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Abstract. RCC8 is one of the most widely used calculi for quali-
tative spatial reasoning. Although many applications have been ex-
plored where RCC8 relations refer to geographical or physical re-
gions in two- or three-dimensional spaces, their use for conceptual
reasoning is still at a rather preliminary stage. One of the core obsta-
cles with using RCC8 to reason about conceptual spaces is that re-
gions are required to be convex in this context. We investigate in this
paper how the latter requirement impacts the realizability of RCC8
networks. Specifically, we show that consistent RCC8 networks over
2n + 1 variables are guaranteed to have a convex solution in Eu-
clidean spaces of n dimensions and higher. We furthermore prove
that our bound is optimal for 2- and 3-dimensional spaces, and that
for any number of dimensions n ≥ 4, there exists a network of RCC8
relations over 3n variables which is consistent, but does not allow a
convex solution in the n-dimensional Euclidean space.

1 Introduction

RCC8 is a constraint language for expressing qualitative mereo-
topological relations between regions. It originates from the influ-
ential Region Connection Calculus (RCC), which was introduced in
[9] as a first-order theory for defining mereo-topological relations,
starting from the notion of connection as the only primitive spatial
relation. In RCC8, eight jointly exhaustive and pairwise disjoint base
relations are used to express the spatial relationship of two regions

R8 = {EQ,DC,EC,PO,TPP,NTPP,TPP−1,NTPP−1}

The intended meaning of six of these relations is illustrated in Ta-
ble 1, with the remaining relations being defined by aNTPP−1 b
iff bNTPP a, and aTPP−1 b iff bTPP a. An RCC8 network
Θ = {vi σij vj | (vi, vj) ∈ V 2} over a set of variables V defines for
each pair of variables (vi, vj) ∈ V 2 a subset σij of relations from
R8, containing those relations that are allowed to hold between u
and v. A basic RCC8 network is an RCC8 network in which each of
these subsets σij = {Rij} is a singleton. Slightly abusing notation,
we write such a network as Θ = {vi Rij vj | (vi, vj) ∈ V 2}. For the
ease of presentation, we also write PP for {TPP,NTPP} and
DR for {EC,DC}. A network Θ over V = {v1, ..., vn} is called
consistent if there exists a mapping from the variables vi to regular
closed 3 regions Xi, taken from a topological space that satisfies the
axioms of the RCC [9], such that the RCC8 relation which holds be-
tween Xi and Xj is among those in σij for all (vi, vj) ∈ V 2. Such a
mapping is called a solution. A solution S is said to be k-dimensional
(resp. convex) if each of the Xi is a k-dimensional region in R

k (resp.
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a convex region). Deciding whether an RCC8 network is consistent is
NP-complete in general, although this problem becomes polynomial
in the case of basic networks [11].

Table 1. Six of the eight possible RCC8 relations that can hold between
two regions a and b with interiors i(a) and i(b).

Name Symbol Meaning
Equals EQ a = b
Disconnected DC a ∩ b = ∅
Externally Connected EC a ∩ b �= ∅, i(a) ∩ i(b) = ∅
Partially Overlap PO a ∩ b �= ∅, a �⊆ b, b �⊆ a
Tangential Proper Part TPP a ⊂ b, a �⊂ i(b)
Non-Tangential Proper Part NTPP a ⊂ i(b)

A remarkable result about RCC8 is that any consistent network
can be realized in Euclidean spaces of arbitrary dimension n ≥ 1
[10], and even in the digital plane Z

2 [8]. This means that neither
the restriction to Euclidean, or even discrete spaces, nor the restric-
tion to spaces of a particular dimension puts additional constraints on
the realizability of RCC8 networks. This situation changes, however,
when more demanding properties are required of regions. For exam-
ple, when regions are required to be self-connected4, some consistent
RCC8 networks cannot be realized in R or R

2, although all consis-
tent RCC8 networks can be realized using self-connected regions in
R

n for any n ≥ 3 [10]. Deciding whether a basic RCC8 network
can be realized by self-connected regions in R

2 is an NP-complete
problem [7, 13]. If we can specify for each region whether it has a
connected interior, then [6] shows that the satisfaction problem be-
comes undecidable even over polygons in R

2.
As convexity implies self-connectedness, it follows that some con-

sistent RCC8 networks cannot be realized by convex regions in R
2.

Even worse, for any number of dimensions n, there exist consistent
RCC8 networks that are not realizable in R

n using convex regions
[3]. Deciding whether an RCC8 network can be realized by convex
regions in R

n was shown in [3] to be as hard as checking the con-
sistency of algebraic constraints over the real numbers. However, as
we show in this paper, this only holds if the number of dimensions
is fixed a priori: for any consistent RCC8 network Θ, there exists an
n such that Θ is realizable by convex regions in R

n. Specifically, we
show that consistent RCC8 networks over up to 2n+1 variables can
always be realized by convex regions in R

n if n ≥ 2. Note that the
case where n = 1 is different, but straightforward: any consistent
network over 2 variables is realizable by intervals in R, but not e.g.
{v1 EC v2, v2 EC v3, v1 EC v3}.

