D) of this program has a nice property as it
separates preferences, which are expressed in the objective function,
and the dynamics of the system, which is expressed in the constraints:

max
∑
s∈S

∑
a∈A

r(s, a)xsa

s.t.
∑
a∈A

xsa − β
∑
s′∈S

∑
a∈A

xs′aT (s
′, a, s) = μ(s) ∀s

xsa ≥ 0 ∀s, ∀a

⎫⎬
⎭ (C)

To interpret the xsa’s, we recall two propositions relating feasible
solutions of (D) to stationary randomized policies in the MDP [16].

Proposition 1. For a policy π, if xπ is defined by ∀s, ∀a, xπ
sa =∑∞

t=0 β
tpπt (s, a) where pπt (s, a) is the probability of reaching state

s and choosing a at step t, then xπ is a feasible solution of (D).

Proposition 2. If xsa are a solution of D, then the stationary ran-
domized policy δ∞, defined by ∀s, ∀a, δ(s, a) = xsa/

∑
a′∈A xsa′

defines xδ∞
sa (as in Proposition 1), that are equal to xsa.

Hence, the set of randomized policies is completely characterized
by constraints (C). Besides, the basic solutions of (D) correspond
to deterministic policies. Randomized policies are in the convex hull
of those basic solutions. Note that in an MDP, any feasible value
function can be obtained with a stationary randomized policy.

Motivations of this work. We now present some useful results
concerning rewards and the preference relation they induce over poli-
cies. A strictly increasing affine transformation of the reward func-
tion does not change the preferences over policies.

Lemma 1. For λ > 0 and c ∈ R, the preferences over policies
defined by Eq. 2 in (S,A, T, r) and (S,A, T, λr + c) are identical.

Proof. Assume first c = 0. By Eq. 1 and 2, the value function of
a policy π in (S,A, T, br) is equal to bvπ where vπ is the value
function of π in (S,A, T, r). Then, the result obviously holds in this
case. Consider now c 
= 0. We can assume λ = 1. When comparing
two policies in a state, the histories in the expectations are all of
the same length (see Lemma 2). Therefore, adding c to the rewards
would affect all the value functions by the same constant.

As a side note, the result does not hold anymore for an MDP con-
taining an absorbing state where no action is taken.

[23] showed that in an MDP where there is only one non null pos-
itive (resp. negative) reward, any positive (resp. negative) would do.
Using our previous lemma, we can prove a slightly stronger result.

Corollary 1. If a reward function can take n(≥ 2) values r1 >
· · · > rn, r1 and rn can be arbitrarily set to 1 and 0.

The case where n = 2 implies there is no need to elicitate rewards
as any (order preserving) reward values would yield the same prefer-
ence relation over policies. However, in a problem where one needs
more than three different rewards, their values must be set carefully
as they may have an undesirable impact over the preferences over
policies. In such cases, when reward values are not precisely known,
it is questionable to use arbitrary values and apply directly the the-
ory developed for standard MDPs. We propose instead to start with
ordinal rewards – this information is generally available – and build
a preference system more suitable to this qualitative setting.

3 MDP WITH ORDINAL REWARDS

Let E = {r1 < r2 < . . . < rn} be a qualitative completely ordered
set. An MDP with ordinal rewards (ORMDP) is an MDP (S,A, T, r)
where the reward function r : S × A → E is defined to take its
values on the scale (E,<). As in standard MDPs, a history (s0, a1,
s1, a2, s2, . . .) in an ORMDP is associated to a sequence of rewards
(r(s0, a1), r(s1, a2), . . .). Due to the ordinal nature of the rewards,
one cannot add them. A natural way to value a history is then to count
the number of rewards obtained in a history. For the finite horizon
case, a history γ = (s0, a1, s1, a2, s2, . . . , ah, sh) can be valued by:

NΣ(γ) = (NΣ
1 (γ), . . . , NΣ

n (γ))
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where for k = 1, . . . , n,NΣ
k (γ) is the number of occurrences of

reward rk in the sequence of ordinal rewards associated to γ. The
NΣ

k (γ)’s is defined by:

