
Institutionalised Paxos Consensus

David Sanderson and Jeremy Pitt1

Abstract. We address the problem of maintaining consistency in
systems that are open, decentralised and resource-constrained, where
the system components are highly mobile and/or ‘volatile’. An exam-
ple of these systems is found in vehicular ad hoc networks (VANET).
Self-organising and norm-governed electronic institutions have been
proposed to address these issues, but the problem of maintaining
the consistency of conventionally-agreed values (institutional facts)
arises due to the fragmentation/aggregation of component clusters,
role failure, and revision of agreed values.

In this paper, we specify IPCon, an algorithm for Institutionalised
Paxos Consensus, which is an extension of the well-known Paxos
consensus algorithm for maintaining consistency in static distributed
databases. The ‘classic’ Paxos algorithm is modified to accommo-
date role-based institutionalised power and extended to allow for dy-
namic clusters that may change, merge or fragment. We further ex-
tend IPCon to allow for the revision of previously agreed parameter
values. A proof of correctness for IPCon is given, along with details
of an axiomatisation and executable specification of the algorithm in
the Event Calculus. These results show that IPCon is a viable method
for coordination, consensus formation and collective-choice in self-
organising multi-agent systems using electronic institutions.

1 INTRODUCTION

Systems that are open, decentralised, resource-constrained and
highly mobile present unique challenges in their organisation. Ve-
hicular networks that can provide a platform for many kinds of com-
munication application or physical optimisation of transportation are
an example of this kind. Such networks have been proposed as the
basis of sensor networks for monitoring pollution or traffic density
[8], and as the basis for physical structures called ‘road trains’ or
‘platooning’ which can optimise fuel and road-space usage [1].

Both sensor networks and physical constructs require autonomous
and heterogeneous agents (associated with each car, or network
node) to form opportunistic alliances, or clusters. These clusters have
to be managed by forming a consensus on certain values and param-
eters; for example, the agreed top speed and separation distance in a
platoon. However, this consensus is susceptible to temporary or per-
manent node failure, circumstantial changes like cluster aggregation
and fragmentation, and environmental change beyond the control of
the agents (e.g. congestion requiring a reduced top speed).

Maintaining consistency in open decentralised systems, especially
those such as vehicular networks, requires robust algorithms for con-
sensus formation. We manage consensus formation in such networks
by using self-organising electronic institutions (cf. [18, 2]). The in-
stitution members (agents) are required to maintain mutable insti-
tutional facts in the face of inadvertent failure, institutional frag-

1 ISN Group, EEE Dept, Imperial College, Exhibition Road, London, Eng-
land, SW7 2BT. {dws04|j.pitt}@imperial.ac.uk

mentation/aggregation, and environmental change. Thinking of an
electronic institution as a distributed database where the authority
to write to institutional facts is role-dependent suggests the use of
the well-known Paxos consensus algorithm [12, 14] developed for
fault-tolerant management of distributed databases. However, Paxos
is capable of addressing only some of these problems, so we adapt it
for use with electronic institutions, dynamic roles and cluster mem-
bership, and mutable values. We design and specify IPCon, an In-
stitutionalised Paxos Consensus algorithm, that provides resilient
collective-choice arrangements in self-organising electronic institu-
tions in the face of cluster fragmentation/aggregation, role failure in
situations where authority is role-dependent, and the need to revise
an agreed value.

The paper is structured as follows; in Section 2 we state the prob-
lems we address, as contextualised for VANETs, before briefly ex-
plaining classic Paxos in Section 3. Section 4 describes the deriva-
tion of the IPCon algorithm from Paxos and goes on to give de-
tails of its axiomatisation using the Event Calculus [11] as well
as explaining resilience to role failures and institutional fragmenta-
tion/aggregation. Our proof of correctness is given in Section 5 by
relating the requirements for safety to the properties of classic Paxos
we have implemented in IPCon. Section 6 provides a summary of
related and further work. We conclude in Section 7 that IPCon pro-
vides role-based institutionalised power that allows for dynamic clus-
ters that modify previously agreed institutional facts and is a viable
method for coordination, consensus formation and collective-choice
in self-organising multi-agent systems using electronic institutions.