Our work is motivated by applications which use RCC8 relations
to reason about conceptual spaces [4]. Conceptual spaces are met-
ric spaces in which the meaning of natural language properties can

4 A region is said be self-connected if between any two points of the region
there is a continuous path which belongs to the region.
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be expressed. Despite being a simplification, it is common to iden-
tify conceptual spaces with (typically high-dimensional) Euclidean
spaces [5], where each of the dimensions corresponds to a cogni-
tively primitive quality. In a conceptual space of colours, for exam-
ple, there could be three dimensions, corresponding to hue, intensity
and saturation. Central in the theory of conceptual spaces is the as-
sumption that the representation of natural properties should always
be a convex region, a view which is close in spirit to the assumption
underlying prototype theory [12] that the membership of an object to
a category depends on its distance to the prototypes of that category,
relative to its distance to the prototypes of other categories. While
the theory of conceptual spaces can be used to explain a variety of
cognitive phenomena in an elegant way, its application to knowledge
representation is hampered by the fact that conceptual space repre-
sentations are usually not available; in fact, for many domains it is
not even known what the relevant dimensions would be.

This means that in practice we are often left with only qualitative
descriptions. For instance, without access to the geometric represen-
tation of the properties orange and red, we may still assert that we
should have red EC orange. The relation EC here reflects the view
that there are borderline cases of colours for which it is hard to de-
termine whether they are red or orange, while we may insist that
orange and red are disjoint colours. Of course, the exact boundaries
of what it means for an object to be orange may be vague, but we
may still use an RCC8 based representation in such a case [5], by
relying on the ideas of the Egg-Yolk calculus [2]. As another exam-
ple, we may insist that italianRestaurant NTPP restaurant, without
knowing any details on how ‘restaurant’ or ‘Italian restaurant’ would
be represented in a conceptual space; all we are claiming in such a
case is that all Italian restaurants are restaurants, and borderline cases
of Italian restaurants would still be typical restaurants (but e.g. serv-
ing food which borders on French cuisine). On the other hand, we
may assert that bistro TPP restaurant to encode that there are bor-
derline instances of ‘bistro’ that would also be borderline instances
of ‘restaurant’ (e.g. bars which also serve some food). Such quali-
tative models of conceptual spaces representations may be all that
is needed in a knowledge representation setting. For instance, [14]
shows how knowledge about the qualitative relation between differ-
ent properties can be used to refine standard approaches for merging
conflicting knowledge bases.

The results we present in this paper reveal that standard methods
for reasoning about RCC8 relations can still be used to reason about
conceptual space representations, provided that the underlying con-
ceptual space is high-dimensional. Although this is the case for most
domains, we would still need ad hoc procedures for sound and com-
plete reasoning about simpler domains, such as the domain of colours
(when there are more than 2n + 1 = 7 variables).

2 Convex solutions for 2n + 1 variables

In this section, we present a constructive proof for the following re-
sult:

Theorem 1. Let Θ be a consistent RCC8 network over the set of
variables V . If |V | = 2n + 1, with n ≥ 2, it holds that Θ can be
realized by convex regions in R

n.

Without lack of generality, we restrict our attention to basic net-
works, and we write Rij for the relation that is imposed by Θ be-
tween vi and vj . We first show in Section 2.1 that Θ can be realized
in the plane if Rij ∈ {PO,TPP,TPP−1} for i �= j. We subse-
quently use this result in Section 2.2 to show that Θ can be realized

in R
n when Rij ∈ {PO,TPP,TPP−1,EC} for i �= j. Finally,

we consider arbitrary basic networks in Section 2.3.

2.1 Networks over {PO,TPP,TPP−1}
Suppose Θ = {vi Rij vj | (vi, vj) ∈ V 2} is a consistent RCC8 net-
work with Rij ∈ {PO,TPP,TPP−1}. We show that Θ is re-
alizable in the plane using convex regions, regardless of the num-
ber of regions |V | = k. Without lack of generality, we can assume
that Rij = TPP only for i < j. Choose k + 1 different points
P0, P1, ..., Pk, in that order, along the boundary of the unit circle, in
the first quadrant. We write

ai = �OP0Pi (1)

bi = CH(ai ∪
[

{aj | (xj TPPxi)}) (2)

where �ABC is the triangle defined by the points A, B and C, and
CH(X) is the convex hull of X . It is easy to see that bi is a convex
region which has the following property:

Pj ∈ bi if and only if j = 0, j = i, or xj TPPxi. (3)

Now it is straightforward to show that b1, ..., bk is a solution of Θ.