NΣ
k (γ) =

h−1∑
i=0

χr(si,ai+1)=rk

where χr(si,ai+1)=rk = 1 if r(si, ai+1) = rk and 0 otherwise.
More generally, one can introduce a discount factor β ∈ [0, 1[ with

a similar semantic as in standard MDPs, meaning that one reward r
obtained h steps from now is worth βh−1 of r now. In this case, the
value of a history γ can be defined by:

Nβ(γ) = (Nβ
1 (γ), . . . , N

β
n (γ))

where for k = 1, . . . , n,Nβ
k (γ) is the discounted number of occur-

rences of reward rk in the sequence of ordinal rewards associated to
γ. The Nβ

k (γ)’s is defined by:

Nβ
k (γ) =

h−1∑
i=0

βiχr(si,ai+1)=rk

Nβ can be extended to the infinite horizon as factor β guarantees the
convergence of the sums.

Once the values of histories are defined, it is then natural to value
policies in a state as the expectation of those values. Like in standard
MDPs, we define the value function v̂π : S → IRn

+ of π:

v̂π(s) = (v̂π1 (s), . . . , v̂
π
n) = (Eπ

s (N
β
1 (Γ)), . . . , E

π
s (N

β
n (Γ))) (3)

where Eπ
s is the expectation with respect to the probability distribu-

tion induced by the application of π from state s and Γ is a random
variable over histories. Then, v̂πi (s) is the expected number of reward
ri’s obtained when applying policy π from initial state s.

As one would like to compare policies via their vectorial value
functions, we need to define a preference relation over vectors. By
abuse of notation, � will also denote this preference relation as there
is no risk of confusion. In order to make explicit the assumptions
that are made during the construction of the preference system in an
ORMDP, we introduce two requirements that the preference relation
over policies and the preference relation over vectors have to satisfy.

H1. For any two policies π, π′, any s, π �s π′ ⇔ v̂π(s) � v̂π
′
(s)

H2. For any two vectors v, v′ ∈ IRn
+, any λ, v � v′ ⇔ λv � λv′

Assumption H1 states that the preferential information of a policy in
a state is completely given by the expectation of the values of its his-
tories, which themselves are defined by counting the ordinal rewards.
H2 implies that preferences over vectors should be homothetic. They
both seem natural and we will assume both of them in the remain-
der of the paper. As a side note, they are both naturally assumed in
standard MDPs. Indeed, if E were a numerical scale, we have:

Proposition 3. For any policy π, vπ(s) =
∑n

i=1 v̂
π
i (s)r

i.

In a state s, the vectorial value function v̂π(s) can be viewed
as describing the composition of a population of ordinal rewards
where each reward ri appears v̂πi (s) times. Based on this obser-
vation, one could import some tools used in descriptive statistics
[14]. For a vector N representing the composition of a popula-
tion of rewards, the distribution fN associated to N is defined by
fN = (fN

1 , fN
2 , . . . , fN

n ), i.e., fN
i = Ni/

∑n
i=1 Ni is the fre-

quency or the proportion of ri in the population described by N . The

cumulative distribution of N is defined by FN = (FN
1 , . . . , FN

n )
where FN

i =
∑i

j=1 f
N
j being the frequency of elements lower

or equal to ri. The decumulative distribution of N is defined by
GN = (GN

1 , . . . , GN
n ) where GN

i =
∑n

j=i f
N
j being the frequency

of elements greater or equal to ri. In the remainder of the paper, we
identify vector N and the population it describes. Besides, for con-
venience, we introduce dummy components FN

0 = GN
0 .

The following lemma shows that the sums of vectors considered
in ORMDPs are all equal for a fixed horizon and discount factor β.

Lemma 2. For any history γ, any policy π, for any state s ∈ S:

n∑
i=1

Nβ
i (γ) =

{
1−βh

1−β
for any finite horizon h

1
1−β

for the infinite horizon

n∑
i=1

v̂πi (s) =

{
1−βh

1−β
for any finite horizon h

1
1−β

for the infinite horizon

Proof. At each step along a history, a reward is obtained. For the
finite case,

∑n
i=1 N

β
i (γ) = 1 + β + . . . + βh−1 = 1−βh

1−β
. The

infinite case is obtained by taking the limit. For value functions, the
expectation is computed over histories having the same length.

