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Abstract. Multi-agent planning (MAP) approaches have been typ-
ically conceived for independent or loosely-coupled problems to
enhance the benefits of distributed planning between autonomous
agents as solving this type of problems require less coordination
between the agents’ sub-plans. However, when it comes to tightly-
coupled agents’ tasks, MAP has been relegated in favour of central-
ized approaches and little work has been done in this direction. In
this paper, we present a general-purpose MAP capable to efficiently
handle planning problems with any level of coupling between agents.
We propose a cooperative refinement planning approach, built upon
the partial-order planning paradigm, that allows agents to work with
incomplete information and to have incomplete views of the world,
i.e. being ignorant of other agents’ information, as well as maintain-
ing their own private information. We show various experiments to
compare the performance of our system with a distributed CSP-based
MAP approach over a suite of problems.

1 INTRODUCTION

Multi-agent planning (MAP) refers to any planning or plan execu-
tion activity that involves several agents. In general terms, MAP is
about the collective effort of multiple planning agents to combine
their knowledge, information, and capabilities so as to develop so-
lutions to problems that each could not have solved as well (if at
all) alone [9]. There exists a great variety of tools and techniques
for MAP. Agent-oriented MAP approaches put the emphasis on dis-
tributed execution, plan synchronization and collaborative activity at
run-time planning to ensure that the agent’s local objectives will be
met [8, 16]. Another research line in MAP focuses on coordination
of already completed plans that agents have constructed to achieve
their individual goals, as for example plan merging [17, 6, 5]. In con-
trast, the cooperative distributed planning (CDP) approach puts the
emphasis on planning and how it can be extended into a distributed
environment, on building a competent plan carried out by multiple
agents [8]. In CDP, agents typically exchange information about their
plans, which they iteratively refine and revise until they fit together
well.

Following the cooperative approach, differences among MAP
models lie in the integration of the planning and coordination stages
[9, 7]. Some recent works on fully cooperative MAP have emerged
lately. The work in [14] considers agents as having sequential threads
of execution and interaction only occurs when distributing sub-plans
to individual agents for plan execution. This approach follows a
single-agent planning and distributed coordination. A centralized al-
gorithm for MAP can be found in [2], where multiple agents do plan-
ning over a centralized plan interleaving planning and coordination.
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In a distributed version of this latter work, authors use a distributed
CSP solver to handle coordination [15].

The aforementioned approaches are conceived for loosely-coupled
problems (LCP), where agents have little interaction between each
other, as these processes are likely to be inefficient in tightly-coupled
problems (TCP) [15]. This way, the coupling level of a cooperative
multi-agent system is formally defined as a set of parameters to limit
the combinatorial blow-up of planning complexity [2]. On the other
hand, these MAP models do not consider systems composed of mul-
tiple entities distributed functionally or spatially but rather agents
endowed with the same capabilities and acting under complete infor-
mation. When capabilities are distributed across the agents’ domains,
agents have necessarily to interact to solve the MAP problem while
being unaware of the other agents’ abilities or information about the
world, i.e. working under incomplete information.

In this paper, we present a general-purpose MAP model able to
work with inherently distributed entities and suitable for both LCP
and TCP domains. Similarly to [11], we use an iterative planning
refinement procedure that uses single-agent planning technology.
Particularly, our model builds upon a partial-order planning (POP)
paradigm, which also allow us to represent a collection of acting
entities as a single agent. POP is a very suitable approach for cen-
tralized MAP with a small number of coordination points between
agents [14], and the application of a multi-agent POP refinement
framework also reveals as a very appropriate mechanism to address
tightly-coupled problems.

This paper is organized as follows. The next section presents the
specification of a MAP task. Following, we explain the POP refine-
ment approach and the extensions we have introduced to deal with
a multi-agent representation and incomplete information. The next
sections describe our MAP task theoretical model and the refinement
planning algorithm carried out by the agents. Following, we show the
results of the tests we have performed, and finally, we conclude and
outline the future lines of research.