2.2 Networks over {PO,TPP,TPP−1,EC}
Suppose Θ = {vi Rij vj | (vi, vj) ∈ V 2} is a consistent RCC8 net-
work with Rij ∈ {PO,TPP,TPP−1,EC}. We write Θ↓V ′ =
{vi Rij vj | (vi Rij vj) ∈ Θ, (vi, vj) ∈ V ′2} for the network ob-
tained by restricting Θ to the variables from V ′ (with V ′ ⊆ V ). Let
us choose V ′ such that V ′ ∪ {vi1 , ..., vik} ∪ {vj1 , ..., vjk} ∪ {vω}
constitutes a partition of V such that

1. Θ↓V ′ is a network over {PO,TPP,TPP−1};
2. Riljl = EC for each l ∈ {1, ..., k};
3. Riω �= TPP, i.e. no region is contained in vω .

It is clear that such a partition always exists; it suffices to first select
a suitable vω and then repeatedly remove pairs of variables (vil , vjl)
from V for which Riljl = EC.

For our purposes, we also need a weak notion of realization.
We say that Rij = EC is weakly satisfied by a mapping S =
{vX1

1 , ..., vXn
n } if Xi DRXj holds, Rij = TPP is weakly sat-

isfied if Xi PPXj holds and Rij = PO is weakly satisfied if
Xi POXj holds. We say that S is a weak solution of Θ if it weakly
satisfies Rij for each (vi, vj) ∈ V 2.

From Section 2.1, we know that Θ↓V ′ can be realized in the plane.
Starting from that two-dimensional representation, we first show in
Section 2.2.1 that a (k+2)-dimensional convex weak solution exists
for Θ↓(V ′∪{vi1 , ..., vik , vj1 , ..., vjk}). In Section 2.2.2, we use this
(k + 2)-dimensional weak solution to define a (k + 3)-dimensional
convex solution of Θ. If |V ′| ≥ 6, we have k = 2n−|V ′|

2
≤ n − 3

and we have shown that Θ is realizable by convex regions in R
n. The

case where |V ′| ∈ {0, 2, 4} is treated separately in Section 2.2.3.

2.2.1 Adding the regions vil+1 and vjl+1

Assume that we have an (l + 2)-dimensional convex weak solution
S of Θ↓(V ′ ∪ {vi1 , ..., vil , vj1 , ..., vjl}) with 0 ≤ l ≤ k − 1.
Let us write V ∗ = V ′ ∪ {vi1 , ..., vil , vj1 , ..., vjl}. We now con-
struct an (l + 3)-dimensional convex weak solution S ′ of Θ↓(V ∗ ∪
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{vil+1 , vjl+1}). Let us define the convex regions L and M in R
l+2

as follows

L = CH
“ [

vs∈V ∗
{S(vs)}

”
∩

\
vs∈V ∗

{S(vs)|Ril+1s = TPP}

M = CH
“ [

vs∈V ∗
{S(vs)}

”
∩

\
vs∈V ∗

{S(vs)|Rjl+1s = TPP}

Note that L �= ∅ and M �= ∅ since |V ∗| ≥ |V ′| ≥ 6 by assumption.
We define

S ′(vil+1) = {(p1, ..., pl+2, λ) | (p1, ..., pl+2) ∈ L, λ ∈ [a, b]}
S ′(vjl+1) = {(p1, ..., pl+2, λ) | (p1, ..., pl+2) ∈ M, λ ∈ [−b,−a]}

with 0 < a < b arbitrary but fixed values. For vs ∈ V ∗ we define

S ′(vs) = {(p1, ..., pl+2, λ) | (p1, ..., pl+2) ∈ S(vs), λ ∈ [v−s , v+
s ]}

where

v+
s =

8>>>>>><
>>>>>>:

e If Rsil+1 = TPP

−a If Ril+1s = EC and Rsjl+1 = TPP

a If Ril+1s = EC and Rsjl+1 �= TPP

e If Ril+1s = PO

b If Ril+1s = TPP

(4)

v−s =

8>>>>>><
>>>>>>:

−e If Rsjl+1 = TPP

a If Rjl+1s = EC and Rsil+1 = TPP

−a If Rjl+1s = EC and Rsil+1 �= TPP

−e If Rjl+1s = PO

−b If Rjl+1s = TPP

(5)

with a < e < b.

Lemma 1. The mapping S ′ is an (l + 3)-dimensional convex weak
solution of Θ↓(V ′ ∪ {vi1 , ..., vil+1 , vj1 , ..., vjl+1}).

Proof. It is clear, by construction, that the relations Ril+1s and
Rjl+1s are weakly satisfied by S ′ for all vs ∈ V ∗, and moreover that
Ril+1jl+1 is weakly satisfied. We now show that also Rst is weakly
satisfied for all vs and vt in V ∗ (with s �= t).