Under assumptions H1 and H2, Lemma 2 implies that comparing
policies in a state is equivalent to comparing the associated distri-
butions as the sums of the vector components are equal. Therefore,
defining how to compare policies in a state boils down to defining
how to compare the associated distributions.

When comparing distributions, one requires the following natural
dominance property : ∀N,N ′ ∈ IRn

+,

D. For all i = 1, . . . , n,GN
i ≥ GN′

i ⇒ N � N ′

Property D states that if for any reward ri, the proportion of rewards
equal or better than ri is greater in N than in N ′ then N should be
preferred. Note that when considering probability distributions, it is
simply the first-order stochastic dominance. This property alone does
not yield an exploitable preference system as it defines a partial order.
In the case of MDPs, one would obtain too many non-dominated
policies. In order to define a more suitable preference system, it is
then natural to consider preference relations that refines requirement
D. We present in the next section two ordinal decision models. In
that section, for the sake of simplicity, preferences are written with
distributions instead of vectors as it is equivalent under H1 and H2.

4 ORDINAL DECISION MODELS

4.1 Reference Point-Based Preferences

In order to compare vectors, one can introduce a reference point de-
noted Ñ ∈ IRn

+ and compare two vectors N,N ′ ∈ IRn
+ by:

fN � fN′ ⇔ φÑ (N) ≥ φÑ (N ′) with φÑ (N) =
n∑

i=1

fN
i

i∑
j=1

f Ñ
j

φÑ (N) can be interpreted as the proportion of times a drawing from
population N yields a better result than an independent drawing in
Ñ . In a probabilistic language, an informal intuitive interpretation
would be: vector N is preferred to N ′ if the probability of N get-
ting a better value than Ñ is greater than that with N ′. Such a crite-
rion has been proposed by [6] for decision making under risk. They
showed that it is formally identical to expected utility [3]. It has also
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been studied by [23] in ORMDPs. As underlined by [23], formally
such an approach boils down to standard MDPs as choosing a refer-
ence point Ñ induces a numeric reward (ri = F Ñ

i ). However, such
a preference system is indeed ordinal in so far as one does not set
arbitrarily numeric values for rewards, but the numeric values comes
from a carefully chosen reference point. In situations of partial and
imperfect knowledge, the choice of a reference point allows for a cer-
tain justification and a natural interpretation, which is not the case for
a direct arbitrary choice of numeric values for rewards. For instance,
the reference point could be chosen as one of the ordinal reward or
the vectorial value induced by a history or a policy [23].

In the reference point-based preference system, the interpretation
is simple using the language of probability distributions: one wants to
maximize the probability of getting better rewards than a reference
point. With this semantic, we can propose for two simple cases a
nice interpretation of the preferences induced by numeric rewards in
standard MDPs. When the reward function in a standard MDP can
only take two different values, the reference-point preference tells
us that the implicit reference point used in that case is a Bernoulli
distribution (by Corollary 1) and the optimal policies are those that
maximize the probability of doing better than a Bernoulli random
variable over the rewards.

For the class of standard MDPs whose reward function can take
many different values but is regularly-spaced, i.e. if r1 < . . . < rn

are the different possible reward values, then there exists a constant
C such that ∀i, ri+1 = ri +C, the reference point-based preference
tells us that one implicitly chooses a uniform probability distribu-
tion over rewards as a reference point. Therefore, the interpretation
is that in such MDPs, optimal policies are those that maximize the
probability of doing better than a uniform random variable. Thus,
this preference system gives a new and interesting understanding of
the preferences used in standard MDPs. However, the limit of this
approach is that it moves the difficulty of setting the numeric reward
values to that of picking a reference point. As the choice of a refer-
ence point may not be obvious at all in some problems, we propose
in the next section a new approach in ORMDPs.

4.2 Quantile Optimization

In descriptive statistics [14], three values can be considered to char-
acterize the central tendency of a population N : the mean, the median
and the mode. The mean, which is defined only if the elements of the
population are numbers, is the average of those elements. In our set-
ting, the mean can be written as

∑n
i=1 f

N
i ri. One can then recognize

the approach taken in standard MDPs. The median of N , which is a
special case of quantiles, is the value m̄(N) such that half of popula-
tion N is lower than m̄(N) and the other half is greater than m̄(N).
We present below the quantile-based approach for decision-making.
Finally, the mode of N is the (possibly not unique) element that oc-
curs the most frequently in N . Unfortunately, it cannot be used as a
rational decision criterion because it does not satisfy requirement D.

