
Path-Constrained Markov Decision Processes: bridging
the gap between probabilistic model-checking and

decision-theoretic planning

Florent Teichteil-Königsbuch 1

Abstract. Markov Decision Processes (MDPs) are a popular model
for planning under probabilistic uncertainties. The solution of an
MDP is a policy represented as a controlled Markov chain, whose
complex properties on execution paths can be automatically vali-
dated using stochastic model-checking techniques. In this paper, we
propose a new theoretical model, named Path-Constrained Markov
Decision Processes: it allows system designers to directly optimize
safe policies in a single design pass, whose possible executions are
guaranteed to satisfy some probabilistic constraints on their paths,
expressed in Probabilistic Real Time Computation Tree Logic. We
mathematically analyze properties of PC-MDPs and provide an itera-
tive linear programming algorithm for solving them. We also present
experiments that illustrate PC-MDPs and highlight their benefits.

1 INTRODUCTION

Computer science is a very large scientific field, which embraces
many connected sub-fields that have been widely studied, but often
independently. Two of these sub-fields, which both rely on proba-
bilistic discrete-event dynamic systems, have become mature enough
to be used in practical, even industrial, applications: probabilistic
model-checking [4], and decision-theoretic planning [7]. The for-
mer consists in automatically validating some probabilistic linear-
time logic formulas for dynamic systems represented as Discrete-
Time Markov Chains (DTMCs). For instance, considering the for-
mal dynamic analysis of a nuclear plant during its conception, a de-
signer may want to check if the probability that a given number of
reactors fail within a given time interval, is below a given threshold.
The latter sub-field is about optimizing the action policy (controller)
of an autonomous agent, whose behaviour is assumed to be repre-
sented as a set of DTMCs – one for each of its actions –, in order
to maximize some long-term reward-based criterion. For instance,
if the agent is a software automatically managing the use of reac-
tors, designers may want to find a policy for regulating the power of
reactors, which maximizes benefits and clients’ demands based on
probabilistic long-term demand prediction.

Both sub-fields share some important features. First, they rely on
finite-state discrete-time Markov chains: decision-theoretic planning
reasons about controllable Markov chains (i.e. one Markov chain
per action), whereas probabilistic model-checking is based upon
uncontrollable (standard) Markov chains. Second, solving methods
rest upon combinatorial search over paths of the underlying Markov
chain in order to compute the fixed-point solution of a given update

1 Onera — The French Aerospace Lab; F-31055, Toulouse, France;
florent.teichteil@onera.fr

equation, generally using dynamic programming: path-probability
update equation for probabilistic model-checking [4], and Bellman
equation for decision-theoretic planning [7]. Nevertheless, to the best
of our knowledge, both approaches have never been totally unified
within a single model and solving framework, compelling designers
to incrementally build the system’s controller in an optimize-then-
validate loop, often using different formalisms.

In this paper, we propose a radically different approach: we pro-
vide a theoretical framework and practical algorithm for automat-
ically constructing optimal and safe controllers for probabilistic
discrete-event controllable systems in a single design pass. More pre-
cisely, we search for a policy that maximizes the total discounted re-
wards gathered by the autonomous agent during its mission, among
all policies that satisfy a set of given formulas expressed in proba-
bilistic linear-time logic, which actually constrain possible execution
paths of the optimized policy. In the nuclear plant example, our ap-
proach would allow a system designer to automatically find a reactor
controller that maximizes the long-term plant’s benefits and clients’
demands, while also formally guaranteeing that the probability that a
given number of reactors fail within a given time interval by execut-
ing this controller, is below a given threshold. We call our new model
Path-Constrained Markov Decision Processes (PC-MDPs).

In section 2, we present existing models and methods for either op-
timizing or validating probabilistic discrete-event dynamic systems.
In section 3, we propose PC-MDPs, a unified theoretical model for
safely optimizing such systems, without needing to validate the op-
timized policy after the fact. We also discuss related works, some
of them considering weaker relations between stochastic model-
checking and decision-theoretic planning than we do. In section 4,
we mathematically analyze properties of PC-MDPs and provide an
iterative linear programming algorithm for solving them. Finally, we
conduct some experiments in section 5, and discuss perspectives of
our work in section 6.

2 EXISTING APPROACHES TO OPTIMIZING
OR VALIDATING PROBABILISTIC
DISCRETE-EVENT DYNAMIC SYSTEMS

2.1 Markov Decision Processes

Decision-theoretic planning often assumes that the effects of the ac-
tions of a given agent are memoryless, i.e. the probability that the
agent goes to a given state when applying a given action only depends
on its current state. In practice, this assumption can be removed by
adding states to the model, which represent parts of the agent’s his-
tory. Under the memoryless assumption, a decision-theoretic plan-
ning problem can be represented as a Markov Decision Process

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-744

744

(MDP), which is a tuple 〈S,A,H, T,R〉, such that [7]: S is the fi-
nite set of states; A is the finite set of actions; H ⊆ N is the tem-
poral reasoning horizon; T : S × A × S → [0; 1] is the transi-
tion function, where for all (s, a, s′) ∈ S × A × S and t ∈ H ,
T (s, a, s′) = Pr(st+1 = s′ | at = a, st = s); R : S×A×S → R

is the reward function, where for all (s, a, s′) ∈ S × A × S,
R(s, a, s′) is the reward gathered by the agent when applying action
a in state s and going to state s′ at any time step t ∈ H .