2 MULTI-AGENT PLANNING TASK

In our approach, the planning formalism of an agent is based on a
STRIPS-like model of classical planning under partial observability.
The model allows agents to represent their partial view of the world
through the adoption of the open world assumption. States are rep-
resented in terms of state variables. O is a finite set of objects that
model the elements of the planning domain; V is a finite set of state
variables each with an associated finite domain, Dv , of mutually ex-
clusive values. Values in Dv denote objects of the planning domain,
i.e., ∀v ∈ V , Dv ⊆ O. A state is a set of positive fluents of the
form 〈v, d〉, and negative fluents of the form 〈v,¬d〉, meaning that
the variable takes on the value d or ¬d, respectively. A formula (v, d)
evaluates to true if the fluent 〈v, d〉 is present in the state and it eval-
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uates to false otherwise. More specifically, (v, d) evaluates to false if
the fluent 〈v,¬d〉 is in the state, or if no fluent relating the variable,
v, and the value, d, is present in the state, in which case we say the
current value of v is unknown. We will generally refer to as fluents
both positive and negative fluents.

Actions are given as tuples a = 〈pre(a), eff(a)〉, where pre(a)
denotes the formulas that must hold in a state S for a to be applicable,
and eff(a) represents the new fluents in the resulting state S′. Effects
of the form (v = d) add a fluent 〈v, d〉 in the resulting state as well as
a set of fluents {〈v,¬dj〉}, ∀dj �= d, dj ∈ Dv , reflecting that (v, dj)
evaluates to false in the resulting state. Effects of the form (v �= d)
add a fluent 〈v,¬d〉 to the resulting state, which implies the current
value of v is unknown unless there is a fluent 〈v, d′〉 in S′, d �= d′.

We define a MAP task as a tuple T = 〈AG,V,A, I,G〉 where:
• AG = {1, . . . , n} is a finite non-empty set of planning agents.
• V = {Vi}ni=1, where Vi is the set of state variables managed by

agent i. Variables can be shared by two or more different agents.
• A = {Ai}ni=1, where Ai is the set of actions that agent i can

perform. Given two different agents i, j, Ai and Aj can share
some common actions or be two disjoint sets.

• I = {Ii}ni=1, where Ii is the set of fluents known by agent i
that represents the initial state of the agent. If two agents share a
variable v then they also share all of the fluents regarding v.

• G = {Gi}ni=1, where Gi is a set of formulas known to agent i that
must hold in the final state and denote the top-level goals of T .

As defined above, state variables may not be known to all agents.
Given a state variable v ∈ Vi and v �∈ Vj , ∀j �= i, v is said to be
private to agent i. Additionally, agents can have different visions of
the domain of a state variable; that is, not every value in a variable
domain has to be visible to all agents. Given an agent i, we denote its
view of the domain of a variable v as Dvi ⊆ Dv . Thus, the domain
of a state variable v can be defined as Dv = {Dvi}

n
i=1. Agents’

incomplete views on the state variables and their domains directly
affect the visibility of the fluents.
• An agent i has full visibility of a fluent 〈v, d〉 or 〈v,¬d〉 if v ∈ Vi

and d ∈ Dvi .
• An agent i has partial visibility of a fluent 〈v, d〉 or 〈v,¬d〉 if

v ∈ Vi but d �∈ Dvi . Given a state S, where 〈v, d〉 ∈ S, agent i
will see instead a fluent 〈v,⊥〉, where ⊥ is the undefined value.

• An agent i has no visibility of a fluent 〈v, d〉 or 〈v,¬d〉 if v �∈ Vi.

Our MAP model can be viewed as a POP-based, multi-agent re-
finement planning framework, a general method based on the refine-
ment of the set of all possible partial-order plans [12]. An agent pro-
poses a plan Π that typically enforces some top-level goals of the
planning task; then, the rest of agents collaborate on the refinement
of this base plan Π by proposing refinement steps that solve some
open goals in openGoals(Π). This way, agents cooperatively solve
the MAP task by consecutively refining an initially empty plan Π.