2 PROBLEM SPECIFICATION

In contrast to related work on adaptation in electronic institutions by
machine learning, we use institutional power [10] for consensus on
conventionally agreed institutional facts showing that safety prop-
erties can be preserved in a cooperative open system, especially as
clusters aggregate and fragment. The inclusion of institutional power
presents challenges that we address in addition to the problems of
maintaining consistency in static distributed systems; these are given
below and indicated diagrammatically in Fig 1 when taken in the
context of vehicular networks (note that although we use the mo-
tivating example of vehicular networks throughout, these problems
are common to any electronic institution, self organised system, or
multi-agent system requiring groups to mutually agree on values):

• Fragmentation/Aggregation — Dynamic open systems of the sort
we are interested in will entail cluster aggregation and fragmenta-
tion as agents join and leave the clusters, and clusters merge and
split over time. In any mobile ad-hoc network, nodes in the net-
work may physically move out of range of some networks and into
range of other networks. Even in non-mobile networks, there may
be reasons for the membership of the network to change.

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-714

714

• Revision of conventionally agreed values (parameter change) —
The value that is chosen for an institutional fact may not always be
the best value, so we must deal with its mutability in a consistent
manner. In VANETs for example, the vehicle platoon may agree
on a speed to travel at and then come to an area of road that is more
congested; this would then require them to alter the previously
agreed speed to something lower.

• Role failure — We must ensure robustness against role failure as
the loss of a role-fulfilling agent may impede the proper function-
ing of the institution. In a voting system where only one member
has the authority to declare that a motion has passed, no motions
can be passed if that member fails; having a single point of failure
is undesirable in many different types of systems.

R RR RRR

Aggregation

Role Failure

Fragmentation

Parameter
Change

R

+

?

?

Figure 1. Problems to address

A source for a potential solution to the issues of resilience and
fault-tolerance in open systems is in the domain of distributed sys-
tems. For example, a well-known algorithm for designing fault-
tolerant distributed systems under certain conditions is Paxos.

3 PAXOS

Paxos is an algorithm for implementing a fault-tolerant distributed
system using the state machine approach [12] as shown in Fig 2.
Fault tolerance is achieved by executing an infinite sequence of sep-
arate independent instances of the Paxos algorithm (where each in-
stance is a run of the algorithm to decide a command to be sent to the
distributed state machine) which contain numbered ballots. Each bal-
lot decides on the value of an instance; it is orchestrated by a leader,
voted on by acceptors, and learners act as redundant storage. Values
are proposed by proposers. Each leader may choose ballot numbers
from an unbounded but individual set of natural numbers; it is un-
bounded to allow ‘infinite’ ballots to occur, and individual so that
it is impossible for another leader to begin a ballot that has already
taken place. The Paxos consensus algorithm operates on the unde-
cided commands before they are sent to the “state machine” to ensure
that all the distributed nodes in the fault-tolerant system agree on the
value of those commands. Once they have been decided, they are un-
alterable and each node can execute the same commands in the same
order, thus ensuring that each distributed node has the same state.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Z++ X+5 Y-1State
Machine

Undecided instances Decided (fixed) instances

Ballots

Figure 2. Paxos state machine approach

Different versions of Paxos exist to deal with different sets of
constraints and to address different types of fault; here we explain
the most basic form, “classic Paxos” [12, 13]. The algorithm as-
sumes that agents operate asynchronously at arbitrary speed, may fail
by stopping, and may restart, but may not lie or impersonate other
agents. Furthermore, messages can take arbitrarily long to be deliv-
ered, can be duplicated, and can be lost, but cannot be corrupted –
this is termed “non-Byzantine communication” by Lamport.

As a consensus algorithm, Paxos has three safety requirements:

S1 Only a value that has been proposed may be chosen,
S2 Only a single value is chosen, and
S3 A process never learns that a value has been chosen unless it

actually has been.