It is clear that the relation DR is preserved under the proposed
“cylindrical” extension of S to S ′.

If S(vs)POS(vt) holds, we will have S ′(vs)POS ′(vt) as soon
as [v−s , v+

s ] ∩ [v−t , v+
t ] is a nondegenerate interval. The construc-

tion is such that [−a, a] ⊆ [v−s , v+
s ] ∩ [v−t , v+

t ], unless one of
Rsil+1 , Rsjl+1 , Rtil+1 or Rtjl+1 is TPP. Assume for instance
Rsil+1 = TPP; the other cases are entirely analogous. Then we
have [v−s , v+

s ] = [a, e] and Ril+1t = PO and hence [a, e] ⊆
[v−t , v+

t ], which means [v−s , v+
s ] ∩ [v−t , v+

t ] = [a, e].
If S(vs)PPS(vt) holds, we have S ′(vs)PPS ′(vt) as soon as

v−s ≥ v−t and v+
s ≤ v+

t . We show that v+
s ≤ v+

t ; the proof for
v−s ≥ v−t is entirely analogous. If Rtil+1 = TPP, we will have
Rsil+1 = TPP, hence v+

s = v+
t = e. If Rtjl+1 = TPP, we will

have Rsjl+1 = TPP, hence v+
s = v+

t = −a. If Ril+1t = EC and
Rtjl+1 �= TPP , we will have v+

t = a and Rsil+1 = EC, which
means v+

s ∈ {−a, a} and thus v+
s ≤ v+

t . If Ril+1t = PO, we will
have v+

t = e, and Ril+1s �= TPP, which means v+
s ≤ e = v+

t .
Finally, if Ril+1t = TPP, then v+

t = b and we trivially have v+
s ≤

v+
t .

2.2.2 Adding vω

After repeated applications of the procedure from Section 2.2.1, we
end up with a convex (k + 2)-dimensional weak solution Sk of
Θ↓(V ′ ∪ {vi1 , ..., vik , vj1 , ..., vjk}). If vω is contained in at least
one other region from V , we can even obtain a (k + 2)-dimensional
weak solution of Θ in this way. Indeed, let e.g. vil+1 be the region
with smallest index l for which Rωil+1 = TPP . When adding the
realization of vil+1 , we can add a representation of vω at the same
time, as:

S ′(vω) = {(p1, ..., pl+2, λ) | (p1, ..., pl+2) ∈ L, λ ∈ [a′, b]}
for a < a′ < b. The definition of (4)–(5) then needs to be adapted to
differentiate e.g. between regions vs that partial overlap both vil+1

and vω from regions that only partially overlap vil+1 . We omit the
details.

We now use this weak solution to construct a (k +3)-dimensional
solution S∗ of Θ. If there are no regions vs in V for which Rωs =
TPP, we also realize vω at this step. In that case, we define the
convex region N ⊆ R

k+2 as

N = CH
“ [

vs∈Vω

{Sk(vs)}
”

where Vω = V \ {vω}, and 0 < a < e < b as before. We define

S∗(vω) = {(λ · p1, ..., λ · pk+2, λ) | (p1, ..., pk+2) ∈ N, λ ∈ [a, b]}
and for vs ∈ Vω we define S∗(vs) as

{(λ · p1, ..., λ · pk+2, λ) | (p1, ..., pk+2) ∈ Sk(vs), λ ∈ [0, v∗s ]}
where v∗s = e if Rωs = PO and v∗s = a if Rωs = EC. If Vω was
already realized in the (k + 2)-dimensional weak solution Sk, we
simply define for each v ∈ V :

{(λ · p1, ..., λ · pk+2, λ) | (p1, ..., pk+2) ∈ Sk(v), λ ∈ [0, a]}
Lemma 2. The mapping Sω is a (k+3)-dimensional convex solution
of Θ.

Proof. This follows easily from the fact that all regions now meet at
the origin, with the possible exception of vω , for which the required
relations are clearly satisfied by construction.

2.2.3 |V ′| ∈ {0, 2, 4}
We now consider the special cases where V ′ has at most four vari-
ables. To this end, we need several lemmas. We first recall that a
network of Interval Algebra (IA) [1] constraints is consistent if it has
a solution using convex intervals.

When interpreted over convex intervals, RCC8 relations can be
regard as disjunctions of basic IA relations. For example, DC is the
disjunction of IA relations before and after. We say a basic IA con-
straint λ is a refinement of an RCC8 constraint θ if λ ⊆ θ when
interpreted over convex intervals.

Lemma 3. Let Θ = {vi Rij vj | (vi, vj) ∈ V 2} be an RCC8 con-
straint network. Then Θ has a convex solution in R iff there exists a
consistent basic IA constraint network Θ′ = {vi αij vj | (vi, vj) ∈
V 2} which is a refinement of Θ, i.e. αij ⊆ Rij for all i �= j.

