
Synonymy Extraction From Semantic Networks
Using String and Graph Kernel Methods

Tim vor der Brück1and Yu-Fang Helena Wang2

Abstract. Synonyms are a highly relevant information source for
natural language processing. Automatic synonym extraction meth-
ods have in common that they are either applied on the surface rep-
resentation of the text or on a syntactical structure derived from it.
In this paper, however, we present a semantic synonym extraction
approach that operates directly on semantic networks (SNs), which
were derived from text by a deep syntactico-semantic analysis.

Synonymy hypotheses are extracted from the SNs by graph match-
ing. These hypotheses are then validated by a support vector machine
(SVM) employing a combined graph and string kernel. Our method
was compared to several other approaches and the evaluation has
shown that our results are considerably superior.

1 Introduction

In natural language (NL) the same objects or concepts can be referred
to with manifold names and in ever-changing ways. It is obvious
that a good coverage of synonyms is useful for a wide range of NL
applications. In voice search, hot applications are music selection in
a local MP3 media library or the navigation to a point of interest. The
reference string for speech recognition is provided by the respective
database entry, usually the official name. However, that name is often
unwieldy, e.g., ‘Five Guys Famous Burgers and Fries’ will often be
spoken as ‘Five Guys’; the category ‘Place of worship’ will more
simply be referred to as ‘church’.

In this work, we present a purely semantic synonymy extraction
method based on semantic networks. This method is hybrid and em-
ploys patterns as well as kernel functions and combines the advan-
tages of both methods with each other.

2 Related Work

A lot of research on synonymy extraction has emerged from the
meanwhile classical vector space model, in which each word in a
corpus is represented as a vector so that all words span a vector space
[18, 10]. One base assumption is that words are similar if their asso-
ciated vectors are located close to one another.

The word vectors represent the textual context, which is given by
neighboring words or words that are related to the investigated word
by a certain grammatical relation (head-modifier in [21] or predicate-
argument structures in [13]).

The element vi of the vector for a word w determines the fre-
quency of another word ui appearing in the context of w. The seman-
tic similarity can be estimated by applying a similarity measure on
these vectors. Well-known similarity measures are cosine, p-norm,

1 Universität Frankfurt, vorderbr@em.uni-frankfurt.de
2 FernUniversität in Hagen, yh.wang@web.de

Kullback-Leibler divergence, or information radius [15, 18]. Some
approaches use only binary values for vector elements, i.e., vi = 1
if the number of occurrences is above a given threshold. Common
binary-valued similarity measures are Matching Coefficient, Dice
Coefficient, Jaccard/Tanimoto coefficient, Overlap coefficient, or Co-
sine [18]. Other methods for estimating semantic similarity consider
iterated co-occurrences [4], co-occurrence networks [3] or use an on-
tology [14, 17, 16].

Yu’s method for synonym extraction comes from a completely dif-
ferent angle. She introduced a syntagmatic, pattern-based approach
[25] in which certain key expressions are used to identify patterns.
The following patterns are employed:
• SYNO(a1 , a2)← a1 . . . synonym . . .a2
• SYNO(a1 , a2)← a1 . . . called . . .a2
• SYNO(a1 , a2)← a1 . . . known as . . .a2
where a1 and a2 are the nearest noun phrases around the respective
key expression. The method was extended later [26]. The drawback
here is that if arbitrary non-noun tokens are allowed between the key
expression and a1 , a2 , the patterns are easily rendered invalid, con-
sider e.g., the word ‘not’ between a1 and ‘known as’ or embedded
subclauses between a1 and a2 . However, if the patterns are consid-
ered as closed expressions without token insertion, they are often too
specific and cannot be applied.

Although rather rarely used for the extraction of lexical relations
like synonymy, kernel functions are often applied for semantic rela-
tion extraction. This is often done by comparing the paths in a depen-
dency tree [27, 1, 5] or the dependency subtrees containing the two
relation candidate components [2, 5].