Many optimization criteria have been studied for solving MDPs.
The total discounted reward criterion is one of the most popular, be-
cause it represents a wide class of problems and it also offers prac-
tical efficient solving means. It consists in maximizing the value
function V π

γ,H : S → R over all stationary policies π : S → A,

defined as: ∀s ∈ S, V π
γ,H(s) = E

[∑H
t=0 γ

trt

∣∣∣π, s0 = s
]
, where

0 < γ < 1 and rt is the stochastic reward gathered at time step t
by executing π. Special care must be taken when choosing γ = 1
and H = +∞, because the value function does not need to converge
whatever the MDP structure [7, 5].

Some MDP optimization problems, e.g. constrained ones as pre-
sented later in this paper, rely on stochastic Markovian policies
π : S × A → [0; 1] where, for all states s, actions a and time step
t: π(s, a) = Pr(at = a|st = s), i.e. the probability of choosing
action a in state s. The transition function of such a policy, noted
Tπ : S × S → [0; 1], is still Markovian: for all states s and s′,
Tπ(s, s′) = Pr(st+1 = s′|st = s, π) =

∑
a∈A π(s, a)T (s, a, s′).

We note Π the set of all stochastic Markovian policies.
Finally, it is sometimes interesting to evaluate the value of a set of

initial states weighted by some probabilities. Noting α : S → [0; 1]
the initial probability distribution over states, i.e. α(s) = Pr(s0 =
s), ∀ s ∈ S, the value of α for a given policy π is simply: V π

γ,H(α) =∑
s∈S α(s)V πγ,H(s).
It is worth noting that the possible stochastic executions of any

stationary policy π (optimal or not, deterministic or stochastic) of
an MDP, is a Markov chain, whose behavior and properties can be
automatically validated using stochastic model-checking techniques.

2.2 Stochastic Model-Checking

Complex properties on paths of a Markov chain can be validated
with probabilistic linear-time logics such as Probabilistic Real Time
Computation Tree Logic (PCTL) [4]. This formalism allows design-
ers to define tree-like path formulas that are resting on logic con-
nectives (¬, ∧, ∨, →), boolean state formulas (set of functions
f : S → {0, 1}), and probabilistic strong until temporal operators
U�H
�p : {0, 1}S × {0, 1}S → {0, 1}S , where � is one of <, �,

�, >. As we consider controlled Markov chains in this paper, we
will note

[
U�H
�p

]
π

such an operator to indicate that it is defined for
the Markov chain induced by policy π. The semantics of these op-
erators is as follows: for a given policy π, state s and boolean state
formulas f and g,

(
f
[
U�H
�p

]
π
g
)
(s) means that there is at least (if

� ∈ {�, >}) or at most (if � ∈ {<,�}) a probability p that both
g will become true within H time units in some state reachable from
s by executing π, and that f will be true from now on in s until g
becomes true in some state reachable from s by executing π. This
semantics is perhaps easier to understand by reasoning about paths
starting in s and executing π. Let Φπ

s be the set of such paths. For a
given path φ ∈ Φπ

s , we note: φ(i) the ith state of the path, and φi the

sub-path of φ starting in φ(i). Then,
(
f
[
U�H
�p

]
π
g
)
(s) is true iff:

Pr (∃φ ∈ Φπ
s , ∃ 0 � i � H :

g(φ(i)) = 1, ∀ 0 � j < i, f(φ(j)) = 1)� p (1)

If H = +∞, state index i in the previous equation must be strictly
less (<) than H , meaning that g must become true in finite time.

As an example, consider the nuclear plant problem mentioned in
the introduction. Imagine that we have n reactors running together,
whose status is either ok or fail for each. We are initially in a state
s0 where the status of all reactors is ok. For some reasons, designers
want that the probability that a given reactor k fails within H time
units while reactors i and j are ok is less than 10−9, using a given
reactor regulation policy π. In PCTL, they will express this property
with the formula

(
f
[
UH
�10−9

]
π
g
)
(s0), where, for all states s ∈ S,

f(s) is true iff status of reactors i and j is ok in s, and g(s) is true
iff status of reactor k is fail in s.

Efficient algorithms for evaluating strong until temporal operators
have been proposed [6, 8]. Most of them rely on the exact compu-
tation of the left-hand side of eq. 1, which they compare with the
right-hand side p, in order to know if the strong until operator is true
or false from s. By noting [P g

f]
π
H(s) this left-hand side, the following

dynamic programming equation can be used to compute [P g
f]

π
H(s):

[P g
f]

π
H(s) =

⎧⎨
⎩

1 if g(s) = 1
0 if (g(s) = 0) ∧ (f(s) = 0 ∨H = 0)∑

s′∈S Tπ(s, s′)[P g
f]

π
H−1(s

′) otherwise
(2)

Like for the value function in Markov Decision Processes, we can
evaluate the probability of a path formula for a given initial probabil-
ity distribution α over states, as: [P g

f]
π
H(α) =

∑
s∈S α(s)[P g

f]
π
H(s).