To maintain safety, all versions of Paxos rely on the fact that all pos-
sible quorums have at least one member in common [12, Sec 2]. This
results in the assurance that f failures can be tolerated in a system of
2f + 1 processes. This defines the term quorum in the context of all
Paxos derivatives.

Paxos maintains the following ‘normative’ properties:

P1 An acceptor can vote for value v in ballot b only if v is safe at b.
P2 The acceptors may not vote for different values in one ballot.
P3 A value v is safe at ballot number b if no value other than v has

been, or ever can be, chosen in any ballot numbered less than b.

Once a quorum of acceptors has voted for a value v in a ballot b,
the value is said to have been chosen and should be communicated to
any additional non-acceptor learners if this is relevant. Once a value
has been chosen, then in any further proposals in that instance, the
leader will be restricted to the chosen value by P3 and the restriction
that all quorums must have at least one acceptor in common. This
means that further proposals in that instance will retrieve the chosen
value, rather than choose one.

Although Paxos provides fault-tolerant consensus in a static dis-
tributed system, current versions are limited in their application in
opens systems, in so far as they presume a static set of nodes where
the set of decision-makers (that is, the cluster) does not change, aim
for consensus on a single value for each instance that will not and
cannot change, and presume temporary failures with the possibility
of restart where the cluster size remains constant. Our solution is to
design a new algorithm to overcome these limitations by explicitly
representing different dynamic clusters of agents, allowing conven-
tionally agreed values to be changed in a coherent manner without
causing confusion between different nodes, and providing resilience
against permanent role failures and the departure of an agent, which
is equivalent to a permanent failure. This new algorithm is IPCon, an
algorithm for Institutionalised Paxos Consensus.

4 IPCON SPECIFICATION

Paxos operates by deciding commands that are to be sent to a state
machine; the static set of nodes means that all of the decision mak-
ers are also maintaining a copy of the state machine, so the state
of the machine itself (the values in the database) doesn’t need to be
expressed explicitly by the Paxos algorithm. This is because all the
nodes are guaranteed to start with the same state and have the same
changes applied to them.

Our requirement for dynamic clusters means that we work on two
levels of abstraction at the same time; the changes to send to the
database and the database itself. We therefore explicitly represent

D. Sanderson and J. Pitt / Institutionalised Paxos Consensus 715

the values and operate on them, not on the commands to be sent. We
begin by mapping an instance of the Paxos algorithm to an issue in
the IPCon algorithm to allow multiple separate instances of Paxos to
be related and reasoned about together in one run of IPCon.

Changing a value in the database is no longer simply a case of
issuing a new command to change it; it now requires modifying an
agreed value, so we wrap it in a new concept of a revision of an issue.
This adds to our mapping between Paxos and IPCon by relating a
Paxos instance to a revision of an issue in IPCon. This requires a
new method for revising a previously agreed value.

While Paxos is designed to deal with temporary node failure, the
dynamic membership of clusters and the explicit representation of
institutional power requires new methods for dealing with cluster ag-
gregation and fragmentation and permanent role (node) failure.

Contrast the presentation of Paxos in Fig 2 with that of IPCon in
Fig 3. Rather than instances of Paxos operating on commands that are
yet to be sent to the “machine”, the IPCon issues are now institutional
facts inside the “machine” that the agents operate on. Despite this
change, the independence of Paxos instances from each other means
that we maintain the properties that are internal to each instance of
Paxos for each issue in IPCon.

Institutional Facts
 10

 5

 true
 ~ ~ ~ ~ ~

X Y

ZA

BallotsIssue

Agents

Figure 3. IPCon institutional approach

4.1 Definitions

Cluster Agents are organised into clusters that represent self-
organising electronic institutions. In our work on Intelligent
Transportation Systems, these clusters are groups of vehicles trav-
elling along the road together for some period of time.