Example 1. Assume E = {r1 < r2 < r3}. Let N,N ′ be two vec-
tors with the following associated distributions fN = (0.4, 0.6, 0)

and fN′
= (0.39, 0.3, 0.31). Then, the mode of N is r2 and that of

N ′ is r1. The mode as a decision criterion indicates that N should
be strictly preferred. However, ∀i = 1, . . . , n,GN′

i ≥ GN
i .

Intuitively, the τ th quantile of population N for τ ∈ [0, 1] is the
value r such that τ percent of N is equal or lower than r and 1 − τ
percent of N is equal or greater than r. Formally, in our framework,

it is defined as follows. First, we define the lower τ th quantile of N
for τ ∈]0, 1] by:

Qτ
−(N) = ri such that FN

i−1 < τ and FN
i ≥ τ

Then, we define the upper τ th quantile of N for τ ∈ [0, 1[ by:

Qτ
+(N) = ri such that GN

i ≥ 1− τ and GN
i+1 < 1− τ

When only one of Qτ
−(N) or Qτ

+(N) is defined (i.e., τ = 0 or
τ = 1), then we define the τ th quantile Qτ (N) as that value. When
both are defined, by construction, we have Qτ

+(N) ≥ Qτ
−. Note

that they are generally equal and Qτ (N) is defined as equal to them.
For instance, this is the case in continuous settings (E = IR) for
continuous distributions. However, in our discrete setting, although
rare, it could happen that those values differ, as shown by:

Example 2. Let E = {r1 < r2 . . . < r6}. Let N define distribution
fN = (0, 0.1, 0.4, 0, 0.3, 0.2). Then, Q0(N) = r2 gives the mini-
mum of N , Q1(N) = r6 gives the maximum of N , Q0.75(N) = r5

gives the third quartile of N . Here, the median needs to be properly
defined as the upper median Q0.5

+ (N) = r5 is strictly greater than
the lower median Q0.5

− (N) = r3.

In such cases, we explain how Qτ can be defined. When comput-
ing the lower and the upper quantiles of a vector N , one gets a couple
(Qτ

+(N), Qτ
−(N)) ∈ E2 where E2 = {(r+, r−) ∈ E × E : r+ ≥

r−}. A partially order ≥ is defined over E2: (r+, r−) ≥ (r′+, r
′
−) iff

r+ ≥ r′+ and r− ≥ r′−. Poset (E2,≥) is in fact a lattice. Assume we
have an aggregation function φ : E2 → E satisfying the following
two properties: For all (r+, r−), (r′+, r′−) ∈ E2,

P1. r+ ≥ φ(r+, r−) ≥ r−
P2. φ(r+, r−) ≥ φ(r′+, r

′
−) iff r+ ≥ r′+ and r− ≥ r′−

We define the τ th quantile by Qτ (N) = φ(Qτ
+(N), Qτ

−(N)). P1
and P2 are two natural properties one wants an aggregation function
to satisfy. P1 guarantees φ(r, r) = r and P2 is a monotony prop-
erty. In our ordinal setting, function φ needs to be provided by the
decision-maker. It could model in a decision-theoretic sense, her op-
timistic or pessimistic attitude by taking φ = max, φ = min or
some other values in between. As a side note, φ could be defined to
take its values in a finer scale than E allowing for a finer preference
representation.

Quantiles generalizes different known criteria. The min of the
rewards in N is given by Q0(N). Symmetrically, the max of the
rewards in N is given by Q1(N). The median of N is given by
Q0.5(N) (with φ(r+, r−) = (r+ + r−)/2 when E ⊂ IR). Be-
sides, the well-known risk measure, Value-at-Risk [20], used notably
in finance is a quantile.