The corresponding path-formula f
[
U�H
�p

]
π
g is also evaluated over

α, but no more over individual states. Yet, note that this little ex-
tension to standard stochastic model-checking formalisms includes
standard definitions, since any single initial state is a particular de-
terministic initial distribution.

To ease reading, we will equivalently note the following PCTL
constraints:

(
f
[
U�H
�p

]
π
g
)
(α) = 1 ⇔ [P g

f]
π
H(α)� p.

3 A NEW UNIFIED APPROACH: PATH-CONS-
TRAINED MARKOV DECISION PROCESSES

If a designer wants to optimize an MDP policy under the constraint
that some PCTL formulas are satisfied, there is up to now no other so-
lution than optimizing first the policy, then model-checking whether
the given PCTL formulas are satisfied, if not “magically” modifying
the MDP and re-optimizing again the policy for the new MDP, and
so on until the PCTL formulas are all satisfied. Yet, there is no easy
“magical” way to modify the MDP in such a way that some previ-
ously unsatisfied PCTL formulas become satisfied in the new opti-
mization pass. It seems to us that a new decision-theoretic model,
defined as a general constraint optimization problem, is needed to
properly optimize total stochastic rewards under constraints on the
paths of the controlled Markov chain.

3.1 A new constraint optimization problem

Formally, we define a Path-Constrained MDP (PC-MDP) as a tuple
〈S,A, T,R, n,H,F ,G,P, α〉, where S, A, T , and R are defined as
in standard MDPs (see section 2), and: n ∈ N

∗ is a number of PCTL
constraints on some path-formulas, H = {H,H1, · · ·Hn} is a set
of temporal horizons, F = {f1, · · · , fn} and G = {g1, · · · , gn}
are sets of boolean state formulas used in some PCTL constraints,
P = {p1, · · · , pn} is a set of probabilities on these PCTL con-
straints, and α is an initial probability distribution over states. We
search for a stochastic Markovian policy π∗ solution of the follow-
ing path-constraint optimization problem, named PCMDP-COPγ :

F. Teichteil-Königsbuch / Path-Constrained Markov Decision Processes 745

π∗(s) ∈ argmaxπ∈Π V π
γ,H(α)

subject to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
f1
[UH1

�1p1

]
π∗g1

)
(α) = 1 ⇔ [P g1

f1
]π
∗

H1
(α)�1 p1

...(
fn

[UHn
�npn

]
π∗gn

)
(α) = 1 ⇔ [P gn

fn
]π
∗

Hn
(α)�n pn

In this first paper about Path-Constrained MDPs, we will only
study the infinite horizon case, where H = H1 = · · · = Hn = +∞.
From now on, we will note V π

γ,∞ simply as V π
γ .

3.2 Relations to other constrained MDP models

Some constrained optimization problems based on MDPs have been
studied in the literature. In [1], authors propose to find a policy that
optimizes the value function of an MDP, subject to constraints on
many other value functions based on different reward structures.
Contrary to us, the objective function and the constraints have the
same mathematical structure, and can be solved with a single linear
program. Moreover, their constraint optimization problem is not re-
lated at all to stochastic model-checking of some probabilistic linear-
time logic formulas.

From an application viewpoint, works by [2, 3] are closer to ours.
In [2], authors consider an MDP viewed as a probabilistic controlled
automaton, for which they consider a set of properties that each gives
rise to some history-dependent reward if it is satisfied. Based on this
model, the authors search for a policy that maximizes the history-
dependent rewards associated to these properties. To simplify, this
approach can be viewed as a standard unconstrained MDP, whose
reward structure is related to multiple path-formulas. In [3], authors
study how to find a MDP policy that maximizes a probability vector,
where each row corresponds to a given path-formula ; in particular,
they produce a policy such that all given linear-time logic formulas
are satisfied with sufficient probability. Thus, they tackle an uncon-
strained multi-objective optimization problem, whose reward struc-
ture is again related to some linear-time logic formulas.

Our model is different from all these approaches: we propose to
optimize a given value function subject to a set of linear-time logic
formulas, but the reward structure associated to the optimized value
function is totally independent from the set of these formulas. From
a technical point of view, our constraint optimization problem is rel-
atively close to [1], except that our objective function and our con-
straints have different mathematical structures. In the next section,
we propose a solving method inspired by [1], but the different nature
of the objective function and the constraints in our problem compel
us – among others – to solve a convergent sequel of linear programs
(but not a single one as in [1]).

Finally, it is worth noting that the wide class of undiscounted
MDPs named GSSPs, recently proposed by [5], is itself a subclass
of path-constrained MDPs with γ = 1: GSSP ⊂ PCMDP-COP1.
Indeed, GSSPs bring back many undiscounted MDP problems to op-
timizing goal-oriented MDPs under the constraint that the optimized
policy must reach the goal with probability 1. This particular con-
straint can be expressed in PCTL as:

(
true [U+∞

�1]π∗ g
)
(s0) = 1,

where s0 is the initial state and g is true only in the goal states.

