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Abstract. We study an unrelated parallel machines scheduling
problem with sequence and machine dependent setup times. A logic-
based Benders decomposition approach is proposed to minimize the
makespan. This approach is a hybrid model that makes use of a mixed
integer programming master problem and a specialized solver for
travelling salesman subproblems. The master problem is used to as-
sign jobs to machines while the subproblems obtain optimal sched-
ules on each machine given the master problem assignments. Com-
putational results show that the Benders model is able to find opti-
mal solutions up to six orders of magnitude faster as well as solving
problems six times the size previously possible with a mixed integer
programming model in the literature and twice the size that a branch-
and-bound algorithm can solve for similar problems. We further re-
lax the Benders decomposition to accept suboptimal schedules and
demonstrate the ability to parameterize solution quality while out-
performing state-of-the-art metaheuristics both in terms of solution
quality and mean run-time.

1 Introduction

Many practical scheduling problems exhibit alternative machines and
sequence dependent setup times: a job may be assigned to one of a
set of machines and a minimum time must elapse between consec-
utive jobs executing on the same machine. For example, reactors in
a chemical plant must be cleaned when changing from processing
one mixture to another. The cleaning times may depend on which
job comes before the cleaning and which comes after. If the pre-
ceding chemical affects the succeeding one, longer cleaning may be
required to ensure that the reactor is properly prepared. The prod-
ucts processed in the reverse order may require a shorter cleaning
because the offending product in the previous example may not suf-
fer the same contamination risks. Further examples can be found in
the plastic, glass, paper and textile industries where setup times of
significant length exist [2, 11].

We study the unrelated parallel machines scheduling problem
(PMSP) with machine and sequence dependent setup times. In the
PMSP, jobs must be assigned to one of a set of alternative resources
and jobs assigned to the same resource have setup times defined as
the time that must elapse between the end of one job and the start of
the next. The setup time is sequence and machine dependent in that
the elapsed time between jobs will differ depending on the sequence
and machine to which the pair of jobs is assigned. We concern our-
selves with minimizing the makespan or the maximum completion
time of a schedule as the objective function. Using the three-field
notation[13], this problem can be denoted as (R|sds|Cmax).
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We develop an exact method to solve the PMSP using a logic-
based Benders decomposition approach originally developed to ver-
ify logic circuits [16]. The Benders decomposition makes use of a
mixed integer program (MIP) master problem and a specialized trav-
eling salesman problem (TSP) solver for the subproblems. The MIP
model is used to find machine assignments and lower bounds on the
makespan of each machine, while the sub-solvers sequence the jobs
on machines. The Benders decomposition is able to find and prove
optimal schedules up to six orders of magnitude faster than a MIP
model in the literature and twice the size that a branch-and-bound
algorithm can solve for similar problems. We also introduce a relax-
ation on optimality in the Benders decomposition to allow the model
to find feasible schedules for larger problems. Although the model
is no longer an exact method, we are able to provide guarantees on
solution quality and out-perform existing metaheuristic approaches.

2 Background

In this section, we define the PMSP with sequence and machine de-
pendent setup times. A review of related work is presented and an
existing MIP model to solve the PMSP is defined.

2.1 Problem Definition

In the PMSP, a set of jobs, N , are to be scheduled on a set of ma-
chines, M , with the objective of minimizing the makespan. Each job
has a processing time pij , the time to process job j on machine i.
The machines in this system are unrelated, i.e., a job j can have a
processing time greater than job k on one machine, but the reverse
could be true on another machine. There is a sequence and machine
dependent setup time, sijk, which is the time that must elapse before
a machine can begin processing job k if job j precedes it on ma-
chine i. The setup times are assumed to follow the triangle inequality
sijk ≤ sijl+silk. The goal of the problem is to determine how to as-
sign jobs to machines and then sequence these jobs on each machine
to minimize the makespan.

2.1.1 Mixed Integer Programming Model

A MIP model used to find optimal solutions for the unrelated PMSP
with setup times is presented by various researchers [15, 21]. This
formulation is based on the model proposed by Guinet [14] with dif-
ferent objectives of total completion time or total tardiness.
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min Cmax

s.t.