Interestingly, in decision theory, quantiles as a criterion have been
studied and axiomatized recently [7, 18] in quantitative settings.
They mainly satisfy two properties: first-order stochastic dominance
(property D in our setting) and ordinal invariance (i.e., preferences
only depends on the order over rewards). This makes quantiles par-
ticularly suitable in our setting. In this paper, we extend their use to
sequential decision-making under uncertainty. The value of a policy
π in a state s can be defined as a quantile of v̂π(s) viewed as a pop-
ulation of ordinal rewards. Then, policies can be compared in a state
s via their associated quantiles:

π �s π′ ⇔ Qτ (v̂π(s)) ≥ Qτ (v̂π(s′))

In such a preference system, the decision-maker needs to specify the
value τ . A natural value for τ would be 0.5, which implies that poli-
cies are compared via the median. This draws a nice parallel with
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standard MDPs where the mean is used. Naturally, other values for
τ would be possible, depending on the preferences of the decision-
maker. For instance, setting τ = 0.05 amounts to finding policies
that maximizes the lowest reward achieved 95% of the times. This
would lead to a less extreme approach than that in robustness which
focuses on the worst case.

Note that optimizing a quantile can be viewed as the dual approach
to the reference point-based approach. Indeed, in the latter, one sets
a reference point and maximizes the probability of beating this refer-
ence point. In the former, one sets a probability τ and maximizes the
value v that ensures getting at least v.

Preference relations induced by quantiles satisfy property D. This
is known for lower and upper quantiles, this is still true in our setting
for any φ.

Proposition 4. ∀i = 1, . . . , n,GN
i ≥ GN′

i ⇒ Qτ (N) ≥ Qτ (N ′)

Proof. Let i be the greatest index such that GN
i ≥ 1 − τ . By as-

sumption, 1− τ > GN
i+1 ≥ GN′

i+1. Then, Qτ
+(N) ≥ Qτ

+(N
′).

Besides, note that GN
i ≥ GN′

i implies FN
i ≤ FN′

i for all i. Let
j be the lowest index such that FN′

j ≥ τ . Then, τ > FN′
j−1 ≥ FN

j−1

and Qτ
−(N

′) ≤ Qτ
−(N). Finally, by P2, Qτ (N) ≥ Qτ (N ′)

As property D is satisfied, quantiles can be considered a good can-
didate for comparing policies in a state. However, to be able to ex-
ploit this decision criterion in ORMDPs at the infinite horizon, there
should exist an optimal (w.r.t. quantiles) stationary deterministic pol-
icy. Interestingly, this is the case as shown in Theorem 1. In order to
prove this result, we first state a lemma showing an interesting prop-
erty of the quantiles of the linear convex combination of vectors.

Lemma 3. For any τ ∈ [0, 1], for any λ ∈ [0, 1], we have:

Qτ (N) ∨Qτ (N ′) ≥ Qτ (λN + (1− λ)N ′) ≥ Qτ (N) ∧Qτ (N ′)

where ∨ and ∧ are respectively max and min over E.

Proof. We prove for τ ∈]0, 1[. For τ = 0 or τ = 1, the proof is simi-
lar. Assume Qτ (N) ≥ Qτ (N ′) (the other case is symmetric) and let
Qτ

−(N) = ri, Qτ
+(N) = rj , Qτ

−(N) = ri
′

and Qτ (N ′) = rj
′

with i ≤ j and i′ ≤ j′. Denote N ′′ = λN + (1 − λ)N ′ for
any λ ∈]0, 1[ (for λ = 0 or λ = 1, the result is obvious). Let
Qτ

−(N) = ri
′′

and Qτ
+(N) = rj

′′
with i′′ ≤ j′′. Then, by definition

of Qτ (N ′′) and Qτ (N ′′), we have max(i, i′) ≥ i′′ ≥ min(i, i′)
and max(j, j′) ≥ j′′ ≥ min(j, j′). By assumption, we cannot have
i ≤ i′ and j ≤ j′ with one or both of the inequalities strict. We con-
sider the other cases. If i ≥ j′, then i ≥ i′′ ≥ i′ and j ≥ j′′ ≥ j′

and the inequalities of the lemma are true by monotony of φ.
Note that Qτ

−(N) = ri 
= Qτ
+(N) = rj means that FN

i = τ ,
GN

j = 1−τ and fN
k = 0, ∀k = j+1, . . . , i−1. If i ≥ i′ and j ≥ j′,

Qτ
+(N

′′) = Qτ
+(N

′) and Qτ
−(N

′′) = Qτ
−(N). By monotony of φ,

Qτ (N) ≥ Qτ (N ′′) ≥ Qτ (N ′). If i < i′ and j > j′, Qτ (N ′′) =
Qτ (N ′). If i > i′ and j < j′, Qτ (N ′′) = Qτ (N). In both case, the
result holds.