3 MultiNet

MultiNet is the underlying SN formalism for our text mining ap-
proach [12]. In contrast to ontology-like SNs, such as WordNet [8] or
GermaNet [9], which contain lexical and semantic relations between
synsets (sets of synonyms), MultiNet is designed to comprehensively
represent the semantics of a natural language expression, e.g., a sen-
tence. In MultiNet, an SN consists of a set of nodes and edges. Nodes
represent the concepts (word readings), and edges represent the re-
lations between the concepts or functions, where concepts can be
arguments or results. Examples of MultiNet relations are given be-
low:
• *ALTN1: Function generating alternative pluralities of entities

(or/and)
• *ALTN2: Function generating alternative pluralities of entities

(exclusive or)
• ATTCH: Attachment of an object to another object
• SUB: Relation of conceptual subordination (hyponymy or instance

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-822

822

relation)
• SUBR: Relation of conceptual subordination for relations
• SYNO: Synonymy relation
An example SN is shown in Figure 1. Nodes can be of two kinds: lex-
icalized nodes are associated to entries in the semantic lexicon, while
nodes that represent complex situations or individual objects are not
associated with single lexical entries. The latter nodes are just as-
signed a unique ID. To each concept, one or more ontological sorts,
and a set of binary-valued semantic features is assigned. The onto-
logical sorts (currently more than 40) form a taxonomy. In contrast
to other taxonomies, ontological sorts are not necessarily lexicalized,
i.e., they need not denote lexical entries. The following enumeration
shows a small selection of ontological sorts, which are derived from
object (object is directly derived from the root node and stands for a
nominal concept.):
• Concrete objects: e.g., milk, honey

– Discrete objects: e.g., chair
– Substances: e.g., milk, honey

• Abstract objects: e.g., race, robbery
Semantic features denote certain semantic properties for objects.
Such properties can either be present (+), not present (-) or under-
specified. The concept bee.1.1 is e.g. characterized by: discrete ob-
ject, ANIMAL +, ANIMATE +, ARTIF -, HUMAN -, SPATIAL +, etc.
Note that the suffix .1.1 denotes the reading numbered .1.1 of the
word bee. See [12] for details on the numbering scheme.

The SNs are constructed by the deep linguistic parser WOCADI3

[11] for German text analysis. For parsing, WOCADI employs a
word class functional analysis instead of a grammar. Aside from the
SNs, WOCADI also creates a dependency tree and a so-called token
list, which contains the tokens enriched with semantic and morpho-
logical information. Note that in some cases, the WOCADI parse
may fail, particular if the sentence contains grammar errors, com-
plex syntactic constructions or metonymy, which can violate seman-
tic constraints.

4 Synonym Extraction

As we have seen, after running the WOCADI parser on a corpus (here
the German4 Wikipedia), its knowledge is available as a collection of
SNs and token lists. In order to exploit the SNs and detect synonymy
relations between concepts in the SNs and token lists, inference rules
are employed, which we call extraction rules. Each extraction rule is
given by a premise and a conclusion. In the case of synonym extrac-
tion, the conclusion is simply an underspecified synonymy relation,
expressed as SYNO(a1 , a2).

The premise part of a deep extraction rule formulates logical con-
ditions over nodes and edges of an SN, and takes itself the form of
an SN. That premise SN is tested to match against an instance SN
like a template5. If a match is established, the instantiated conclusion
(bindings are obtained from the matching premise) is extracted as
synonymy hypothesis.

An example of an extraction rule application is illustrated in Fig-
ure 1. The SN6 shown in this figure was created by the parser for the
sentence ‘A double bass is sometimes also called string bass.’. The

3 WOCADI is the abbreviation for word class disambiguating parser.
4 Note that for better readability, all examples and extraction rules are trans-

lated from German to English.
5 We call ‘instance SN’ the SN which resulted from the application of the

WOCADI parser to surface text.
6 Note that strictly speaking, the sentence is incorrectly considered as

non-generic by the parser, which is expressed by the two relations
SUB(c2 , double bass.1 .1) and SUB(c3 , string bass.1 .1).

c1

c2
c3

SUB

ORNT

TEM
P

SU
BS

TEMP

string_bass.1.1

sometimes.1.1

call.1.1

present.0

OB
J

SUB

fokus
WCFA−TAG

SYNO double_bass.1.1

Figure 1: Extraction rule DS1 (see Table 1) applied to the SN represent-
ing the sentence: ‘A double bass is sometimes also called string bass.’ Arcs
matched with the rule premise are printed in bold. The dashed line denotes
the inferred relation.

node c1 represents the whole situation. SUBS(c1, call .1 .1) denotes
the fact that this specific situation is about calling, i.e., c1 is a tro-
ponym of call .1 .1 , which is expressed by the SUBS(c1, call .1 .1)
relation. The two objects (double bass and string bass) participating
in this situation are connected by the relations OBJ (neutral object)
and ORNT (orientation). The TEMP edge specifies the temporal em-
bedding of this situation (present.0 and sometimes.1.1).