Therefore, to determine if an RCC8 constraint network has a re-
alization using convex intervals, we need only determine if it has a
consistent atomic IA refinement.
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Lemma 4. Let Θ be an RCC8 constraint network over
{PO,TPP,TPP−1,EC} that involves four variables. Suppose
Θ is consistent but has no convex weak solution in R. Then Θ is iso-
morphic to one of the following three networks, where an arrow, a
straight line, and a dotted line, represent, respectively, a TPP, PO,
and EC relation.

v1

��
��

��
��

v2

����
��

��
��

v4 �� v3

v1

��
��

��
��

v2

��
��

��
��

v4 v3

v1 v2

��
��

��
��

v4 v3

(N1
4 ) (N2

4 ) (N3
4 )

Proof. This can be checked by case-by-case analysis. We verified
this using a computer program.

We note that each N i
4 (i = 1, 2, 3) contains an EC relation. The

following result is clear.

Corollary 1. Let Θ be an RCC8 constraint network over
{PO,TPP,TPP−1} that involves four variables. Suppose Θ is
consistent. Then Θ has a convex weak solution in R.

Corollary 2. Let Θ be an RCC8 constraint network over
{PO,TPP,TPP−1,EC} that involves five variables. Suppose Θ
is consistent. Then Θ has a solution using convex plane regions.

Proof. Let V = {v1, · · · , v5} and write V−i = {vj | 1 ≤ j �=
i ≤ 5}. We prove that there exists an i such that vi is minimal and
Θ↓V−i is not isomorphic to any N i

4 (i = 1, 2, 3). Without lack of
generality, suppose v5 is minimal but Θ↓V−5 is isomorphic to e.g.
N3

4 . By R12 = EC, we know R51 and R52 cannot both be TPP.
Therefore, either v1 or v2 is minimal. If v1 is not minimal, then v2 is
minimal and Θ↓V−2 is not isomorphic to N i

4, and vice versa. If both
are minimal, then if R54 �= PO, then Θ↓V−1 is not isomorphic to
any N i

4; if R54 = PO, then Θ↓V−2 is not isomorphic to any N i
4.

The other cases are similar.
Now suppose vi is minimal and Θ↓V−i is not isomorphic to any

N i
4. By Lemma 4, we know Θ↓V−i has a convex weak solution in

R. Using the method described in Section 2.2.2, we can extend the
solution to vi in two dimensions using convex regions.

Now we return to the special cases when |V ′| ≤ 4. When |V ′| =
4, by Corollary 1, we know Θ↓V ′ has a convex weak solution in R

since all relations are taken from {PO,TPP,TPP−1}. If V ′ =
∅ and k ≥ 2, then Θ↓{a, b, c, d} is not isomorphic to any of N i

4

(i = 1, 2, 3), where a, b, c, d ∈ V \ V ′ and aEC b and cEC d. By
Lemma 4, Θ↓{a, b, c, d} has a convex weak solution in R.

If |V ′| = 2 and k = 1, then by Corollary 2 the network over
V ′ ∪ {vi1 , vj1 , vω} has a convex solution in R

2.
Suppose |V ′| = 2 and k ≥ 2. We show the network over

{a, b, c, d, e, f} has a convex weak solution in R
2, where a, b ∈ V ′,

and c, d, e, f ∈ V \ V ′, and cEC d and eEC f . First assume
that aPO b, and that each of the relations between the regions
a, b, c, d, e, f is EC or PO (i.e. TPP does not occur). Figure 1 il-
lustrates how such networks can be weakly realized. Notice how the
EC relations between c and d and between e and f are actually real-
ized as DC relations. Furthermore, notice how the relations between
(c, e), (c, f), (d, e), (d, f) can be independently chosen to be DR or
PO. Since TPP relations can be realized as TPP or NTPP, scenarios
where some relations are TPP can be weakly realized by straightfor-
ward variations of the situation in Figure 1 (left).

Figure 1. Weakly realizing a network where aPO b, cEC d, eEC f
(left) and where aPO b, aEC vω , bEC vω , and vi1 DC vj1 (right).

2.3 Arbitrary networks

Now we let Θ be an arbitrary, consistent basic network. However,
without lack of generality, we can still assume that Rij �= EQ for
i �= j. Let V ′ ∪ {vi1 , ..., vik} ∪ {vj1 , ..., vjk} be a partition of V
such that

1. Θ↓V ′ is a network over {PO,TPP,TPP−1,EC};
2. Riljl ∈ {NTPP,NTPP−1,DC} for every l ∈ {1, ..., k}.