We can now state the following theorem that shows quantiles can
be used in ORMDPs at the infinite horizon.

Theorem 1. For an initial state s, there exists a stationary determin-
istic policy π such that:

Qτ (v̂π(s)) = max
π′ Qτ (v̂π

′
(s))

Proof. We give an outline of the proof. First, we only need to con-
sider stationary policies because for any policy π, there is a stationary
policy π′ such that v̂π = v̂π

′
(The proof is similar to that for stan-

dard MDPs). By Proposition 1, one can identify a stationary policy
π to the vector xπ ∈ IRS×A. Then, comparing stationary policies
is equivalent to comparing those vectors. It is well-known that the
space of the vectors representing stationary policies is a convex set.
By abuse of notation, �s also denotes the preference relation over
those vectors. For such a vector x, we denote πx its associated sta-
tionary policy (given by Proposition 2) and Qτ

x = Qτ (v̂πx(s)).
We prove that �s is concave, i.e., for any vectors x, y, z and any

λ ∈ [0, 1], z �s x and z �s y ⇒ z �s λx + (1 − λ)y. Assume
z �s x and z �s y, i.e., Qτ

z ≥ Qτ
x and Qτ

z ≥ Qτ
y . By Lemma 3, we

have Qτ
x ∨Qτ

y ≥ Qτ
λx+(1−λ)y , which implies �s is concave.

Now, consider a stationary randomized policy π. Its associated
vector xπ can be expressed as the linear convex combination of vec-
tors x1, . . . xk representing stationary deterministic policies. As �s

is concave, π is dominated with respect to the τ th quantile by a sta-
tionary deterministic policy.

The previous theorem justifies the use of quantiles in ORMDPs.
However, one needs to be careful when using this criterion. While
in standard MDPs, there is an optimal policy in every state, the
quantile-based optimality is state-dependent. We illustrate this point
on a small example.

Example 3. Assume that E = {r1 < r2 < r3}. Consider three
vectors N,N ′ and N ′′ with their associated distributions f =
(0.48, 0, 0.52), f ′ = (0.38, 0.62, 0) and f ′′ = (0.6, 0.4, 0). We
have m̄(N) = r3 > m̄(N ′) = r2. Take λ = 0.5. Then, the asso-
ciated distribution of λN + (1 − λ)N ′′ is (0.54, 0.2, 0.26) with a
median of r1 and that of λN ′ + (1 − λ)N ′′ is (0.49, 0.51, 0) with
a median of r2. Thus, we have an inversion of preferences: N � N ′

and λN ′ + (1− λ)N ′′ � λN + (1− λ)N ′′.
In an ORMDP, assume that there are two policies π and π′ whose

value functions yield those vectors N and N ′ in a state s, i.e., π �s

π′. Now, from a state s0, there is an action a that leads to state s
with probability λ and to another state s′ with probability 1 − λ. In
state s′, there is a policy whose value function yields N ′′. Then, by
choosing action a, π′ would be preferred to π viewed from s0.

5 SOLVING METHODS

We now present how optimal (w.r.t. the τ th quantile) stationary de-
terministic policies can be computed. In this section, the initial state
is assumed to be s0, i.e., μ(s0) = 1 and μ(s) = 0 for s 
= s0.

First, note that Eq. 3 can be computed as the value function
of a policy in a vector-reward MDP (VMDP) [22], i.e., an MDP
(S,A, T, r̂) where r̂(s, a) is a vector in IRn. For our purpose, r̂(s, a)
is defined from r(s, a) of the ORMDP as the vector whose i-th com-
ponent is equal to 1 if r(s, a) = ri and null on the other components.
It is then obvious that summing vectorial rewards along a history in
this VMDP amounts to computing Nβ .