In addition to deep extraction rules, we also employ shallow rules.
In contrast to deep extraction rules, shallow rules are also applicable
if a sentence is not parsable. The premise of such a rule is based on
a regular expression of feature structures. The feature structures are
tested to unify with the feature structures of the token list as provided
by the parser. An entry for a single token contains (among others) the
surface word form, the concept, the lemma and the grammatical cat-
egory. The variables a1 and a2 of the conclusion may be matched to
any concept of ontological type object (grammatical category: noun
phrase). Some example shallow extraction rules are given below7:
• SYNO(a1 , a2)← a1 , in short a2
• SYNO(a1 , a2)← a1 ‘(’ synonymous: a2
• SYNO(a1 , a2)← a1 is [cat art] abbreviation (of ∨ for) ?[cat art]

a2
This section describes several advantages of deep extraction

rules in contrast to shallow extraction rules. Consider the sen-
tences: ‘Notebook ist ein Synoynm zu Laptop.’ and ‘Notebook
ist ein Synonym von Laptop’ (Both sentences mean: ‘Notebook
is a synonym of Laptop’.) To extract the synonymy relation
SYNO(notebook .1 .1 , laptop.1 .1) two different surface rules are re-
quired. Putting them together, the following disjunction can be used:

SYNO(a1 , a2)← a1 is a synonym (for ∨ of) a2 (1)

Also, two different dependency trees are created for the two
sentences (tested by applying the Stanford Dependency Parser
[19]), which also lead to two different extraction rules for the
use of a dependency tree representation. This is not necessary
if deep semantic rules are employed, since both surface repre-
sentations are mapped to the same SN. The synonymy relation
SYNO(notebook .1 .1 , laptop.1 .1) can be extracted from both sen-
tences just by applying extraction rule DS1 . Another example is
given by the sentence pair:

7 The full list of shallow extraction rules is given at www.vdb1.de/syno.
html

T. vor der Brück and Y.-F.H. Wang / Synonymy Extraction From Semantic Networks Using String and Graph Kernel Methods 823

DSi Definition Example

1

SYNO(a1 , a2)← ARG1(e, f)∧
ATTCH(g, f) ∧ SUBR(e, sub.0)∧
SUB(f, synonym.1 .1)∧
SUB(g, a1) ∧ ARG2(e, h)∧
SUB(h, a2) ∧ SUB(h, f)∧

Person is
a synonym of
human being.

2

SYNO(a1 , a2)← ORNT(e, h)∧
SUB(h, a1)∧
OBJ(e, f) ∧ SUB(f, a2)∧
SUBS(e, call .1 .1)

A laptop is
also called
notebook.

3
SYNO(a1 , a2)←
PREC *ALTN1(d, e)∧
SUB(d, a1) ∧ SUB(e, a2)

A dog, hound,
or canine
denotes a
certain type
of animal.

4

SYNO(a1 , a2)← ASSOC(e, f)∧
SUB(f, a2) ∧ SUBR(e, prop.0)∧
ARG1(e, g) ∧ SUB(g, a1)∧
ARG2(e, synonymous.1 .1)

laptop is
synonymous
to notebook.

Table 1: Deep extraction rules for synonym extraction. PRECf (x, y) de-
notes that x and y are arguments of function f and x directly precedes y in
the argument list.

1. ‘The eelpout, which is also called Lycodichthys antarcticus, lived
at the coasts of North Europe.’
2. ‘The eelpout is also called Lycodichthys antarcticus.’
Again, the synonymy relation
SYNO(eelpout .1 .1 , lycodichthys antarcticus.1 .1) can be ex-
tracted from both sentences by a single extraction rule (this time
DS2), while two rules would be necessary for a dependency tree
or surface representation.