N∑

j=0,j �=k

M∑

i=1

xijk = 1 k ∈ N (1)

N∑

j=0,j �=h

xijh =

N∑

k=0,k �=h

xihk h ∈ N ; i ∈ M (2)

Ck ≥ Cj +

M∑

i=1

xijk(sijk + pik) + V (

M∑

i=1

xijk − 1)

j ∈ N ; k ∈ N (3)
N∑

j=0

xi0j = 1 i ∈ M (4)

Cj ≤ Cmax j ∈ N (5)
C0 = 0 (6)
Cj ≥ 0 j ∈ N (7)
xijk ∈ {0, 1} j, k ∈ N ; i ∈ M (8)

where
Cmax: Maximum completion time (makespan)

Cj : Completion time of job j
xijk: 1 if job k is processed directly after job j on

machine i
V : A large positive number

Constraint (1) ensures that each job is scheduled on a single ma-
chine only and after exactly one other job. Constraint (2) ensures
that each job cannot be preceded or succeeded by more than one job.
Constraint (3) sets the completion times of each job such that if job j
precedes job k, job k cannot also precede job j. If job k is processed
directly after job j,

∑M

i=1
xijk − 1 = 0 and the constraint makes it

so that Ck ≥ Cj + sijk + pik with i being the machine on which the
two jobs are assigned. If job k is not scheduled directly after job j
on a machine,

∑M

i=1
xijk − 1 = −1 and the large V term makes the

constraint redundant. Constraint (4) guarantees that only one job can
be scheduled first on each machine. Constraint (5) sets the makespan
to be at least as large as the largest completion time of all jobs. Con-
straint (6) sets the completion time of job 0, an auxiliary job used to
enforce the start of a schedule, to zero.

2.2 Related Work

The PMSP with sequence and machine dependent setup times is
strongly NP-hard because the single machine scheduling problem
with sequence dependent setup times (1|sds|Cmax) is equivalent to
a traveling salesman problem (TSP) [5]. Thus, the PMSP with setup
times can be thought of as an allocation and routing problem where
cities are allocated to salesmen who then must find their own tour.
Even in the case with identical machines (P|sds|Cmax), the problem
is strongly NP-hard [11]. The combinatorial complexity of the PMSP
has resulted in little research in exact optimization methods.

The MIP model in Section 2.1.1 was used to benchmark the qual-
ity of heuristics for small problem instances. Previous researchers
solved problems of 8 jobs and 4 machines and 9 jobs and 2 machines
[15, 21]. They found that larger problems were intractable and the
MIP model could not be used to find optimal schedules. For exam-
ple, Helal et al. [15] found the problem with 9 jobs and 2 machines
on average required 5 hours to find optimal solutions.

Most research has been focused on the PMSP with identical ma-
chines [9, 18]. Research on the PMSP with unrelated machines has

concentrated on the problem without setup times. An exact branch-
and-bound algorithm was developed by Lancia [19] to minimize
makespan for a problem with two parallel machines. A genetic algo-
rithm, simulated annealing, and tabu search were compared by Glass
et al. [12]. They conclude that tabu search is capable of finding the
best solutions in short periods of time (20 seconds), but the perfor-
mance comparison for a larger time limit (100 seconds) shows no
clear distinction between the three local search methods.

Rocha et al. [22] look at exact algorithms for the PMSP with se-
quence dependent setup times. In their study, jobs have due dates and
the objective is to minimize a function of makespan and total tardi-
ness. They compare their branch-and-bound algorithm against two
MIP models and show that their model is capable of optimally solv-
ing problems of size up to 30 jobs. However, as the problem sizes
increase, heuristic methods outperform branch-and-bound.

Al-Salem [1] developed the partitioning heuristic to solve large
instances of the PMSP with setup times. The partitioning heuristic
makes use of a constructive and improvement heuristic to assign jobs
to machines and a TSP-like heuristic to sequence them. Rabadi et
al. [21] presented a metaheuristic called Meta-RaPS. The heuristic
is a modified COMSOAL (Computer Method of Sequencing Opera-
tions for Assembly Lines) [3] approach with the goal of minimizing
makespan. Direct comparisons were made between Meta-RaPS and
the partitioning heuristic on problems up to 120 jobs and 12 machines
where Meta-RaPS was found to be 10% better in some cases. Helal
et al. [15] developed a tabu search to solve the same problem and also
compared their model to the partitioning heuristic. The tabu search
was found to be up to 8% better than the partitioning heuristic on
the same sized instances. An ant colony optimization (ACO) method
was implemented and shown to perform better than the partition-
ing heuristic, tabu search, and Meta-RaPS [4]. In this study, all four
heuristics were tested on instances up to size of 120 jobs and 8 ma-
chines where the performance was based on the difference between
the makespan found and a simple lower bound. ACO was found to
produce schedules with makespans within 1% to 7% deviation of the
lower bound with Meta-RaPS close behind.