4 SOLVING PATH-CONSTRAINED MDPs

In order to solve the constraint optimization problem stated in section
3, we need to bring out a numerical quantity that links the objective
function and the constraints, so that the value of the objective func-
tion is explicitly subject to the constraints. In [1], authors propose

the so-called occupation measure as such a linking numerical quan-
tity, which allows them to reformulate their constraint optimization
problem as a linear program, whose vector of variables is this occu-
pation measure. Intuitively, we can express the accumulated rewards
and path probabilities in terms of the probabilistic presence of the
agent in a given state for a given randomized policy, which is some-
how what the occupation measure represents. We will also build our
optimization algorithm upon occupation measures, but differently.

4.1 Occupation measure

Consider a given initial probability distribution α on states, and a
given stochastic Markovian policy π. For all state s ∈ S and action
a ∈ A, the occupation measure μ : S × A → [0; 1] is defined as:
μπ
α(s, a) = (1−γ)

∑+∞
t=0 γtPr(st = s, at = a|α, π). This series is

well-defined because its terms are uniformly bounded by γt whose
series converge to 1/(1 − γ). This occupation measure is in fact a
probability measure, since

∑
s∈S,a∈A μπ

α(s, a) = 1. Policy π can
be easily obtained from the corresponding occupation measure using
the following equation (see [1]), for all states s and actions a:

π(s, a) =

{
μπ
α(s,a)

∑
a′∈A μπ

α(s,a′) if
∑

a′∈A μπ
α(s, a

′) �= 0

any probability otherwise
(3)

It has been proved in [1], that the occupation measure satisfies the
following |S|(|A|+ 1) constraints:⎧
⎪⎪⎨
⎪⎪⎩

∑

s′∈S
a∈A

μπ
α(s

′, a)(δs(s′)− γT (s′, a, s)) = (1− γ)α(s), ∀ s ∈ S

μπ
α(s, a) � 0, ∀ s ∈ S, a ∈ A

(4)

Now, [1] expresses value function V π
γ (α) in terms of μπ

α, using
the definition of MDP discounted value functions:

V π
γ (α) =

1

1− γ

∑
s∈S,a∈A

μπ
α(s, a)

∑
s′∈S

T (s, a, s′)R(s, a, s′) (5)

Obtaining a similar expression for PCTL formula probabilities is
not easy for at least two reasons: these probabilities are not defined
in terms of averages over some random variables, but in terms of
complex properties over paths in the controlled Markov chain (see
eq. 1 and 2); they do not depend on any discount factor, yet a discount
factor is required to properly define occupation measures, which do
not need to be properly defined in the general case for γ = 1.

4.2 Expressing PCTL probabilities as limits of
γ-discounted functions of occupation measures

Consider a given constraint [P gi
fi
]π∞(α)�i pi for some 1 � i � n.

Let Fi = {s ∈ S : fi(s) = 1} and Gi = {s ∈ S : gi(s) = 1}.
Then, eq. 2 gives rise to the following equation, for all s ∈ Fi ∩Gi:

[P gi
fi
]π∞(s) =

∑
s′∈Fi∩Gi

Tπ(s, s′)[P gi
fi
]π∞(s′) + R̃i(s) (6)

with R̃i(s) =
∑

s′∈Gi
Tπ(s, s′), which can be considered as the re-

ward function of a path-equivalent MDP related to the ith constraint;
in other terms, a reward is gathered only when gi becomes true for
the first time for all paths where fi was true before.

Let X π
i ⊆ Fi ∩Gi be the set of states from which it exists a path

with a positive probability to a state in Gi when executing π: X π
i =

{s ∈ Fi ∩ Gi : [P gi
fi
]π∞(s) > 0}. We will not need to explicitly

compute Xπ
i in our approach, but note that simple graph reachability

algorithms would be sufficient to obtain it without computing path-
probabilities. Obviously, in eq. 6, s′ can be summed only over X π

i .
The following lemma will allow us to get an algebraic expression of
PCTL formula probabilities from eq. 6.

F. Teichteil-Königsbuch / Path-Constrained Markov Decision Processes746

Lemma 1. Let Tπ
|Xπ

i
be the sub-matrix of Tπ defined over X π

i ×X π
i .

Then, I|Xπ
i
− Tπ

|Xπ
i

is invertible and equal to
∑+∞

t=0

(
Tπ
|Xπ

i

)t.
Proof. X π

i is a set of states in Fi∩Gi for which there exists a path to
states in Gi, so that it constitutes a transient class of the sub-Markov
chain defined over Fi ∪ Gi. Thus, according to classical Markov
chain results (see Appendix A of [7]), I|Xπ

i
−Tπ

|Xπ
i

is invertible.