In both cases, the recall was increased by the higher generality of
deep extraction rules. Also, the use of a deep semantic representation
in form of SNs can improve precision. Consider the two sentences:
‘1. Mr. Schulz will travel to Cologne by either train or car.’
‘2. An automobile or car denotes a machine with the following prop-
erties:. . . ’
In the first sentence, the word ‘or’ is an exclusive-or, that means ‘Mr.
Schulz’ will only take either one of the two means of transport but not
both together. In the second sentence, the ‘or’ is meant in the sense
that both concepts denote a car, i.e., the two concepts do not exclude
each other. Therefore, the deep extraction rule (*ALTN1 combines
concepts by an inclusive or) DS3 extracts the synonymy relation
SYNO(automobile.1 .1 , car .1 .1) but not the
incorrect hypothesis SYNO(train.1 .1 , car .1 .1), while a shallow
extraction rule would also create the incorrect hypothesis.

An example where the shallow pattern-based approach of Yu [25]
(described in Section 2) would be misleading is:
‘Aspirin (chemical formula is given in Fig.3), which was discovered
by the French chemist C. F. Gerhardt and is also called acetylsali-
cylic acid, is a famous medicine against headache’.
In this case, even three noun phrases (‘chemical formula’, ‘Fig.
3’, ‘French chemist C. F. Gerhardt’) are located between the two
synonyms, which would lead to the incorrect hypothesis
SYNO(french chemist c. f . gerhardt , acetylsalicylic acid). In
contrast, the deep approach would actually extract the correct hy-
pothesis SYNO(aspirin.1 .1 , acetylsalicylic acid .1 .1) by means
of the extraction rule DS2 .

5 Validation of Synonymy Hypotheses

Not all hypotheses generated by the extraction rules are correct.
Therefore a two-step mechanism is devised consisting of a semantic-
oriented filtering and an SVM-based validation.
Semantic-oriented Filtering: In MultiNet, a concept can be a mean-
ing molecule[12]. In this case it consists of several facets. These
facets are assigned different ontological sorts and semantic features.
For instance, one facet of school.1.1 denotes the group of people rep-
resenting a school (i.e., teachers and students), another facet denotes
the institution and a third the building. In order for two concepts to
be synonymous, semantic features and ontological sorts have to co-
incide for all facets and the number of facets have to be identical.

For example:
• house.1.1 (artif:+, animal:-) cannot be synonymous to ape.1.1

(artif:-, animal:+)
• house.1.1 (discrete object) cannot be synonymous to water.1.1

(substance)
• school.1.1 (3 facets) cannot be synonymous to building.1.1 (1

facet)
If this condition is not fulfilled, the investigated concept pair is not
stored in the hypotheses database.
SVM-based Validation: Synonymy hypotheses that pass the filter
described in Section 5 are not necessarily correct. For this reason, a
set of features is calculated, which are used to derive a confidence
score by means of a support vector machine (SVM) [24].

Usually, the support vector optimization problem is solved by us-
ing the dual representation. For this, a similarity measure is required
to compare the instances of the training corpus with each other. Tra-
ditionally, this similarity measure was given by the scalar product. In
newer approaches this product was generalized to a kernel function,
which makes it no longer necessary to create feature vectors for the
given instances. Instead, the kernel function can directly compare the
instances, which allows it to use SVM for classifying data that have
no natural vector representations, such as trees, graphs, or data that
have vector representations of different lengths like strings. We used
a string and graph kernel as well as ordinary feature values.

Graph Kernel: A graph kernel is used to estimate the similarity of
two graphs. In this scenario, the SNs are compared where the rela-
tion hypotheses were extracted from. The graph kernel used here es-
timates the similarity by counting the number of weighted common
walks in the SNs. This procedure is based on the fact that graphs with
many common walks are very similar. A walk is a generalization of a
path. In contrast to a path, the same edge can be visited twice in one
common walk. We allow common walks against the arc directions
too. Otherwise, common walks could rarely connect both synonym
nodes with each other. In the following, we give the employed graph
kernel, which is a generalization of the graph kernel of vor der Brück
and Helbig [23] to multi-label arcs that is itself based on the graph
kernel of Gärtner et al[7].

The first step in this approach consists in determining the product
graph PG = (PV ,PE) of the two so-called factor graphs (the SNs
here). Each node of the product graph consists of a pair of nodes
of the two factor graphs. The first component is a node of the first
graph, the second component a node of the second graph and the
labels of both nodes should be identical. In our SN scenario, a label
la is ‘anon(ymous)’ for a non-lexicalized node or the concept name
otherwise.