Focacci et al. [10] proposed a two-phase algorithm based on con-
straint programming (CP) to optimize a combination of the makespan
and the sum of setup times for a similar problem to the PMSP with
sequence dependent setup times. Jobs consist of multiple activities
and precedence constraints exist between these activities. In the first
phase of the algorithm, a time-limited, incomplete branch-and-bound
method is used to find solutions with small makespan. The second
phase minimizes the sum of setup times with the constraint that
any schedule found must have a makespan equal to or less than the
makespan found in the first phase. They run their model on problems
of up to 16 jobs, each consisting of 12 activities, and 16 machines.

A similar class of problems to the PMSP are the min-max vehicle
routing problems (VRP). In the VRP, multiple vehicles must travel
between many nodes to service all customers. Generally, this class
of problems corresponds to the PMSP with identical machines and 0
processing time durations. Valle et al. [23] present a branch-and-cut
algorithm for the VRP, but show that even with only two vehicles,
the algorithm is unable to solve most instances they tested. They im-
prove their results by implementing a column generation heuristic
but report duality gaps of 10% or more on many of the test instances.
For the class of heterogenous vehicles, Baldacci et al. [6] provide a
survey. They show various different VRP problems and solution ap-
proaches. Benders decomposition has been applied to these class of
problems before[7], but to the authors’ knowledge, the use of logic-
based Benders decomposition has not.
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3 Logic-Based Benders Decomposition

Hooker first used a partitioning algorithm called logic-based Benders
decomposition to verify logic circuits [16]. The partitioning algo-
rithm was later developed to look at the PMSP problem without setup
times where the objective was to either minimize cost, makespan or
total tardiness [17].

We make use of the logic-based Benders decomposition frame-
work to solve the PMSP problem with setup times. The problem can
be decomposed into an assignment master problem and sequencing
subproblems. In the master problem, the jobs are assigned to ma-
chines. This assignment results in multiple subproblems, one per
machine, where each subproblem requires the sequencing of the as-
signed jobs. A MIP model is presented for the master problem. Se-
quencing is accomplished in the subproblem with a TSP solver.

3.1 Assignment Master Problem

The MIP formulation of the master problem is a relaxation of the
PMSP with setup times. In this relaxation, jobs are assigned to ma-
chines, but instead of requiring a single sequence of jobs on each
machine, many small sequences are allowed which partition the jobs
assigned to the machine. The setup times are calculated for each sub-
sequence; their sum is a lower bound on the total setup time on a
machine. This assignment and subsequencing leads to an infeasible
schedule if multiple subsequences are created. However, the relax-
ation gives a tighter lower bound than if setup times are ignored,
while being significantly easier to solve than the full problem. The
master problem is as follows

min Cmax

s.t.
∑

j∈N

xijpij + ξi ≤ Cmax, i ∈ M (9)

∑

i∈M

xij = 1, j ∈ N (10)

ξi =
∑

j∈N

∑

k∈N,k �=j

yijksijk, i ∈ M (11)

xik =
∑

j∈N

yijk, k ∈ N ; i ∈ M (12)

xij =
∑

k∈n

yijk, j ∈ N ; i ∈ M (13)

cuts (14)
xij ∈ {0; 1}, j ∈ N ; i ∈ M (15)
0 ≤ yijk ≤ 1, j, k ∈ N ; i ∈ M (16)

where
Cmax: Makespan of the master problem

ξi: Total setup time incurred from all sequences on
machine i

xij : 1 if job j is processed on machine i
yijk: 1 if job k is processed directly after job j on

machine i
The makespan on each machine with the relaxed setup times is

defined in constraint (9) as the summation of processing times for
all jobs that are assigned to that machine and the relaxed total setup
time. Constraint (10) ensures that each job is assigned to exactly one
machine. Constraint (11) assigns the relaxed setup time of a machine
i, ξi, to be a lower bound on the additional time required from the
sequencing of jobs, yijk, and their respective setup times, sijk. The
relaxation of setup times allows, instead of a sequence of jobs from
the first to last job processed on a machine, smaller sequences inde-
pendent of each other. For example, given jobs j1, j2, j3, j4, and j5,