A refinement step Πi devised by an agent i over a base plan Πg ,
where g ∈ openGoals(Πg), is a triple Πi = 〈Δ, OR,CL〉, where
Δ ∈ Ai is a set of actions and OR and CL are sets of orderings and
causal links over Δ, respectively. Πi is a plan free of threats [18]
that solves g as well as all the new open goals that arise from this
resolution and can only be achieved by agent i, 〈v, d〉 or 〈v,¬d〉,
where (v ∈ Vi) ∧ (v �∈ Vj , ∀j �= i). That is, when solving an
open goal of a base plan, an agent i will also achieve the new arising
open goals concerning fluents that are only visible to i, so are not
visible to the rest of agents, leaving the rest of goals unsolved. Let
g ∈ openGoals(Πg) be a formula of the form (v, d) or (v,¬d); an
agent i computes a refinement step over Πg iff v ∈ Vi.

Plans that agents build are concurrent multi-agent (MA) plans as
two different actions in Π can now be executed concurrently by two
different agents. Some MAP models adopt a simple form of con-
currency: two actions can happen simultaneously if none of them
changes the value of a state variable that the other relies on or affects,
too [3]. We impose the additional concurrency constraint that the pre-
conditions of two actions have to be mutually consistent [1]. This
definition of concurrency is straightforwardly extended to a joint ac-
tion a = 〈a1, . . . , an〉. Agents address concurrency inconsistencies
through the detection of threats over the causal links of their actions.
This way, concurrency issues between two different actions may not
arise until their preconditions are supported through causal links.

A refinement plan Π devised by an agent i over a base plan Πg is
a concurrent MA plan that results from the composition of Πg and a
refinement step Πi proposed by agent i. This refinement plan, which
could eventually become a base plan, is defined as Π = Πg ◦ Πi,
where ◦ represents the composition operation. A composite plan Π
is a concurrent MA plan if for every pair of unequal actions ai and
aj , i �= j, ∀pi ∈ pre(ai), pi �∈ openGoals(Π), ∀pj ∈ pre(aj), pj �∈
openGoals(Π), ai and aj are concurrently consistent.

In our model, each agent implements a POP planner to compute
refinement plans over a base plan Π. If an agent is not capable to
come up with a concurrent MA plan, then the agent refrains from
suggesting such a refinement. If no agent elicits a consistent refine-
ment plan for a base plan, the plan node is pruned.

Algorithm 1 Dis-RPG construction for an agent i
Build initial RPGi

repeat

∀j �= i, i sends j shareable fluents SFi→j ∈ RPGi of the form
〈v, d〉 or 〈v,¬d〉, where v ∈ Vi ∩ Vj and d ∈ Dvi ∩ Dvj

∀j �= i, i receives from j shareable fluents SFj→i ∈ RPGj of
the form 〈v, d〉 or 〈v,¬d〉, where v ∈ Vi∩Vj and d ∈ Dvi∩Dvj

RF ← ∅
∀j �= i, RFi ← RFi ∪ SFj→i

for all received fluents f ∈ RFi do

if f �∈ RPGi then

Insert f in RPGi

costRPGi(f) ← cost(f)
end if

if (f ∈ RPGi) ∧ (costRPGi(f) > cost(f)) then

costRPGi(f) ← cost(f)
end if

end for

Expand RPGi

until RFi = ∅

3 REFINEMENT PLANNING

The cooperative refinement planning algorithm starts with a prelim-
inary information exchange by which agents communicate share-
able information. After this initial stage, agents execute the multi-
agent refinement planning algorithm, which comprises two inter-
leaved stages. First, agents individually elicit refinement plans over
a centralized base plan through their embedded POP. Later, agents
jointly select the most promising refinement as the next base plan.

3.1 Information exchange

Agents receive the information on the MAP task through a set of def-
inition files. These files are encoded in a MAP language that extends
PDDL3.1 [13], including a :shared-data section to configure
the agent’s vision of the planning task and which fluents it shares
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and with whom.
Prior to executing the refinement procedure, agents share infor-

mation by building a distributed Relaxed Planning Graph (dis-RPG),
based on the approach of [19]. Agents exchange the fluents defined
as shareable in the :shared-data section of the MAP definition
files. Fluents are labeled with the list of agents that can achieve them,
giving each agent a view of the possible interactions that can arise at
planning time with other agents. Additionally, the dis-RPG provides
an estimate of the best cost to achieve each fluent, a helpful informa-
tion to design heuristics to guide the problem-solving process.