(v1, v2) ∈ PV(G1,G2) :⇔ v1 ∈ V1 ∧ v2 ∈ V2 ∧ la(v1) = la(v2)

with G1 = (V1, E1) and G2 = (V2, E2). There is an arc between

T. vor der Brück and Y.-F.H. Wang / Synonymy Extraction From Semantic Networks Using String and Graph Kernel Methods824

two node pairs in the product graph iff there exists an arc between
the first components of the two pairs in the first factor graph and an
arc between the second components of the second factor graph and
both labels are identical.

For the SNs considered here this procedure is too limited since in
MultiNet two nodes can be connected by several arcs in the same
direction. An equivalent representation would be that only one arc is
allowed to connect two nodes, but an arc is assigned a set of labels.

((v1, v2), (w1, w2)) ∈ PE(G1, G2) :⇔
(v1, w1) ∈ E1 ∧ (v2, w2) ∈ E2∧

la(v1, w1) ∩ la(v2, w2) �= ∅
(2)

One arc in the product graph is a common walk of length one in the
two factor graphs. The adjacency matrix is defined as:

APG = (aij)i=1...n,j=1...n with

aij : =

{
1, (ui, uj) ∈ PE ∨ (uj , ui) ∈ PE
0, otherwise

(ui, uj) ∈ PE ∨ (uj , ui) ∈ PE denotes the fact that the com-
mon walks can also be followed against the arc directions. This is a
variation of the original method of Gärtner et al. An entry i, j of the
adjacency matrix is one (1) if there exists a common walk of length
one between node i and j. Analogously, there exist l common walks
of length m between the associated node components i and j, iff
Am

PG(i, j) = l. The similarity between two graphs G1, G2 is then
estimated by:

K(G1, G2) = ι�(
∞∑

k=0

λkAk
PG)ι (3)

where
• A0

PG = I the identity matrix
• ι := (1 . . . 1)� is a vector which consists only of ones and is used

to sum up the matrix components
∑∞

k=0 λ
kAk

PG.
• ι� denotes the transposed vector to ι.
• λ < 1 is a constant which is chosen in such a way that the sum

converges. Since λ < 1, the influence of long common walks
is less than for short ones. However, since a long common walk
always implies many short common walks, the total influence of
long common walks is still larger than for short ones.

Furthermore, the node label with two components of the synonymy
hypotheses are replaced by fixed variables (a1 and a2), which makes
two graphs with different hypotheses better comparable.

There is one drawback of the method as described above. All com-
mon walks are treated the same, regardless of whether a common
walk actually passes the synonym candidate nodes. Therefore, the
original approach of Gärtner et al. is modified in such a way that the
following two kernels are determined:
• the graph kernel of the common walks passing at least one of the

synonym nodes
• the graph kernel of the common walks passing both of the syn-

onym nodes
Actually, it is not possible to determine the number of common walks
that pass (not necessarily start or end at) certain nodes with this
method directly. However, the opposite is quite easy. The number
of common walks that do not pass certain nodes can be determined
just by removing all connections from and to such nodes from the
adjacency matrix. Afterwards, the ordinary common walk algorithm
can be applied.

Thus, we can determine the graph kernel of common walks that
pass at least one of a1 and a2 by subtracting the graph kernel of
all common walks that pass neither one from the graph kernel of all
common walks.

K
a1∨a2

(G1, G2) = K(G1, G2)− K
¬(a1∨a2)

(G1, G2) (4)

The graph kernel for the common walks that pass a1 as well as
a2 can be determined similarly:

K
a1∧a2

(G1, G2) =K(G1, G2)− K
¬a1

(G1, G2)−

K
¬a2

(G1, G2) + K
¬(a1∨a2)

(G1, G2)
(5)

Note that K¬(a1∨a2)(G1, G2) was added to the right side of Equa-
tion 5 since otherwise the graph kernel for the common walks that
pass neither a1 nor a2 would be subtracted twice.

String Kernel: The graph kernel function can only be applied if
the parse was successful for the sentences where the hypothesis can-
didates were extracted from. This is not always the case. Therefore,
we apply a string-kernel in addition. The string kernel is applied on
the concepts of the token list as returned by WOCADI. If the parse
was not successful, a disambiguation of the readings is usually not
done. In this case, the reading is selected that appears most often in
the corpus. To improve the generality, the synonym candidates are re-
placed by fixed variables (here a1 and a2). Parenthesis expressions
are removed if neither of the two synonym candidates appear inside
them. This is done to increase the performance as well as to improve
the similarity value, since such expressions are usually not used to
express the synonymy relation in any way.