a feasible sequence is [start - j1 - j2 - j3 - j4 - j5 - end]. However,
(12) and (13) set each job to have exactly one other job scheduled di-
rectly before and after it without restricting sub-cycles, as was seen
in constraint (3). It is, therefore, possible to assign two sequences,
such as [start - j1 - j2 - j3 - end] and [j4 - j5 - j4 - j5...]. Constraint
(14) are cuts added to the master problem from the subproblem each
time an infeasible solution is found. In the first iteration of the master
problem, the set of cuts is empty.

The master problem formulation is equivalent to solving the
(R|sds|Cmax), but instead of solving for the exact single sequence
of jobs to process on a machine, many subsequences are allowed.
The relaxation creates a tight lower bound for the actual makespan
of a machine and is similar to solving the assignment problem. The
makespan found from solving the master problem may be infeasible
given a proper sequencing of jobs.

3.2 Sequencing Subproblem

Once a solution of the master problem is found, the set of jobs to
schedule on each machine is known. These sets of jobs create |M |
subproblems, one for each machine. In this section, the TSP subprob-
lem formulation is presented. The subproblem will create a sequence
of jobs on a machine such that the makespan is minimized.

We know that the sequencing of jobs on a single machine is equiv-
alent to a TSP with directed edges, also known as an asymmetric
TSP. In the TSP representation, jobs are the nodes and distances be-
tween nodes are the setup time between the two connected jobs plus
the processing time of the preceding job. Therefore, traveling along
an edge from node a to node b will contribute the processing time
of job a and the setup time from job a to job b. By representing the
problem in such a way, the setup time problem on a single machine
is equivalent to a TSP and a cycle of a TSP from a start node to all
other nodes and back to the initial start node is the sequence of jobs
with the distance traveled being the makespan.

We also experimented with a CP model in the subproblem and
found it better to use a TSP solver which has been optimized to solve
such problems in place of a generic CP solver which is more expres-
sive, but not as good at solving this problem.

3.2.1 Feasible Schedules from the Subproblem

Solving the sequencing subproblem is guaranteed to produce a fea-
sible schedule because we do not impose the constraint on the
makespan from the master problem. Often with Benders decompo-
sition, a model searches in the infeasible region of solutions and the
first feasible solution found is the optimal one. In our logic-based
Benders decomposition approach, while the search is performed in
the infeasible region, the sequencing subproblem solves the local
schedule once the jobs are allocated to machines. The solution from
the subproblem creates a feasible schedule with a makespan equal to
the largest makespan found across all subproblems. Therefore, it is
possible to stop the solving at any time after the first complete itera-
tion and obtain a feasible schedule. This schedule may not be optimal
if the problem solving is stopped prematurely. However, it is possi-
ble to compare this value against the makespan found from the most
recent master problem solution to calculate an upper bound on how
far the current schedule is from optimality. Therefore, the Benders
decomposition will store the best solution found so far. At the com-
pletion of all subproblems during an iteration, the schedule created
will be compared to the best solution found and updated if necessary.
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3.3 Cuts

If the makespan found in the subproblem is less than or equal to the
master problem’s makespan, Cmax, then this subproblem is globally
feasible and no cuts are added to the master problem. In the case
where the makespan found is greater than Cmax, a cut is created and
added to the master problem. The master problem is then re-solved
with the cuts from each sub-problem.

To define the cut, we introduce the value maxPrehj , the maximum
setup time if job j directly succeeds another job that is assigned to
the same machine in iteration h. That is,

maxPrehj = max
k∈Nh

i
;k �=j

(sikj),

where Nh
i is the set of jobs assigned to machine i in iteration h. We

define θhij to be an upper bound on the effect of a job j to a schedule
when assigned to machine i on iteration h and set it as

θhij = pij + maxPrehj .

The proposed cut is then

Cmax ≥ Chi∗
max −

∑

j∈Nh
i

(1− xij)θhij .