Algorithm 1 summarizes the construction of the dis-RPG. Agents
compute an initial RPG and expand it by following the procedure
in [10]. The RPG contains a set of fluent and action levels that are
interleaved. The first fluent level contains the fluents that are part
of the initial state, and the first action level includes all the actions
whose preconditions appear in the first fluent level. The effects of
these actions are placed in the second fluent level, and this way the
graph is expanded until no new fluents are found.

Once all the agents have computed their initial RPGs, the itera-
tive dis-RPG composition begins. As depicted in Algorithm 1, agents
start each iteration by exchanging the the fluents shareable with other
agents. An agent i will send agent j the set of fluents SFi→j that are
visible to agent j, i.e., the new fluents of the form 〈v, d〉 or 〈v,¬d〉,
where v ∈ Vi∩Vj and d ∈ Dvi ∩Dvj . Likewise, agent i will receive
from all agents j �= i the shareable fluents they have generated.

Agent i updates then its RPGi with the set of new fluents it has
received, RFi. If a fluent f is not yet in RPGi, it is stored ac-
cording to cost(f). If f is already in RPGi, its cost is updated if
costRPGi(f) > cost(f). Hence, agents only store the best esti-
mated cost to reach each fluent. After updating RPGi, agent i ex-
pands it by checking whether the new inserted fluents trigger new
actions in RPGi or not. The fluents produced as effects of these new
actions will be shared in the next iteration.

The process finishes when there are no new fluents in the system.
Following, agents start the refinement planning process to build a
solution plan jointly.

3.2 Multi-agent refinement planning

The refinement planning process is based on a democratic leadership
by which a baton is scheduled among the agents following a round-
robin strategy. Agents carry out two interleaved stages: the individual
construction of refinement plans through a POP, and a coordination
process by which agents jointly search the refinement space.

Algorithm 2 describes the refinement planning process. Each
agent i computes a finite set of refinement plans for Πg ,
Refinementsi(Π

g), through its embedded POP planner. The in-
ternal POP system follows an A∗ search algorithm guided by a state-
of-the-art POP heuristic function [18]. The resulting refinement plans
are exchanged by the agents in the system for their evaluation (send
and receive operations in Algorithm 2).

Agent i has a local, partial vision of each refinement plan,
viewi(Π), according to its visibility over the planning task T . Thus,
when receiving a refinement plan Π, agent i will only view the open
goals (v, d) ∈ openGoals(Π) | v ∈ Vi. With respect to the fluents,
agent i will only view those fluents for which it has full visibility. If
i has partial visibility of a fluent 〈v, d〉 or 〈v,¬d〉, it will see instead
a fluent 〈v,⊥〉, where ⊥ stands for the undefined value. This notion
of partial view directly affects the evaluation of the refinements.

The evaluation of refinement plans is carried out through a utility
function F (currently, we use the same heuristic function that guides
the agents’ internal POP for this purpose) that allows agents to es-

timate the quality of the plans. Since agents do not have complete
information on the MAP task or the refinement plans, they evaluate
plans according to its own view of each refinement plan Π, i.e., agent
i evaluates a refinement plan Π according to F(viewi(Π)) (see Al-
gorithm 2).

Algorithm 2 Refinement planning process for an agent i
Π ← Π0

R = ∅
repeat

Select open goal g ∈ openGoals(Π)
Refine base plan Πg individually
∀j �= i, send Refinementsi(Π

g) to agent j
∀j �= i, receive Refinementsj(Π

g)
Refinements(Πg) ← Refinementsi(Π

g)
∀j �= i, Refinements(Πg) ← Refinements(Πg)∪
Refinementsj(Π

g)
for all plans Π ∈ Refinements(Πg) do

Evaluate Π according to F(viewi(Π))
end for

R ← R ∪Refinements(Πg)
Select best-valued plan Πbest ∈ R
Π ← Πbest

if openGoals(Π) = ∅ then

return Π
end if

until R = ∅

Once evaluated, the new refinement plans are stored in the set of
refinements R. Next, each agent votes for the best-valued candidate
Πbest ∈ R. In case of a draw, the baton agent will choose the next
base plan among the most voted alternatives.