We selected the common subsequence string kernel, which counts
the weighted number of common subsequences of two strings (here
concept lists) w and v [22, 412–414].

Kn(w, v) =
∑

u∈Cn

∑
a:u=w[a]

∑
b:u=v[b]

λlw(a)+lv(b) (6)

with:
• λ: a weighting factor with λ < 1
• a ∈ N

n: a vector consisting of sorted indices that reference com-
ponents (here concepts) in w

• b ∈ N
n: a vector consisting of sorted indices that reference com-

ponents in v
• ls : N

n → N, ls(a) := a[n] − a[1]: function that returns the
length of the covered interval in the given string

• C: here set of all concepts
Gaps in the matching process are allowed but are penalized by in-
creasing the exponent of λ. This exponent is not given by the length
of the subsequence but instead by the length of the covered area in
the two concept lists. In this way, a small subsequence can still lead
to a large exponent if there are many or large gaps in the two concept
lists containing components that cannot be matched. The total string
kernel is given by: K(w, v) =

∑min{|w|,|v|}
i=1 Ki(w, v)

The Graph kernel, string kernel and a radial basis function, which
is applied on a set of features, are combined by a weighted sum.
The optimal weight setting is determined by a grid search over the
interval [0,1]. We used features to test if one concept label could be
an abbreviation of the others, if both concepts can occur in similar
semantic network contexts, if both contexts were written similar and
if the relation hypotheses were extracted by both deep and shallow
patterns. Additionally one binary feature is used for every pattern
which is set to one if the hypotheses was extracted by this feature
and to zero otherwise.

T. vor der Brück and Y.-F.H. Wang / Synonymy Extraction From Semantic Networks Using String and Graph Kernel Methods 825

6 Results

PNS PS Σ
NS 297 1428 1725
S 10 167 177
Σ 307 1595 1902

Table 2: Confusion matrix for the semantic-oriented filter (see Sect. 5).
PS=Predicted synonym, PNS=Predicted non-synonym, NS=non-synonym,
S=synonym.

GSK − GK + GSK +
PNS PS PNS PS PNS PS

NS 324 376 507 193 637 63
S 67 633 104 596 113 587
Σ 391 1009 611 789 750 650

Table 3: Confusion matrix for the validation of synonyms. GSK −=without
graph / string-kernel, GK +=with graph kernel, GSK +=with graph / string
kernel.

Measure Filter GSK − GK + GSK +
Accuracy 0.244 0.684 0.788 0.874
F-measure 0.189 0.741 0.801 0.870
Precision 0.105 0.627 0.755 0.903
Recall 0.944 0.904 0.851 0.839

Table 4: Accuracy, F-measure, precision, and recall for the validation of syn-
onyms.

Our synonym extraction algorithm (called SemQuire) was ap-
plied on the entire German Wikipedia corpus of 2009. The entire
Wikipedia was parsed by the deep analyzer WOCADI [11] and con-
verted into SNs and token lists. The rule application approach de-
scribed in the previous sections were applied on this output. In total,
265 938 synonymy hypotheses were stored in the database, 19 269 of
them only originating from deep patterns.

The semantic-oriented filter (see Sect. 5) was tested on 1902 ran-
domly selected hypotheses, which were annotated by human anno-
tators with either 1 (synonymy relation actually present) or 0 (syn-
onymy relation not present), by a 10-fold cross-validation. The con-
fusion matrix is given in Table 2, the evaluation measures in Table 4.
Precision is the relative frequency with which a predicted synonym is
actually one, while accuracy is the relative frequency with which the
decision (synonym/non-synonym) is correct. The evaluation shows
that the recall is very high, which means the number of false neg-
atives is very small. This demonstrates that indeed this classifier is
very useful as a filter. Currently, the name and abbreviation lexicons
of HaGenLex are not yet used, which would result in higher precision
values.