Here, Cmax is the makespan variable in the master problem and
Chi∗

max is the makespan found in iteration h when solving the sub-
problem for machine i. The cut states that the future solutions of the
master problem can only decrease the makespan if another assign-
ment of jobs is given. If the same assignment is given to the subprob-
lem, the xij variables that are part of this cut will all equal to 1. If
this is the case, then (1− xij) = 0 for all j and the makespan of the
subproblem becomes a lower bound on Cmax. When a different as-
signment is made and at least one of the xij variables that previously
had a value of 1 is 0, the cut enforces that the makespan in a future
iteration must be bounded by the makespan found in the subproblem
reduced by the corresponding θhij value(s).

A valid cut must adhere to two conditions: the cut removes the
current solution from the master problem and does not eliminate any
globally optimal solutions [8]. The cut does remove the current so-
lution from the master problem since using the same assignment re-
quires an increase in the makespan variable. To show that the cut
does not remove a global optimal solution, we prove that θhij is a
true upper bound on the contribution of a job to an optimal schedule.

Theorem 1 The proposed cut is guaranteed to provide a lower
bound on the possible makespans in future iterations.

Proof We show that the cut is a lower bound by assuming that a
schedule violating the cut exists and then showing a contradiction.

Given a set of jobs, N , assigned to machine i in the current itera-
tion, let CN be the optimal makespan on machine i. We define two
disjoint subsets N̄ ∪ N̂ = N . Assume that in a subsequent iteration
the jobs in N̄ are assigned to machine i, their minimal makespan is
CN̄ , and contrary to our theorem:

CN̄ < CN −
∑

j∈N̂

θhij (17).

Given the schedule corresponding to CN̄ , it is possible to construct
a schedule containing all of N jobs by placing each job in N̂ , one by
one, at the end of the partial schedule. Using Prej as the setup time

required to schedule job j at the end of the current schedule, we know
the makespan of the constructed schedule to be

CN̄ +
∑

j∈N̂

(pij + Prej).

This schedule of all N jobs must have a makespan greater than or
equal to CN . However, Prej ≤ maxPrehj ; so we know that

∑

j∈N̂

(pij + Prej) ≤
∑

j∈N̂

(pij +maxPrehj) =
∑

j∈N̂

θhij .

Our assumption (17) therefore cannot hold as it is contradicted by

CN ≤ CN̄ +
∑

j∈N̂

(pij + Prej) ≤ CN̄ +
∑

j∈N̂

θhij

Therefore, we know that the cut provides a true lower bound on the
achievable makespan of a schedule in future iterations.

3.4 Stopping Condition

The Benders approach will iterate between master problem and sub-
problems until an optimal solution is found and proved. Optimality
is proved if either of two conditions is met. The first condition is that
all subproblems solved during an iteration find makespans less than
or equal to the Cmax value in the master problem. The second con-
dition is that the Cmax value found from the master problem is equal
to the best feasible makespan found so far as defined in Section 3.2.

4 Computational Results

The Benders decomposition model and MIP model were tested on an
AMD 270 CPU with 1 MB cache per core, 4 GB of main memory,
running Red Hat Enterprise Linux 4. The MIP master problem was
solved with IBM ILOG CPLEX 12.1 and the TSP solver used was
tsp solve.2 Experiments were run for problem instances of between
10 and 60 jobs in increments of 10 jobs. For each job size, between 2
and 5 machines were tested. Each of these combinations have 10 in-
stances for a total of 280 instances. A time limit of 3 hours was used
for each instance. Processing times for each machine-job pair were
generated from a uniform distribution between 5 and 200. To obtain
setup times that were sequence dependent and follow the triangular
inequality assumption, each job was given two different sets of coor-
dinates on a Cartesian plane for every machine. The setup times are
the Manhattan distances between two jobs’ coordinates. Distances
between the second set of coordinates are used to provide asymmet-
ric setup times. We set our setup times to be between 25 and 50.

Table 1 shows results comparing MIP and Benders decomposition.
For these results, the time until an optimal solution was found and
proved were recorded. Where a time out occurred, 3 hours was used.

The Benders decomposition results are a significant improvement
over the MIP performance. It is clear that the Benders decomposition
approach is capable of solving much larger problems in significantly
shorter run times. The Benders decomposition approach solves up to
60 jobs within the time limit. In contrast, the MIP model is able to
solve only 10 jobs in the 3 hour time limit and is unable to solve all
but 1 instance when there are 2 machines and 10 jobs.