From Section 2.2, we know that Θ↓V ′ has an (n − k)-dimensional
convex solution when |V ′| = 2n + 1 − 2k ≥ 5, i.e. n − k ≥ 2.
We will start from this solution, and, as in Section 2.2.1, repeatedly
increment the number of regions that are considered, each time in-
creasing the dimensionality of the solution. This will prove Theorem
1 for the case where |V ′| ≥ 5. The case where |V ′| ∈ {1, 3} is
treated separately in Section 2.3.2.

2.3.1 Adding the regions vil+1 and vjl+1

Assume that we have an (n−k+l)-dimensional convex solution S of
Θ↓(V ′∪{vi1 , ..., vil , vj1 , ..., vjl}) with 0 ≤ l ≤ k−1. Let us write
V ∗ = V ′∪{vi1 , ..., vil , vj1 , ..., vjl}. We now construct an (n−k+
l + 1)-dimensional convex solution S ′ of Θ↓(V ∗ ∪ {vil+1 , vjl+1}).
Let L and M be defined as in Section 2.2.1. We define the convex
regions A and B in R

n−k+l as follows

A = L ∩
\

vs∈V ∗
{er(S(vs)) |Ril+1s = NTPP}

B = M ∩
\

vs∈V ∗
{er(S(vs)) |Rjl+1s = NTPP}

where er(X) represents an erosion of region X , defined as

er(X) = {p | ∀q . (d(p, q) ≤ δ) ⇒ (q ∈ X)}
with δ a sufficiently small constant and d the Euclidean distance.

We assume that Ril+1jl+1 = DC; the cases where Ril+1jl+1 ∈
{NTPP,NTPP−1} are similar. Let 0 < a < e < f < g < b be
fixed. We define

S ′(vil+1) = {(p1, ..., pk′ , λ) | (p1, ..., pk′) ∈ A, λ ∈ [a, b]}
S ′(vjl+1) = {(p1, ..., pk′ , λ) | (p1, ..., pk′) ∈ B, λ ∈ [−b,−a]}

where we write k′ for n−k + l. We say that a region vm is at level r
if there are regions vm1 , ..., vmr such that Rmimi+1 = NTPP for
all i and Rmrm = NTPP, and there is no chain of r + 1 regions
for which this is the case. We define for a region vs ∈ V ∗ at level rs:

S ′(vs) = {(p1, ..., pl+2, λ) | (p1, ..., pl+2) ∈ S(vs), λ ∈ [v−s , v+
s ]}
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where

v+
s =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

g If Rsil+1 = TPP

f + rs · δ If Rsil+1 = NTPP

−a If Rsjl+1 = TPP

−e + rs · δ If Rsjl+1 = NTPP

g + (rs + 1) · δ If Rsil+1 = PO

a If Rsil+1 = EC

(rs + 1) · δ If Rsil+1 = DC

and Rsjl+1 /∈ {TPP,NTPP}
b If Rsil+1 = TPP−1

b + (rs + 1) · δ If Rsil+1 = NTPP−1

v−s =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

a If Rsil+1 = TPP

e − rs · δ If Rsil+1 = NTPP

−g If Rsjl+1 = TPP

−f − rs · δ If Rsjl+1 = NTPP

−g − (rs + 1) · δ If Rsjl+1 = PO

−a If Rsjl+1 = EC

−(rs + 1) · δ If Rsjl+1 = DC

and Rsil+1 /∈ {TPP,NTPP}
−b If Rsjl+1 = TPP−1

−b − (rs + 1) · δ If Rsjl+1 = NTPP−1

Lemma 5. The mapping S ′ is an (n−k+l+1)-dimensional convex
solution of Θ↓(V ′ ∪ {vi1 , ..., vil+1 , vj1 , ..., vjl+1}).

Proof. It is clear, by construction, that the relations Ril+1s and
Rjl+1s are satisfied by S ′ for all vs ∈ V ∗, and moreover that
Ril+1jl+1 is satisfied. We now show that also Rst is satisfied for
all vs and vt in V ∗ (with s �= t).

The relation DC is clearly preserved under the proposed “cylin-
drical” extension of S to S ′, even when [v−s , v+

s ] ∩ [v−t , v+
t ] �= ∅.

If S(vs)ECS(vt) holds, we will have S ′(vs)ECS ′(vt) as
soon as [v−s , v+

s ] ∩ [v−t , v+
t ] �= ∅. If this were not the case, we

would have that one of Rsil+1 , Rtil+1 , Rsjl+1 or Rtjl+1 was either
TPP or NTPP. Assume for example Rsil+1 ∈ {TPP,NTPP}
(the other cases are analogous). This implies that either Rtil+1 /∈
{DC,EC} or both Rtil+1 = EC and Rsil+1 = TPP . In the for-
mer case, we have ∅ �= [e, f ] ⊆ [v−s , v+

s ] ∩ [v−t , v+
t ], while in the

second case we have a ∈ [v−s , v+
s ] ∩ [v−t , v+

t ].
If S(vs)POS(vt) holds, we can show in an entirely analogous

way that S ′(vs)POS ′(vt).
If S(vs)TPPS(vt) holds, then we need to show that v−s ≥ v−t