Once a refinement plan is selected, agents adopt it as the new base
plan Π. If openGoals(Π) = ∅, a solution plan is returned. As some
open goals might not be visible to some agents, every agent i must
confirm that Π is a solution plan according to viewi(Π), i.e., Π is
a solution iff ∀i ∈ AG, openGoals(viewi(Π)) = ∅. If the plan has
still pending goals, the baton agent selects the next open goal g ∈
openGoals(Π) to be solved, and a new iteration of the refinement
planning process starts.

The planning algorithm carried out by the agents can be regarded
as a joint exploration of the refinement space. Nodes in the search
tree represent refinement plans and each iteration of the algorithm
expands a different node.

3.3 Soundness and completeness

The algorithm we have presented can be regarded as a multi-agent
extension of the POP algorithm. A partial-order plan is sound if it
is a threat-free plan. In our algorithm, we address inconsistencies
among the concurrent MA plans by detecting and solving threats.
Thus, in order to prove that our algorithm is sound, we should ensure
that all the threats among the causal links of a concurrent MA plan
are correctly detected and solved.

Under complete information, threats on a MA concurrent plan will
be correctly detected by any agent, as all the fluents in the plan are
fully visible. In our incomplete information model, we should study
how visibility over fluents affects the detection of threats.

Let Π be a MA concurrent plan and let 〈v, d1〉 be a fluent in a
causal link cl ∈ CL(Π). Suppose that an agent i builds a refinement
Π′ over Π that adds a new action at to the plan which is not ordered
with respect to cl and has an effect (v = d2). This effect causes a
threat over cl as it conflicts with 〈v, d1〉. For Π′ to be sound, agent i
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should be able to detect such a threat whatever visibility it has over
the fluent 〈v, d1〉:
• If i has full visibility over 〈v, d1〉, the inconsistency between cl

and at will be correctly detected.
• If i has no visibility over 〈v, d1〉, then v �∈ Vi. In this case, agent i

does not have an action at with an effect involving variable v, i.e.,
such a threat can never occur.

• If i has partial visibility over 〈v, d1〉, agent i will see instead a
fluent 〈v,⊥〉. Since ⊥�= d2, the threat will be detected and solved.

Therefore, all the threats over MA concurrent plans are always de-
tected and resolved, which proves that our MAP algorithm is sound.

As for completeness, we cannot ensure that our MAP algorithm is
complete. According to the notion of refinement plan we have used
in this work, the number of refinement plans that an agent can pro-
duce over a base plan may not be finite. Hence, we are implicitly
pruning the refinement search space. Nevertheless, agents rely on an
A∗ POP search process to build the refinement plans, which in most
cases returns good refinement plans that guide the MAP algorithm
towards a solution plan. The empirical results shown in the next sec-
tion confirm our claim.
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Figure 1. Scalability results for the Satellite domain

4 EXPERIMENTAL RESULTS

We designed and executed a set of tests to compare the performance
and scalability of our MAP-POP approach with another state-of-the-
art MAP system. Comparing the performance of multi-agent plan-
ning systems is not an easy task due to two main reasons. First, most
MAP approaches are not general-purpose but domain-dependent sys-
tems specifically designed to address a particular problem, most typ-
ically traffic control or real-time planning applications. Second, un-
like single-agent planners that have been promoted and populated
through the celebration of the International Planning Competitions2

(IPC) and, therefore, have been made publicly available, it is difficult
to find a multi-agent planner able to run the benchmark domains and
planning problem suites created for the IPCs.

Despite these drawbacks, we could assess the performance of
MAP-POP and compare the results with those obtained in the Plan-
ning First approach presented in [15]3. Planning First is a MAP sys-
tem that also makes use of single-agent planning technology. More
precisely, it builds upon a single-agent state-based planner [4], and
handles agent coordination by solving a distributed CSP.