2 A TSP solver in C++ available online at http://www.or.
deis.unibo.it/research pages/tspsoft.html.
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MIP Benders

N M Avg Runtime # uns. Avg Runtime # uns.
10 2 9145.00 9 0.07 0

3 4240.33 7 0.10 0
4 1116.41 1 0.18 0
5 11.48 0 0.32 0

20 2 10800.00 10 0.23 0
3 10800.00 10 0.62 0
4 10800.00 10 2.80 0
5 10800.00 10 9.44 0

30 2 10800.00 10 1.00 0
3 10800.00 10 7.00 0
4 10800.00 10 18.34 0
5 10800.00 10 115.16 0

40 2 10800.00 10 1.21 0
3 10800.00 10 12.96 0
4 10800.00 10 74.75 0
5 10800.00 10 411.65 0

50 2 10800.00 10 1.58 0
3 10800.00 10 15.92 0
4 10800.00 10 110.40 0
5 10800.00 10 748.57 0

60 2 10800.00 10 1.95 0
3 10800.00 10 88.30 0
4 10800.00 10 544.25 0
5 10800.00 10 3909.93 0

Table 1. Comparison of MIP and Benders: Average CPU run-time in
seconds and the number of unsolved instances.

Increasing the number of machines has a greater effect on the per-
formance of the Benders models than increasing the number of jobs.
The master problem had difficulty solving for increased machines.
In fact, the TSP subproblem is able to solve each subproblem in mil-
liseconds while the MIP master problem can spend over an hour
searching for an assignment in a few cases. The opposite is seen
for the MIP model. The MIP model has difficulties sequencing large
number of jobs on machines and so, in the case where there are only
2 machines, the MIP model has a very high run-time for instances of
10 jobs and 2 machines. When the number of machines is increased
to 5, the sequencing problem is simpler and results in fast run-times.

These results show that the Benders decomposition is able to op-
timally solve significantly larger problems than previously possible.
The specialized branch-and-bound algorithm by Rocha et al. [22] dis-
cussed above could only solve up to 30 jobs with problems of similar
parameters. When problem sizes are increased to 40 jobs, the branch-
and-bound algorithm is found to provide solutions 1.69% worse than
a heuristic model. At 60 jobs, the solutions found were 2.64% worse
than the tested heuristic where the Benders decomposition is able to
provide optimal solutions for these sizes. However, the branch-and-
bound algorithm is solving a generalization of the PMSP problem we
study and so a more comprehensive comparison is of interest.

5 Relaxed Benders Decomposition

Though the Benders decomposition approach obtains significant
speed-ups, the problem sizes that can be solved are limited compared
to what metaheuristic models can heuristically solve. As noted, in-
stances of 120 jobs are tested in previous papers using heuristics and
local search [15, 21]. Specifically, in work done by Helal et al. [15],
schedules for problem instances of 100 jobs and 10 machines are
found within minutes. The quality of these schedules is difficult to
assess given that the optimal solutions are not known. However, for
smaller instances (8 jobs and 4 machines) the optimal solution was

known from the MIP model and the heuristic used was experimen-
tally shown to have up to 5% deviation from optimal.

If optimal solutions are not possible for large instances, it is clear
that heuristic solutions are necessary. Stopping the Benders program
early and using the best found schedule as discussed in Section 3.2.1
is one approach. However, the problems must be small enough that
the Benders model can solve one complete iteration in a reason-
able time. From our experiments, we found that in some instances
of 60 jobs and 5 machines, one complete iteration took more than
one hour. Solve times of the subproblem are almost instantaneous,
but the MIP master problem appears intractable once the size of the
problem reaches 70 jobs and 5 machines. For problems as large as
100 jobs, the Benders decomposition model is not likely to solve the
master problem within a reasonable time.

Therefore, we propose to find a sub-optimal master solution. Dur-
ing the search for a solution to the MIP, we allow the solver to stop
once a solution is found within some predetermined gap from the
best lower bound obtained. Doing so reduces the effort required in
the master problem and enables the model to generate feasible sched-
ules faster. The change to the Benders decomposition master problem
results in it no longer being a true lower bound. However, it is guar-
anteed that the quality of the solution found is within the chosen opti-
mality gap. Preliminary experiments found a gap of 5% to be a good
trade off between run-time and quality for large problems. Thus, we
make use of a 5% gap in the results we show here.