and v+
s ≤ v+

t . We show that v+
s ≤ v+

t ; the proof for v−s ≥ v−t
is entirely analogous. Note that rs ≤ rt. If Rtil+1 = TPP, we
have v+

t = g and Rsil+1 ∈ {TPP,NTPP}, hence either v+
s =

v+
t = g or v+

s = f + rs · δ < g = v+
t . If Rtil+1 = NTPP, we

have v+
t = f + rt · δ, Rsil1

= NTPP and v+
s = f + rs · δ ≤

f + rt · δ = r+
t . If Rtil+1 = DC and Rtjl+1 /∈ {TPP,NTPP},

we have Rsil+1 = DC and Rsjl+1 /∈ {TPP,NTPP}, and thus
v+

s = (rs + 1) · δ ≤ (rt + 1) · δ = v+
t . If Rtil+1 = DC and

Rtjl+1 = TPP, we have v+
t = −a, Rsil+1 = DC, and Rsjl+1 ∈

{TPP,NTPP}, and thus v+
s = −e + rs · δ < −a = v+

t or
v+

s = −a = v+
t . If Rtil+1 = DC and Rtjl+1 = NTPP, we have

v+
t = −e + rt · δ, Rsil+1 = DC, and Rsjl+1 = NTPP, and thus

v+
s = −e+rs ·δ ≤ −e+rt ·δ = v+

t . If Rtil+1 = EC we have v+
t =

a, and Rsil+1 ∈ {DC,EC}, and thus v+
s = (rs + 1) · δ < a = v+

t

or v+
s = a = v+

t . If Rtil+1 = TPP−1, we have v+
t = b.The only

case where v+
s > b could hold is when Ril+1s, which is impossible

since Rst = TPP. If Rtil+1 = NTPP−1, we have v+
t = b+rt ·δ.

The maximal value that v+
s could receive is b + rs · δ which cannot

be greater than v+
t since rs ≤ rt.

The case where S(vs)NTPPS(vt) holds is entirely analogous
to the previous case.

2.3.2 |V ′| ∈ {1, 3}
Suppose V ′ = {vω}. Take vi1 and vj1 from V \V ′. We observe that
the network over {vω, vi1 , vj1} has a convex solution in R as either
vi1NTPPvj1 or vi1DCvj1 .

Suppose V ′ = {a, b, vω}. We observe that the network over
{a, b, vω} has a convex solution in R except for the following cases:

• aEC b, bEC vω , aEC vω .
• aEC b, aEC vω , bPO vω .
• aEC b, aPO vω , bEC vω .

In these cases, we need to show that a, b, vω can be realized
in the plane together with two regions vi1 , vj1 from V \ V ′,
where vi1 NTPP vj1 or vi1 DC vj1 . Assume for instance that
vi1 DC vj1 and that no PP relations occur among a, b, vω, vi1 , vj1 ,
then a scenario such as the one in Figure 1 (right) can be used, where
some of the variations of the boundaries are shown, which could al-
low for variations of DC, EC, and PO relations. The remaining cases
are similar.

3 Networks without convex solutions in n
dimensions

Theorem 1 provides an upper bound on the number of dimensions
for which we are guaranteed that networks with a given number of
variables can be realized by convex regions. Although convex solu-
tions may exist in lower-dimensional spaces for specific cases (e.g.
networks of any size may be realizable by convex intervals), as we
show in this section, for every number of dimensions n, there exist
consistent networks which are not realizable using convex regions.

2 dimensions

Consider the RCC network Θ2D defined by

aEC b xTPP a y TPP a uTPP b

v TPP b xDC y uDC v xECu

uEC y y EC v v ECx

Clearly Θ2D is consistent. However, it does not have any convex re-
alizations in two dimensions. Indeed, if S were a two-dimensional
convex solution, we clearly would have dim(S(a) ∩ S(b)) ≤ 1. If
dim(S(a) ∩ S(b)) = 0 then S(x), S(y), S(u) and S(v) could only
meet in one point, which means that xECu,uEC y and xDC y
could not be jointly satisfied. If dim(S(a) ∩ S(b)) = 1 then
S(x) ∩ S(u), S(x) ∩ S(v), S(y) ∩ S(u) and S(y) ∩ S(v) are
nonempty and pairwise disjoint. Take four points Pi (i = 1, 2, 3, 4)
from these sets and suppose Pj1 < Pj2 < Pj3 < Pj4 . We note
that P1 and P2 are both in S(x), and P3 and P4 are both in S(y).
Because x and y are disjoint, we know {P1, P2} = {Pj1 , Pj2} or
{P1, P2} = {Pj3 , Pj4}. Similarly, note that P1 and P3 are both in
S(u), and P2 and P4 are both in S(v). Because u and v are disjoint,
we know {P1, P3} = {Pj1 , Pj2} or {P2, P4} = {Pj3 , Pj4}. This
is a contradiction.
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3 dimensions

Consider the network Θ3D obtained by adding the following con-
straints to Θ2D:

cEC d xTPP c y TPP c uTPP d v TPP d

aPO c aPO d bPO c bPO d

To see that Θ3D is indeed not realizable in three dimensions, we
show that dim(S(a) ∩ S(b) ∩ S(c) ∩ S(d)) ≤ 1 for any three-
dimensional convex solution S, which leads to a contradiction as in
the two-dimensional case.