The SVM-based validation was tested on 1 500 annotated hy-
potheses (accuracy: 0.844, F-measure: 0.637, precision: 0.701, re-
call: 0.583) by a 10-fold cross-validation. Note that this recall only
reflects the validation but not the extraction of the hypotheses. We
also compared our approach with several ontology-based semantic
similarity measures on the same evaluation set. These measures ex-
ploit hyponymy and already known synonymy relations. The on-
tology consists of GermaNet, Wiktionary and HaGenLex. Since

instance relations are considered as hyponymy relations in Ger-
maNet and Wiktionary, these measures can be applied to proper
names (such as ‘Germany’ or ‘UK’) as well. The coverage of names
by these resources is rather poor, which leads to quite low F-
measures (Leackock-Chodorov: 0.0243, Lin: 0.0227, Resnik: 0.0391
[16, 17, 20]). Context based measures perform better. The informa-
tion radius reaches an F-measure of 0.136. For classification of the
similarity measures described above we used a threshold. All sim-
ilarity values below this threshold are mapped to 0 (hypothesis in-
correct), all above to 1 (hypothesis correct). The threshold is cho-
sen in such a way that the F-measure is maximized. Furthermore,
we re-implemented the approach of Yu [25] (the reimplementation
of the method described in [26] is not finished) and applied it on the
Wikipedia, too, where all patterns were translated into German. In to-
tal, this approach extracted 11 638 hypotheses, with an estimated pre-
cision of 0.347 (determined on an annotated subset), which leads to
estimated 4 038 correct hypotheses. In contrast, the estimated num-
ber of correct hypotheses of SemQuire is 36 165. Also the precision
of SemQuire (0.701) is much superior to that of Yu’s method (0.347).

Note that the F-measure is highly dependent on the applied rules,
i.e., the use of unreliable but often applicable rules leads to a rather
low (validation) F-measure, whereas the exclusive use of reliable
but less applicable rules results in a high F-measure. Therefore, we
conducted a second experiment where the amount of positive and
negative examples are equal (700 positive and 700 negative), which
avoids such variations in F-measure. The resulting confusion matrix
is given in Table 3 and accuracy, F-measure, precision, and valida-
tion recall in Table 4. Three different experiments were done: em-
ploying only shallow features (GSK −), employing shallow features
and graph kernel (GK +), and employing shallow features as well as
graph and string kernel (GSK +). The evaluation results were consid-
erably superior to the baseline (accuracy: 0.5), which is just the ap-
proach to opt for hypothesis correctness in all cases. Furthermore, the
use of a graph and string kernel leads to a significant improvement in
the evaluation measures (e.g., increase of 0.13 for F-measure). The
increase of accuracy and precision is significant with a level of 1%.

The weights of features, string kernel and graph kernel, as deter-
mined by the grid search, which were used to combine the kernels,
took the following values: Features: 0.0, Graph kernel: 1.0, String
kernel: 1.0. These weights show that if graph and string kernels are
employed, the use of the features is actually not necessary. However,
this does not mean the features are completely useless since they are
much faster to compute. For the selected test and training set, a full
parse was available for 548 of the hypotheses, only a chunk parse
for 607 hypotheses, and the parse failed for the remaining 245. This
shows the potential of the graph kernel method. Although a full parse
was available in the minority of cases, the graph kernel was assigned
a weight identical to the string kernel.

7 Discussion and Outlook

An approach called SemQuire was introduced for extracting syn-
onyms employing a deep semantic representation. Instead of using
only the surface representation of sentences, the patterns are defined
on a semantic level and are applied on SNs.

In contrast to a shallow representation, the semantic patterns have
the advantage of a greater generality, which reduces the number of
patterns. Also, by usage of graph and string kernel, evaluation results
were improved significantly. Furthermore, SemQuire obtained quite
superior results in contrast to several context and ontology-based se-
mantic similarity measures and the approach of Yu.

T. vor der Brück and Y.-F.H. Wang / Synonymy Extraction From Semantic Networks Using String and Graph Kernel Methods826

For future work, we plan to learn patterns and additional semantic
features automatically. Furthermore, graph kernels based on common
walks as proposed in this paper usually suffer from tottering, which
can be avoided if the same arc is prevented from being visited two
times in a row [6]. Also the use of the extracted synonymy relations
in real-world applications is of interest.

ACKNOWLEDGEMENTS

Especially, we want to thank Prof. Helbig for his support for this
work.

REFERENCES

[1] C. Bunescu et al., ‘A shortest path dependency kernel for relation ex-
traction’, in Proc. of HLT/EMNLP, pp. 724–731, Vancouver, Canada,
(2005).

[2] A. Culotta and J. Sorenson, ‘Dependency tree kernels for relation ex-
traction’, in Proc. of ACL, pp. 423–429, Barcelona, Spain, (2004).