Planning First defines public actions as the actions of an agent
whose descriptions contain atoms affected by and/or affecting the

2 http://ipc.icaps-conference.org/
3 We want to especially thank Raz Nissim for providing us with the source

code of his Planning First system for testing and comparison purposes.

actions of another agent. Based on this concept, it defines the notion
of coupling level as the average rate of public actions of an agent.
A high value of coupling level results in many agent coordination
points, thus giving rise to tightly-coupled problems. The approach
followed by Planning First is especially effective when dealing with
loosely-coupled problems (LCP) [15], but its performance decreases
when tackling tightly-coupled problems (TCP).

 0

 500

 1000

 1500

 2000

 2500

 2  4  6  8  10  12  14

Ti
m

e 
(s

ec
on

ds
)

Agents

Time comparison - Rovers domain

MAP-POP
Planning First

Figure 2. Scalability results for the Rovers domain

The tests presented here involve three of the benchmark domains
used on the IPCs: satellite, rovers and logistics, which are the do-
mains used in the results presented in [15] as well. These domains
give rise to problems of different coupling levels. The satellite prob-
lems are LCP as the different agents (the satellites) are not likely
to interact with each other; they move, calibrate their instruments
and take images by themselves. Rovers problems tend to present a
medium coupling level: rover agents are independent but they have
access to certain shared resources in their environment, namely the
rock and soil samples they collect and analyze. The logistics prob-
lems fall into the TCP category since agents (trucks and planes) have
to cooperate to transport the different packages to the target loca-
tions and problems present several coordination points (locations) at
which agents can interact.

We adapted the STRIPS problem files used in the IPCs to both our
MAP language and Nissim’s MA-STRIPS language. Problems from
the IPCs turned out to be complex instances for Planning First be-
cause agents have necessarily to interact to each other and cooperate
to find a solution plan for these problems and Planning First works
better when plans for each agent can be computed (mostly) inde-
pendently. For this reason, we encoded an additional set of problems
limiting cooperation and interactions among agents as much as possi-
ble. Particularly, in these additional problems, agents can solve goals
independently, i.e., an agent is able to solve a goal or set of goals by
itself without need of interacting with the rest of agents (we will refer
to these problems as independent problems in the remainder).

Table 1 shows the results when comparing the quality of the solu-
tion plans obtained with MAP-POP and Planning First and the exe-
cution times4. The quality of the solution plans is assessed through
three parameters: a) the number of actions of the plan; b) the dura-
tion of the plan, i.e. the number of time units or time steps required
to execute the plan; and c) the number of agents that take part in the
solution plan. This latter parameter gives an idea of how the effort on
solving the problem has been distributed among the agents.

4 All the tests were performed on a single machine with a 2.83 GHz Intel
Core 2 Quad CPU and 8 GB RAM.
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Problem #Agents %Coupling #Domain MAP-POP Planning First
level actions #Acts #TS #Partics Time #Acts #TS #Partics Time

IPCSat1 1 1,2 54 9 8 1 0,23 10 9 1 0,14
IPCSat4 2 29,3 2082 21 11 2 18,80 †
IPCSat10 5 23,7 1786 29 20 3 90,3 †
IPCSat16 10 18,3 7196 51 24 5 73,7 †
IPCSat17 12 14,3 8324 46 16 4 53,9 †
IndSat1 2 5,2 40 9 4 2 0,83 9 4 2 0,16
IndSat2 4 1,4 274 14 3 4 2,20 14 4 4 0,31
IndSat3 7 0,3 1820 32 4 7 6,5 32 4 7 4,1
IndSat4 8 0,3 2082 28 3 8 8,7 28 4 8 11,1
IndSat5 14 0,1 11020 63 4 14 32,5 †

IPCRov1 1 1,2 81 10 7 1 0,344 11 7 1 0,359
IPCRov2 1 2,3 45 8 4 1 0,390 9 5 1 0,312
IPCRov7 3 77,4 157 18 6 3 8,578 †