Thanks to this lemma, and noting W|Xπ
i

the sub-vector of a
given vector W over X π

i , we can find an algebraic expression of
[P gi

fi
]π∞|Xπ

i

from eq. 6:

[P
gi
fi

]π∞|Xπ
i

=
(
I|Xπ

i
− Tπ

|Xπ
i

)−1
R̃i|Xπ

i
=

+∞∑
t=0

(
Tπ
|Xπ

i

)t
R̃i|Xπ

i
(7)

However, this algebraic expression is not sufficient for our needs,
because: (i) we do not want our constraints to depend on some policy-
dependent subset of states (X π

i); (ii) the series in the previous equa-
tion is convergent but not uniformly, so that we will not be able to
express it in terms of occupation measures as done in [1] for the
discounted value function. Yet, this algebraic expression happens to
be very useful for the following proposition, which nevertheless re-
quires that all Fi sets constitute transient classes of the MDP: i.e.
for all executions of all policies, there is no path from Fi to Fi. In
practice, this restriction is not very annoying, since safety or oper-
ability PCTL constraints usually aim at checking that the system will
eventually lead to (operability) or never reach (safety) some Gi sets
whatever the intermediate states visited, meaning that Fi = S most
of the time.

Proposition 1. Assume that, for all 1 � i � n, either Fi = S or Fi

is a transient class of the MDP. Let Pπ
i (γ) be the vector defined over

Fi ∩Gi by: Pπ
i (γ) =

∑+∞
t=0 γt

(
Tπ
|Fi∩Gi

)t

R̃i|Fi∩Gi
, 0 < γ < 1.

Then: limγ→1 P
π
i (γ) = [P gi

fi
]π∞|Fi∩Gi

Proof. As Fi = S or Fi is a transient class of the MDP,(
Tπ
|Fi∩Gi

)t

(s, s′) = Pr(st = s′|s0 = s, π) for all states s and

s′ in Fi ∩Gi. Thus, for all states s ∈ Fi ∩Gi , we have:

Pπ
i (γ)(s) =

+∞∑
t=0

∑
s′∈Fi∩Gi

γtPr(st = s′|s0 = s, π)R̃i(s
′)

=

+∞∑
t=0

∑
s′∈Xπ

i

γtPr(st = s′|s0 = s, π)R̃i(s
′)+

+∞∑
t=0

∑
s′∈Xπ

i ∩Fi∩Gi

γt Pr(st = s′|s0 = s, π)R̃i(s
′)︸ ︷︷ ︸

A(s′,t)=0

=

+∞∑
t=0

∑
s′∈Xπ

i

γtPr(st = s′|s0 = s, π)R̃i(s
′)

Indeed, A(s′, t) = 0 for all s′ ∈ X π
i ∩ Fi ∩ Gi and time step t,

because by definition of X π
i , there is no path from s′ to some state

in Gi so that R̃i(s
′) =

∑
s′′∈Gi

Tπ(s′, s′′) = 0. Now, we have
to consider two cases, depending on whether s is in X π

i or not. If
s ∈ X π

i , we have:

Pπ
i (γ)(s) =

+∞∑
t=0

γt

((
Tπ
|Xπ

i

)t

R̃i|Xπ
i

)
(s) −−−→

γ→1
[P gi

fi
]π∞|Xπ

i

(s)

because the above series is uniformly convergent and thus a contin-
uous function of γ, and using eq. 7. If s ∈ X π

i ∩ Fi ∩ Gi , there

is no path from s to any state in X π
i (otherwise, there would be a

path from s to Gi via some state in X π
i , which contradicts the fact

that s ∈ X π
i): thus, Pr(st = s′|s0 = s, π) = 0 for all time steps

t and states s′ ∈ X π
i , so that Pπ

i (γ)(s) = 0 = [P gi
fi
]π∞(s); the last

equality comes from the definition of X π
i .

Finally, we can express Pπ
i (γ) in terms of occupation measures,

and thus get a discounted function of occupation measures that con-
verges to PCTL formula probabilities, thanks to the next theorem.

Theorem 1. Assume that, for all 1 � i � n, either Fi = S or
Fi is a transient class of the MDP. Let α be an initial probability
distribution over states such that α(s) = 0 for all s �∈ Fi∩Gi. Let be
Pπ
i,α(γ) =

1
1−γ

∑
s∈Fi∩Gi,a∈A μπ

α(s, a)
∑

s′∈Gi
T (s, a, s′). Then:

limγ→1 P
π
i,α(γ) = [P gi

fi
]π∞(α)

Proof. For all states s′ ∈ Fi ∩Gi , we have:

R̃i(s
′) =

∑
s′′∈Gi

Tπ(s′, s′′) =
∑

s′′∈Gi

∑
a∈A

π(s′, a)T (s′, a, s′′)

=
∑

s′′∈Gi

∑
a∈A

Pr(at = a|st = s′, π)T (s′, a, s′′)

As π is a Markovian policy: Pr(st = s′|s0 = s, π)Pr(at = a|st =
s′, π) = Pr(st = s′, at = a|s0 = s, π). This yields, ∀s ∈ Fi ∩Gi:

Pπ
i (γ)(s) =

+∞∑
t=0

∑
s′∈Fi∩Gi

γtPr(st = s′|s0 = s, π)R̃i(s
′)