[3] P. Edmonds, ‘Choosing the word most typical in context using a lexical
co-occurrence network’, in Proc. of ACL, pp. 507–509, Madrid, Spain,
(1997).

[4] C. Biemann et al., ‘Automatic acquisition of paradigmatic relations
using iterated co-occurrences’, in Proc. of LREC, Lisbon, Portugal,
(2004).

[5] F. Reichartz et al., ‘Dependency tree kernels for relation extraction from
natural language text’, in Proc. of ECML, pp. 270–285, Bled, Slovenia,
(2009).

[6] P. Mahé et al, ‘Extensions of marginalized graph kernels’, in Proceed-
ings of ICML, Banff, Canada, (2004).

[7] T. Gärtner et al., ‘On graph kernels: Hardness results and efficient al-
ternatives’, in Proc. of COLT, pp. 129–143, Washington, DC, (2003).

[8] WordNet An Electronic Lexical Database, ed., C. Fellbaum, MIT Press,
Cambridge, Massachusetts, 1998.

[9] B. Hamp and H. Feldweg, ‘GermaNet - a lexical-semantic net for ger-
man’, in Proc. of the ACL workshop Automatic IE and Building of Lexi-
cal Semantic Resources for NLP Applications, pp. 9–15, Madrid, Spain,
(1997).

[10] Z. Harris, Mathematical Structures of Language, J. Wiley & Sons, New
York, 1968.

[11] S. Hartrumpf, Hybrid Disambiguation in Natural Language Analysis,
Ph.D. dissertation, FernUniversität in Hagen, Fachbereich Informatik,
Hagen, Germany, 2002.

[12] H. Helbig, Knowledge Representation and the Semantics of Natural
Language, Springer, Heidelberg, Germany, 2006.

[13] D. Hindle, ‘Noun classification from predicate-argument structures’, in
Proc. of ACL, pp. 268–275, Pittsburgh, Pennsylvania, (1990).

[14] J. Jiang and D. Conrath, ‘Semantic similarity based on corpus statis-
tics and lexical taxonomy’, in Proc. of ROCLING, pp. 19–33, Taipei,
Taiwan, (1997).

[15] S. Kullback and R. Leibler, ‘On information and sufficiency’, Annals of
Mathematical Statistics, 22(1), 79–86, (1951).

[16] C. Leacock and M. Chodorow, ‘Combining local context and Word-
Net similarity for word sense identification’, in WordNet. An Electronic
Lexical Database, 265–283, MIT Press, Cambridge, Massachusetts,
(1998).

[17] D. Lin, ‘Principle-based parsing without overgeneration’, in Proc. of
the Workshop of Computational Terminology, pp. 57–64, Montreal,
Canada, (1993).

[18] C. D. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing, MIT Press, Cambridge, Massachusetts, 1999.

[19] M.de Marneffe and C. D. Manning, Stanford Typed Dependencies Man-
ual, 2008. online at: http://nlp.stanford.edu/software/
dependencies_manual.pdf.

[20] P. Resnik, ‘Using information content to evaluate semantic similarity
in a taxonomy’, in Proc. of IJCAI, pp. 448–453, Montréal, Canada,
(1995).

[21] G. Ruge, ‘Automatic detection of thesaurus relations for information
retrieval applications’, in LNCS 1337, 499–506, Springer, Heidelberg,
Germany, (1997).

[22] B. Schölkopf and A. Smola, Learning with Kernels - Support Vector
Machines, Regularization, Optimization and Beyond, MIT Press, Cam-
bridge, Massachusetts, 2002.

[23] H. Helbig T.vor der Brück, ‘Validating meronymy hypotheses with
SVMs and graph kernels’, in Proc. of ICMLA, pp. 243–250, Washing-
ton, DC, (2010). IEEE Press.

[24] V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York,
New York, 1998.

[25] H. Yu, ‘Automatic extraction from scientific abstracts of synonyms for
proteins and genes’, in Proc. of AMIA, (2001).

[26] H. Yu et al., ‘Automatic extraction of gene and protein synonyms from
medline and journal articles’, in Proc. of AMIA, (2002).

[27] S. Zhao and R. Grishman, ‘Extracting relations with integrated informa-
tion using kernel methods’, in Proc. of ACL, pp. 419–426, Ann Arbor,
Michigan, (2005).

T. vor der Brück and Y.-F.H. Wang / Synonymy Extraction From Semantic Networks Using String and Graph Kernel Methods 827