IPCRov14 4 58,7 797 35 21 2 81,874 †
IPCRov15 4 85 536 42 16 4 42,014 †
IndRov1 2 45,5 160 24 11 2 3,609 22 7 2 2,75
IndRov2 3 45,5 239 36 11 3 5,500 33 7 3 12,141
IndRov3 4 45,5 318 48 11 4 9,188 44 7 4 120,719
IndRov4 5 45,5 397 70 11 5 14,141 55 7 5 674
IndRov5 6 45,5 476 72 11 6 20,688 66 7 6 2594,515
IPCLog2 3 20 52 27 9 3 18,187 †
IPCLog4 4 12,3 116 37 13 4 33,765 †
IPCLog5 4 14 116 31 11 4 40,188 †
IPCLog7 5 9,8 206 46 15 5 96,484 †
IPCLog9 5 11,7 206 45 17 5 239,578 †
IndLog1 3 44,4 20 6 6 2 1,579 9 8 3 0,578
IndLog2 3 55,5 20 10 9 3 2,250 10 9 3 0,609
IndLog3 4 65 42 13 10 4 3,225 9 8 4 66,187
IndLog4 4 70 42 14 6 4 3,766 14 6 4 284,094
IndLog5 6 54,1 98 21 6 6 13,578 †

Table 1. Performance comparison between MAP-POP and Planning First

Problems labeled with IPC are directly taken from the IPC bench-
marks, while problems labeled with Ind are the extra set of indepen-
dent problems we created to assess Planning First performance (for
each domain, we show the results of 5 out of the 20 IPC problems we
tested as well as 5 independent problems). The next three columns in
the table show the difficulty of the planning problems: #Agents in-
dicates the number of agents involved in the problem; %Coupling
level estimates the coupling level of the problem as the average rate
of instantiated public actions of agents (taking into consideration the
notion of public and private action defined in [15]), and #Domain
actions refers to the total number of instanced actions. The results
for each planner include the number of actions(#Acts) and time steps
(#TS) of the solution plan, respectively. #Partics indicates the num-
ber of agents that take part in the solution plan, and Time shows the
total execution time. A dagger (†) indicates that Planning First was
not able to solve the problem.

For the most loosely-coupled problems, the satellite domain,
MAP-POP exhibited an excellent performance as our results con-
firmed that it was able to solve 18 out of 20 IPC problems. For the
five IPC problems for the satellite domain shown in Table 1, we can
see that our approach deals very efficiently with complex problems
up to 12 agents. It is also noticeable that at least one third of the par-
ticipating agents take part in the solution plans, which has a positive
impact on the plan duration, as actions are carried out in parallel by
different agents. Although the IPC satellite problems do not present
a high coupling level (less than 30% of public actions in the worst
case), Planning First only solves the first IPC problem, as these prob-
lems require cooperation among agents and it is more necessary for
larger instances. As for the additional problems we encoded (Ind-
Sat1, ..., IndSat5), we can see that Planning First is not able to solve

the largest one, IndSat5. Planning First is faster than MAP-POP when
dealing with small problems, but its performance decreases when the
size of the problem increases. For instance, while the first three prob-
lems are solved faster by Planning First, it is slower than MAP-POP
when solving IndSat4, and it does not find a solution to the most
complex instance, IndSat5. MAP-POP proves also to be more effec-
tive at parallelizing actions in this domain as it obtains plans of equal
or shorter duration than Planning First.

With respect to the rovers domain, our results confirmed that
MAP-POP solves 15 out of the 20 IPC problems for this domain. For
the five IPC rovers problems shown in Table 1, we can see the work-
load in this domain is better distributed than in the satellite domain
as most of the agents participate in the solution plan, which consider-
ably reduces the duration of the plan. For instance, the solution plan
for problem IPCRov7 contains 18 actions and is solved in just 6 time
steps. Planning First solves only the two smallest IPC problems. For
the independent problems we modeled, Planning First obtains better-
quality but more costly solutions than MAP-POP. The differences in
execution time are far more noticeable than in the satellite domain.
This is due to to the more tightly-coupled nature of the problems of
this domain (45.5% coupling level for the independent problems),
which affects negatively the performance of Planning First.