=
∑

s′∈Fi∩Gi
a∈A

+∞∑
t=0

γtPr(st = s′, at = a|s0 = s, π)
∑

s′′∈Gi

T (s′, a, s′′)

Note that sums over t and s′ could be interchanged because the
summed terms are uniformely bounded by γt whose series is conver-
gent. This would not be possible if we had γ = 1, which strengthens
the use of discounted occupation measures in expressions converging
to PCTL formula probabilities. Finally, since α(s) �= 0 if and only if
s ∈ ⋂n

i=0 Fi ∩Gi, we have:

∑
s∈S

α(s)Pπ
i (γ)(s) =

∑
s′∈Fi∩Gi

a∈A

+∞∑
t=0

γt
∑

s∈⋂n
i=0 Fi∩Gi

Pr(s0 = s)×

Pr(st = s′, at = a|s0 = s, π)
∑

s′′∈Gi

T (s′, a, s′′)

=
∑

s′∈Fi∩Gi
a∈A

+∞∑
t=0

γtPr(st = s′, at = a|α, π)
∑

s′′∈Gi

T (s′, a, s′′)

=
1

1− γ

∑
s′∈Fi∩Gi,a∈A

μπ
α(s

′, a)
∑

s′′∈Gi

T (s′, a, s′′) = Pπ
i,α(γ)

The final step is then obvious using Proposition 1.

4.3 Iterative Linear Programming

For a given 0 < γ < 1, Theorem 1 gives a linear expression of
discounted PCTL formula probabilities in terms of occupation mea-
sures μπ

α, which converge to the actual PCTL formula probabilities
as γ tends to 1. In conjunction with the constraints on occupation
measures (eq. 4) and the linear expression of the optimized value
function as a function of occupation measures given earlier, we can

F. Teichteil-Königsbuch / Path-Constrained Markov Decision Processes 747

formulate the following LPγ linear program, which has |S||A| vari-
ables (vector μ ∈ S ×A) and n+ |S|(1 + |A|) constraints:

maximize:
∑

s∈S,a∈A
μ(s, a)

∑
s′∈S

T (s, a, s′)R(s, a, s′)

subject to:∑
s′∈S
a∈A

μ(s′, a)(δs(s
′)− γT (s′, a, s)) = (1− γ)α(s), ∀ s ∈ S

μ(s, a) � 0, ∀ s ∈ S, a ∈ A∑
s∈Fi∩Gi,a∈A

μ(s, a)
∑

s′∈Gi

T (s, a, s′)�i (1− γ)pi, ∀ 1 � i � n

The idea is to solve many successive LPγ problems with increas-
ing values of γ, until we get a solution to PCMDP-COPγ , the path-
constrained optimization problem formulated in section 3. Yet we
need to precise the definition of solutions to PCMDP-COPγ , since
its formulation, via the optimized objective function, depends on γ.
Thus, the discount factor γ of the objective value function will de-
pend on the number of iterations of LPγ performed, instead of being
chosen by the designer of the problem. However, in many applica-
tions, decision makers seek for the closest discount factor to 1 that
provides sufficient long-term reasoning (γ impacts the long-term ac-
cumulation of rewards) while allowing for stable numerical stability
and efficiency (which degrade as γ tends to 1). In other words, they
would set γ to 1 if they could, except for applications where γ has
special semantics. Therefore, we think that decision makers are inter-
ested in finding a solution of a given MDP problem for a sufficiently
high discount factor, which gives rise to the following definition in
the context of Path-Constrained MDPs.

Definition (γ-sufficient ε-optimality). Let 0 < γ < 1 be some
discount factor. A policy π is said to be a γ-sufficient ε-optimal
policy if it is a solution of PCMDP-COPγ′ , γ′ � γ, such that
[P gi

fi
]π
′
∞(α)�i pi ± ε for all 1 � i � n and all policies π′.

Based on Theorem 1, which states that discounted PCTL for-
mula probabilities tend to actual PCTL formula probabilities as γ
tends to 1, we know that there exists 0 < γm < 1 such that
‖Pπ

i,α(γ) − [P gi
fi
]π∞(α)‖ < ε for all 1 � i � n and γ � γm.

Now, if we search for a γ0-sufficient ε-policy, we can “simply” solve
LPγ with γ = max(γ0, γm), because the objective function of LPγ

exactly matches the one of PCMDP-COPγ for any γ. The following
theorem proves that successively solving LPγ with increasing γ val-
ues will eventually provide a solution to PCMDP-COPγfinal if it
is feasible, provided the inequalities (symbols �i) of constraints on
PCTL formula probabilities are strict.

Theorem 2. Assume a Path-Constrained MDP problem PCMDP-
COP, such that �i ∈ {<,>} for all 1 � i � n, is feasible. Let be
0 < γ0 < 1 and ε > 0. Then:
(i) It exists 0 < γ1 < 1 such that LPγ is feasible for all γ1 � γ < 1.
(ii) It exists 0 < γ2 < 2 such that ‖Pπ

i,α(γ)− [P gi
fi
]π∞(α)‖ < ε for

all 1 � i � n and γ � γ2 and all policy π.
(iii) Let μ∗(γ) be a solution of LPγ with γ = max(γ0, γ1, γ2), and

π∗(γ) be the stationary Markovian policy corresponding to μ∗(γ)
as defined in eq. 3. Then, π∗(γ) is a γ0-sufficient ε-optimal policy
of PCMDP-COP.