To compare the relaxed Benders decomposition against state-of-
the-art heuristics, we run our model on the same test instances used
to evaluate the meta-heuristic algorithms.3 The performance of var-
ious meta-heuristics on these instances can be found at Scheduling
Research [20]. In the above experiments, processing time and setup
times were varied between 5 and 200, and 25 and 50 respectively.
The instances used in the experiments have processing time and setup
times ranging from 50 to 100. We vary the number of jobs evaluated
between 40 and 120 with increments of 20 jobs. The number of ma-
chines used varies between 2 and 8 in increments of 2. However,
machine-job pairs are only considered when the number of jobs are
at least 15 times larger than the number of machines. For each tested
machine-job pair, we test our model on 15 instances.

We directly compare the solution found from the relaxed Benders
to a lower bound (LB) calculated for each problem instance. The
lower bound used is the same as that used in the analysis of all heuris-
tics in the work on ACO and is calculated using the equations

LB1 = 1
|M|

∑
j∈N

mini∈M ;k∈N [pjk + sijk]

LB2 = maxj∈N {mini∈M ;k∈N [pjk + sijk]}

LB = max(LB1, LB2)

The deviation of the schedule found from the lower bound is Δ =
Cmax(∗)−LB

LB
. Here, Cmax(∗) represents the makespan found from

using the specified scheduling algorithm.
Table 2 demonstrates that the Benders approach outperforms the

state-of-the-art heuristics. The performance of ACO here is not the
same as those presented in previously published work [4]. We use
the results from an updated ACO model and compare against the
performance of this model when looking at Δ since the new model
produces better schedules on all instances. The results of the updated
ACO algorithm are available on Scheduling Research [20].

The Benders model with a 5% gap performs best when the num-

3 Thanks to Dr. Ghaith Rabadi for supplying the instances.
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Tabu Search ACO Benders 5%

N M Δ Δ Runtime Δ Runtime
40 2 6.45 2.15 127.2 2.44 0.24

60 2 6.45 1.57 255.00 2.71 0.31

4 8.17 4.54 192.60 4.74 0.74

80 2 5.95 1.25 416.40 1.66 0.39

4 7.66 3.97 311.40 3.77 9.21

100 2 6.21 1.08 626.40 1.33 6.99

4 7.06 3.54 557.40 3.50 177.94

6 8.84 5.58 544.20 5.42 875.09
120 2 6.27 0.92 873.00 1.23 15.05

4 6.80 3.00 727.20 2.86 186.97

6 8.20 4.52 753.00 4.43 888.53
8 10.09 5.70 825.00 4.58 2691.42

Table 2. Relaxed Benders Performance: Average run-time in seconds. The
best quality solutions and run-times have been bolded.

ber of machines are relatively large. ACO is able to obtain better
performance on two machine problems and the four machine prob-
lems with forty and sixty jobs. Not only does the relaxed Benders ap-
proach produce good schedules, it is able to do so in a notably short
time. Tabu Search did not have run-time information for comparison
so that information was not included. On every instance where ACO
is able to find lower makespans than the Benders decomposition, the
run-time for Benders is orders of magnitude faster than ACO. This
indicates that a 5% gap is too conservative for these instances with
few machines. A better quality schedule could be found by decreas-
ing the gap and spending more time searching for better solutions.
In fact, the problem instances where ACO finds a better solution are
problem sizes that can be solved optimally by Benders decomposi-
tion. An improvement on the relaxed Benders decomposition is to
autonomously adapt the % gap based on the difficulty of the prob-
lem. We intend to pursue such a model in our future work.

6 Conclusion

We presented a logic-based Benders decomposition approach to min-
imize the makespan of an unrelated parallel machine scheduling
problem with sequence and machine dependent setup times. A MIP
model was defined to assign jobs to machines and produce a lower
bound on the makespan of the problem. A TSP solver was then used
to find optimal schedules for each machine. Computational results
indicate that the cooperation of MIP and TSP can effectively find op-
timal solutions. We are able to solve instances six times larger than
what was previously possible using a MIP formulation in the litera-
ture and obtain optimal solutions on problems of the same size up to
six orders of magnitude faster. Further, our model solves problems
twice the size of specialized branch-and-bound approach designed
for a similar problem. Additionally, a relaxation of our model is pre-
sented and results show that good solutions can be found in much
shorter time and for larger instances if optimality is sacrificed. The
relaxed Benders is compared to the state-of-the-art meta-heuristic ap-
proaches and shown to be best on many instances with much lower
time and a guarantee of being within 5% of optimality.
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