Finally, the logistics domain has proven to be the most com-
plex one for both multi-agent approaches. Agents in this domain are
trucks and airplanes that must cooperate in most of the cases to trans-
port packages. Hence, solutions for these problems are more costly
than in the rovers and satellite domains, as they require agent coor-
dination, an important feature to determine the efficiency of a MAP
approach. Our results confirmed that MAP-POP loses performance
in this domain, being able to solve only 9 out of 20 IPC problems.
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However, it distributes the workload effectively since all of the agents
participate in all the solution plans obtained. Planning First shows
also a poorer performance in this domain as it is not able to solve
any of the IPC problems. These results are in line with the conclu-
sions exposed in [15], which reveals the difficulty of a CSP-based
approach to deal efficiently with problems that exhibit a high level
of inter-agent interaction. As for the independent problems, some of
the solutions obtained by MAP-POP have better quality in terms of
actions and duration than the solutions of Planning First. In addi-
tion, Planning First is still remarkably slower than MAP-POP, be-
ing unable to solve the IndLog5 problem, even though we defined
rather small instances (notice the differences in execution time for
the instance IndLog4). Again, Planning First only performs better
than MAP-POP in the smaller problems.

The second test compares the scalability of both MAP frame-
works, i.e. to which extent their efficiency is affected by the num-
ber of agents. In order to do so, we have run fourteen different tests
for both the satellite and the rovers domains. Each test increases the
number of agents in the task by one, from one agent to fourteen. The
problems are modeled so that each of the participant agents has to
achieve one of the problem’s goals by itself.

Figure 1 shows the scalability results for the satellite domain. As
it can be observed, Planning First show a better performance when
solving small problems (up to seven agents). However, its perfor-
mance decreases quickly as we execute larger problems. MAP-POP
is faster at solving the 8-agent satellite problem, and Planning First
is unable to find a solution for the 9-agent problem upwards. MAP-
POP, however, finds a solution for the 14 problem instances, and ex-
ecution times suffer only a slight increase between problems.

The differences in performance of both systems are more notice-
able in the more tightly-coupled rovers domain. The results of this
test are depicted in figure 2. In this case, Planning First requires
more than 40 minutes to solve the 6-agent rovers problem, while
MAP-POP takes only 20 seconds. Again, MAP-POP solves all the
problems without losing performance in the larger instances.

In conclusion, MAP-POP proves to be a more robust approach
than Planning First as it can tackle larger and more complex plan-
ning problems. Moreover, while Planning First is designed for solv-
ing LCP, MAP-POP is a general-purpose method that tackles prob-
lems of different coupling levels. Although MAP-POP behaves better
in LCP problems, it can also solve complex TCP problems. Scalabil-
ity results show that Planning First performs better when dealing with
simple problems that involve few agents. However, MAP-POP scales
up far better, being able to solve much larger planning problems.

5 CONCLUSIONS AND FUTURE WORK

This paper presents a general-purpose MAP model suitable to cope
with a wide variety of MA planning domains under incomplete in-
formation. The ability to define incomplete views of the world for
the agents allows us to deal with more real problems, from inher-
ently distributed domains -functionally or spatially- to problems that
handle global and centralized sources of information. Currently, we
are testing our planner on large-size logistics applications in which
agents are geographically distributed and are completely unaware
of the other agent’s information except for the coordination points
within their working areas.

The MAP resolution process is a POP-based refinement planning
approach that iteratively combines planning and coordination while
maintaining for each agent only the information that is visible to the
planning entity. This POP approach centered around the gradual con-
struction of a joint solution plan for the MAP task highly benefits the

resolution of cooperative distributed planning problems.
We have compared our MAP approach against Planning First, a

system that handles agent coordination through a distributed CSP.
Results show that MAP-POP efficiently solves loosely-coupled prob-
lems but it also shows competitive when solving problems that have
a higher coupling level and when computing plans that require the
cooperation among agents. Hence, we can conclude that MAP-POP
is an efficient, domain-independent and general-purpose framework
to solve MAP problems.
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