Unfortunately, proving ε-optimality, i.e. item (ii) of Theorem 2, is
very hard in the general case. In fact, eq. 6 shows that PCTL proba-
bility formulas have nearly the same mathematical structure as value

functions of the total undiscounted reward criterion in MDPs, for
which similar γ-convergence theoretical results have been reported,
but without any algorithmic means to obtain ε-optimal value func-
tions (for details, see Chapter 10 of [7]). However, for a given policy
π∗(γ) solution to LPγ for a given γ, we can always exactly solve the
linear systems of eq. 6 using π∗(γ) (one system per PCTL constraint)
and decide whether the computed PCTL formula probabilities satisfy
all the constraints of PCMDP-COP.

This is the idea of Algorithm 1, named ILP for Iterative Lin-
ear Programming, which iterates over increasing γ discount factors,
solving successive LPγ problems (Line 3) until all the constraints
of PCMDP-COP are satisfied (Lines 7 to 9). The initial discount
factor is γ0, given by the decision maker as a sufficient discount
factor for the constrained value function to optimize. We increase
discount factors γ using the following update formula (Line 10):
γn+1 = (1 − γ0)γn + γ0, which ensures that limn→+∞ γn = 1,
and which has a nice behavior for some γ0 like 0.9 (γ1 = 0.99,
γ2 = 0.999, etc.). Thanks to item (i) of Theorem 2, if PCMDP-COP

is feasible, we will eventually find a feasible solution to LPγ for
some γ sufficiently close to 1. Therefore, iterations continue while
LPγ is not feasible or some PCTL formula probabilities are not satis-
fied (flag is false in Line 12). In general, we do not know in advance
if PCMDP-COP is feasible; if not, we have no guarantees to reach
a discount factor γ such that LPγ is feasible. This is why we stop
iterations after a given number N of iterations in case LPγ would
not be feasible (or after PCTL formula probabilities are all satisfied).

Algorithm 1: Iterative Linear Programming (ILP)

1 γ ← γ0; flag ← false; iter ← 0;
2 repeat

3

(
μ, V π

γ

) ← solve LPγ ;
4 if LPγ is feasible then

5 π ← compute policy from μ using eq. 3;
6 flag ← true;
7 for 1 � i � n do

8 Compute [P gi
fi
]π∞(α) by using eq. 2 or 6;

9 flag ← flag ∧
(
[P gi

fi
]π∞(α)�i pi

)
;

10 if !flag then γ ← (1− γ0)γ + γ0;
11 iter ← iter + 1 ;
12 until flag ∨ (iter > N);

13 return π, γ, V π
γ ,

(
[P gi

fi
]π∞(α)

)
1�i�n

;

Finally, we mention the next theorem, following from Theorem 2,
about completeness, optimality and termination properties of ILP.

Theorem 3. ILP is complete and γ-sufficient ε-optimal if γ < 1 and
N = +∞ (unbounded number of iterations). With these settings, it
terminates in finite time iff the PCMDP-COP problem is feasible.
ILP’s solution is a stochastic Markovian policy computed using eq.
3 with the occupation measure that is solution of the last LPγ .

5 EXPERIMENTAL RESULTS

In order to illustrate and evaluate our PC-MDP model, we tested nav-
igation grid problems, where state trajectories of the optimal policy,
impacted by PCTL constraints, are obvious and easily understand-
able. Our ILP algorithm can deal with far more complex PCTL for-
mulas than the ones presented in these experiments, which were in-
tentionally kept simple in order to ease understanding of the tradeoff
between reward maximization and PCTL constraint satisfaction.

F. Teichteil-Königsbuch / Path-Constrained Markov Decision Processes748

��

��

��

��

��

��
(a) 1 PCTL constraint: trueU∞�0.8 g1 (b) 2 PCTL constraints: (a) & trueU∞�0.3 g2 (c) 3 PCTL constraints: (b) & trueU∞�0.7 g3

Figure 1. Path-Constrained MDPs: impact of the number and the kind of PCTL constraints on the optimal policy

Figure 1 presents visual results of a same navigation problem
(same reward structure) but with an increasing number of PCTL con-
straints. The agent starts at the bottom left corner. It can gather a +1
reward if it enters the bottom right corner, or pay a -1 reward if it en-
ters the big central square. The first PCTL constraint (Fig. 1.a) con-
sists in entering the top right corner with a probability higher than
0.8 (see PCTL formula in the figure). The second one (Fig. 1.b) aims
at entering the middle right square with a probability lower than 0.3
(i.e. equivalent to not entering the square with sufficient probabil-
ity). Finally, the third constraint (Fig. 1.c) consists also in entering
the big top left square with a probability lower than 0.7. Experiments
were conducted on a laptop equipped with a 2.30 GHz CPU and 2Gb
of RAM. We used the COIN-OR-CLP simplex solver to solve LPγ

problems, and the UMFPACK linear system solver to compute the
(undiscounted) PCTL probabilities and check if they are satisfied.