Let H1 be a hyperplane that separates S(a) and S(b), and let
H2 be a hyperplane that separates S(c) and S(d). This implies that
S(a) ∩ S(b) ⊆ H1 and S(c) ∩ S(d) ⊆ H2. All we need to show
is that H1 �= H2. This is clear, however, because if H1 = H2 then
H1 would separate S(a) from S(c) or S(d), which means that S(a)
could not partially overlap with both S(c) and S(d). Thus dim(H1∩
H2) ≤ 1 which also means dim(S(a) ∩ S(b) ∩ S(c) ∩ S(d)) ≤ 1.

n dimensions

For any n ≥ 4 we consider the network ΘnD obtained by adding the
following constraints to Θ2D for i ∈ {0, ..., n − 3}

ei TPP a ei NTPP fi aTPP fi gi EC fi

gi EC a uTPP gi v TPP gi ei EC b

gi TPP b

and the following constraints for i ∈ {1, ..., n − 3}
ei EC gi−1 gi TPP gi−1

We show that dim(S(a) ∩ S(gn−3)) ≤ 1 for any n-dimensional
convex solution S, which again leads to a contradiction, and thus that
ΘnD is not realizable by n-dimensional convex regions.

Let Gi be a hyperplane separating S(gi) and S(fi) for i ∈
{0, ..., n− 3}, and let H1 be a hyperplane separating S(a) and S(b)
as before. We show by induction that dim(H1 ∩ G0 ∩ .... ∩ Gk) ≤
n − k − 2 for every k ∈ {0, ..., n − 3}, from which the stated im-
mediately follows.

First assume that k = 0. It suffices to show that H1 �= G0 to show
that dim(H1∩G0) ≤ n−2. If H1 = G0, we would have that S(a)∩
S(b) ⊆ G0, and in particular that G0 contains a boundary point of
S(e0); call this point P . However, since S(e0)NTPPS(f0), P
would also belong to S(f0), and since G0 only contains boundary
points of S(f0), we would have that P is a boundary point of S(f0)
as well. This is a contradiction, since e0 NTPP f0 means that S(e0)
can only contain internal points of S(f0).

For k > 0, we show that H1 ∩G0 ∩ ...∩Gk−1 �⊆ Gk in a similar
way. Suppose H1 ∩ G0 ∩ ... ∩ Gk−1 ⊆ Gk did hold. We have that
H1, G0, ..., Gk−1 all separate S(a) from S(gk−1), hence S(a) ∩
S(gk−1) ⊆ H1 ∩ G0 ∩ ... ∩ Gk−1 ⊆ Gk. Since S(ek) ⊆ S(a) and
S(ek)∩S(gk−1) �= ∅, there must exist a point P in S(ek)∩S(gk−1)
which is thus also in Gk. Clearly the point P is a boundary point
of S(ek), and since ek NTPP fk, we have that P is an internal
point of S(fk). This is a contraction, since Gk was assumed to be a
hyperplane separating S(fk) from S(gk).

For any number of dimensions n we can thus find an RCC network
which is consistent but cannot be realized by convex n-dimensional
regions. The counterexamples we have provided for two and three
dimensions are optimal, in the sense that they involve 2n + 2 re-
gions, i.e. any convex network with fewer regions would necessarily

be realizable by convex regions in n dimensions. The counterexam-
ple for n ≥ 4 dimensions, on the other hand, uses 3n regions, and the
question whether counterexamples with fewer regions exist currently
remains open.

4 Conclusions

Although restricting to convex solutions to RCC8 networks is known
to be a demanding requirement in low-dimensional Euclidean spaces,
we have shown that it does not affect the notion of consistency in Eu-
clidean spaces of a sufficiently high dimension. Specifically, we have
shown that consistent RCC8 networks of up to 2n + 1 variables can
always be realized by using convex regions in R

n. We have further-
more shown that this bound is optimal for 2 and 3 dimensions, and
that for n ≥ 4 there exist consistent RCC networks of 3n variables
which are not realizable in n dimensions using convex regions. This
not only furthers our understanding of the notion of consistency in
RCC8, but also enables the use of existing RCC8 decision procedures
for reasoning about qualitative descriptions of conceptual spaces.
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