A first method relies on the following linear program (Dj
−) for a

given j = 1, . . . , n:

min

j∑
i=1

∑
s∈S

∑
a∈A

r̂i(s, a)xsa

s.t.
∑
a∈A

xsa − β
∑
s′∈S

∑
a∈A

xs′aT (s
′, a, s) = μ(s) ∀s

xsa ≥ 0 ∀s, ∀a

⎫⎬
⎭ (C)
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(Dj
−) amounts to optimizing the cumulative distribution. It has the

same number of variables and constraints as program (D). Its so-
lution yields a deterministic policy that minimizes the number of
rewards equal or worse than rj . Then, one can solve sequentially
(D1

−), (D2
−), . . . (Dk

−) until finding the first k such that the value v
of objective function is greater or equal to τ/(1− β). Recall that the
sum of the components of vπ(s0) is equal to 1/(1− β). This proce-
dure optimizes the lower τ th quantile, and thus the case φ = min.
In the rare cases where the value of the objective function is exactly
equal to τ/(1 − β), one needs to check whether the upper quantile
is strictly greater than the lower one. In such a case, one needs to
use the information about φ and solve (Dj

−) for j = k + 1, . . . for
finding the optimal solution.

Instead of optimizing the cumulative distribution, one could also
symmetrically optimize the decumulative distribution with a lin-
ear program (Dj

+) obtained by replacing the objective of (Dj
−) by

max
∑n

i=j

∑
s∈S

∑
a∈A r̂i(s, a)xsa. But, a more direct approach

exists exploiting the following fact. In quantitative settings, it is well-
known that the τ th quantile of a vector N can be found by minimiz-
ing an absolute loss function [13]:

Qτ (N) = argmin
r∈E

n∑
i=1

ρτ (r
i − r)Ni (4)

where ρτ (x) = (τ − 1)x if x ≤ 0 and ρτ (x) = τx otherwise.
Function ρτ is somewhat an absolute value with different slopes for
negative and positive values. In ordinal settings, one can set arbitrary
values for the ordinal rewards as long as the order is respected. Then,
we can assume E ⊂ IR and solve the following linear program:

max r
s.t. Ni =

∑
s∈S

∑
a∈A r̂i(s, a)xsa ∀i

ri − r = ri+ − ri− ∀i
n∑

i=1

(τri+ + (1− τ)ri−)Ni ≤

(1− τ)

j−1∑
i=1

(rj − ri)Ni + τ
n∑

i=j+1

(ri − rj)Ni ∀j

r ≥ 0 ri+ ≥ 0 ri− ≥ 0 ∀i∑
a∈A

xsa − β
∑
s′∈S

∑
a∈A

xs′aT (s
′, a, s) = μ(s) ∀s

xsa ≥ 0 ∀s, ∀a

⎫⎬
⎭ (C)

Variables Ni in the first set of constraints are introduced for conve-
nience. The second set of constraints expresses the absolute value in
ρτ . They could be slightly simplified for i = 1 and i = n as the sign
is known. The third set of constraints states that r should be solution
of Eq. 4. Without counting the Ni’s, this program has 2n + 1 extra
variables and 2n extra constraints compared to (D).

This program optimizes the upper τ th quantile and thus solves the
case φ = max. It also provides an optimal policy when the lower and
upper quantiles are equal, i.e.

∑n
i=k

∑
s∈S

∑
a∈A r̂i(s, a)xsa >

(1 − τ)/(1 − β) for r = rk. Otherwise, one again needs to use the
information of φ and optimizes Dj

+ for j = k−1, . . . for finding the
optimal solution. As a side note, one may combine in a lexicographic
fashion quantile optimization and reference point-based preference.
Indeed, after finding the τ th optimal quantile, one can maximize the
proportion of rewards better than that quantile.

6 CONCLUSION

Although of great practical interest, the case where preferences are
qualitative and uncertainty is probabilistic has been rarely investi-

gated in the literature. In this paper, we considered ordinal deci-
sion models in problems of planning under probabilistic uncertainty
modeled as MDPs with ordinal rewards (ORMDP). For this model,
we considered two preference systems dual one to the other: refer-
ence point-based preferences and quantile-based preferences. Based
on the first one, already proposed by [23] in ORMDPs, we gave a
new interpretation of rewards in standard MDPs. We studied the sec-
ond in the framework of ORMDPs and proved that for a fixed initial
state, there is a stationary deterministic policy optimal with respect
to quantile optimization. However, some caution is needed as con-
trary to the preference system used in standard MDPs, quantile-based
optimality is state-dependent. Finally, we proposed solving methods
based on linear programming.
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