In Fig. 1, we drew states (cells) visited by 100 stochastic simula-
tions of the optimal policy: the darker the cell is, the most visited it
is. With a single constraint, the strategy consists in going to the +1
reward area, then going to G1 in order to satisfy the corresponding
PCTL constraint. With an additional constraint (Fig. 1.b), the agent
now prefers to go to the +1 reward area, then going to G1 by going
back the initial states and going around the central -1 reward, because
this second PCTL constraint is satisfied if the agent does not enter
it with sufficient probability. Finally, the third additional constraint
(Fig. 1.c) is also satisfied if the agent does not enter it with sufficient
probability; the agent chooses the first strategy (i.e. circling the cen-
tral -1 area by the right), because it gets into a smaller portion of the
central -1 area compared with the other strategy. We could wonder
whether there exists an equivalent MDP, without PCTL constraints
but with enriched reward structure, which would produce the same
optimal policy. We think that there is no definitive answer to this
question since: (i) the strategy with two constraints goes back to the
initial states, so that standard MDP approaches would require to add
some kind of trajectory history in the states; (ii) our policy is guaran-
teed to satisfy all PCTL constraints, whose mathematical properties
are quite different from standard-MDP value functions.

Table 1 shows how ILP behaves when increasing the size of the
grid (|S| = size2), with always 3 constraints. We observed the final
discount factor γ∗ at convergence, the number of iterations iter, the
total running time, the percentage of time used by all LPγs, and the
percentage of time used to check the PCTL constraints (Line 8 of
Alg. 1). As expected, the total time increases with the size of the
grid. It is also true for γ∗ and iter, which is rather intuitive because
increasing the size of the grid requires more look-ahead. Moreover,
we observe that most of the computation time is used to optimize the
linear programs, and that checking PCTL formulas (recall that we

compute exact PCTL formula probabilities for this) is negligible.

size γ∗ iter total time (s.) % LPγ % PCTL

10 0.99 2 0.004145 71.15 23.55
25 0.999 3 0.115024 91.67 7.87
40 0.999 3 1.25937 97.44 2.5
50 0.999 3 19.2616 99.65 0.34
60 0.999 3 96.277 99.88 0.11
75 0.999 3 719.014 99.97 0.035

Table 1. Navigation problem: increasing grid sizes

6 CONCLUSION AND PERSPECTIVES

To the best of our knowledge, we presented one of the first theoretical
framework to optimize MDP policies for the total average discounted
reward criterion, under path-based constraints expressed in probabil-
ity linear-time logic. We analyzed some mathematical properties of
this new model, and proposed an iterative linear programming al-
gorithm, named ILP, to solve PC-MDPs. While this study is rather
academical, we think that the richness of the model will be of interest
for many realistic applications, e.g. industrial ones where stochastic
model-checking techniques are already used on a daily basis.

Many works remain to increase the class of problems that can
be tackled: dealing with non-transient class sets Fi in PCTL formu-
las, taking into account different temporal horizons in the optimized
value function and in the PCTL constraints, or even designing effi-
cient forward-search algorithms to solve PC-MDPs.

REFERENCES

[1] Eitan Altman, Constrained Markov decision processes, Chapman &
Hall/CRC, 1999.

[2] C. Courcoubetis and M. Yannakakis, ‘Markov decision processes and
regular events’, IEEE Transactions on Automatic Control, 43(10), 1399–
1418, (October 1998).

[3] K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis, ‘Multi-
objective model checking of markov decision processes’, in Proc. of the
13th int. conf. on Tools and algorithms for the construction and analysis
of systems, p. 5065, Berlin, Heidelberg, (2007). Springer-Verlag.

[4] Hans Hansson and Bengt Jonsson, ‘A logic for reasoning about time and
reliability’, Formal Aspects of Computing, 6(5), 512–535, (1994).

[5] Andrey Kolobov, Mausam Mausam, Daniel S Weld, and Hector Geffner,
‘Heuristic search for generalized stochastic shortest path MDPs’, in 21st
Int. Conference on Automated Planning and Scheduling, (2011).

[6] M. Kwiatkowska, G. Norman, and D. Parker, ‘Probabilistic symbolic
model checking with PRISM: A hybrid approach’, Int. Journal on Soft-
ware Tools for Technology Transfer (STTT), 6(2), 128–142, (2004).

[7] Martin L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming, John Wiley & Sons, Inc., New York, NY,
USA, 1st edn., 1994.

[8] Florent Teichteil-Königsbuch, Guillaume Infantes, and Christel Seguin,
‘Lazy forward-chaining methods for probabilistic model-checking’, in
European Safety And Reliability Conference (ESREL 2011), Troyes,
France, (2011). CRC Press.

F. Teichteil-Königsbuch / Path-Constrained Markov Decision Processes 749