Quorum Any set of agents in the cluster is considered a quorum if
it has at least one member in common with every other possible
quorum. In a cluster of N agents, any set of agents that has > N

2

members is therefore a quorum.
Issue Clusters have a number of institutional facts to agree on; in our

motivating example of a vehicular network examples could be the
agreed speed of the group, the space to be left between vehicles,
the order in which the front vehicle in a road-train should rotate,
and so on. These issues are specific to each cluster.

Value Each issue has a value associated with it at any given time
that is agreed upon by the members of the cluster. These are the
values that we use consensus to agree on. In our example, for the
issue of speed the value could be 70mph.

Ballot In Paxos and IPCon, the values for each issue are decided
using a sequence of numbered ballots that are orchestrated by a
leader. In each ballot, the leader submits a value for the issue and
the acceptors may either vote for it, or abstain. The process by
which a ballot proceeds is given in Section 4.3.1.

Roles Leader, Acceptor, Learner, and Proposer are the roles in Paxos
and they are also required in our institutions; each role has differ-
ent associated powers, permissions, and obligations. We have in-

troduced powers to open the system, and constrained the actions
of the agents with permissions and obligations.

We introduce the following concepts not present in any existing
Paxos variant:

Revision The value that is chosen for an issue may not always be
the most suitable value. For example, over time the ideal speed
for a group of vehicles may change due to any number of reasons.
As Paxos is explicitly designed to prevent agreed values changing,
we introduce the concept of a revision to allow values to change
safely. Each revision is unaffected by the previous revisions and
represents a ‘clean slate’. See Section 4.3.4 for more detail.

Self organisation The cluster requires a leader to coordinate the
process of the algorithm; this central role should be appointed
from within the system by the autonomous components them-
selves using self-defined rules. The leader needs to manage the
cluster by granting or removing roles from agents, as well as
adding or removing them from the cluster. We provide actions
allowing any agent to arrogate or resign the role of leader. See
Section 4.3.5 for more details.

4.2 Properties and Assumptions

IPCon maintains the assumptions of asynchronous communication,
possibility of failure and non-Byzantine communication. Indeed, as
our motivating example is that of Intelligent Transportation Systems,
it does not make sense to consider the possibility of deceit in systems
that are clearly safety-critical. It is another problem to consider a
Byzantine Institutionalised Paxos Consensus algorithm.

Unlike Lamport, we give a precise specification of the require-
ments for liveness and progress; the dynamic nature of our appli-
cation means that clusters may change frequently, but we aim for a
system that will eventually result in a chosen value being learned. A
non-faulty quorum is required for liveness, as the algorithm cannot
change state without a quorum of agents. Progress is guaranteed by
ensuring that eventually a single leader exists as the only one trying
to issue proposals, and it can communicate successfully with a quo-
rum of (non-faulty) acceptors [13, Sec2.4]. The liveness and progress
requirements are given as L1 and L2. We assume that if a non-faulty
leader exists, it can communicate successfully with the non-faulty
quorum of acceptors, by virtue of them all being non-faulty.

L1 At least one non-faulty quorum of acceptors must exist, and
L2 Eventually (only) one non-faulty leader must exist.

Lamport describes the design of the Paxos consensus algorithm as
following “almost unavoidably from the [Safety] properties we want
it to satisfy” [13, Sec1]. We design IPCon such that it maintains insti-
tutional ‘normative’ versions of the properties maintained by classic
Paxos. The clear difference is that we explicitly include multiple is-
sues and clusters, and allow values to be revised. The properties are
derived from Paxos by mapping “ballot number b” to “ballot number
b on revision r of issue i in cluster c”, and terming it “b′”. P1 and P2
are now normative rules, but remain the same, whilst P3 is broken
into three in translation to normative terminology. P3a, 3b, and 3c
are a definition of a safe value expressed through normative states.

P3a If no empowered acceptor in the quorum voted in a ballot num-
bered less than b′, all values are safe at b′.

P3b If an empowered acceptor in the quorum has voted, let c be the
highest-numbered ballot less than b′ that was voted in. The value
voted for in ballot c is safe at b′.

D. Sanderson and J. Pitt / Institutionalised Paxos Consensus716

P3c A value v is safe at b′ if no empowered acceptor in the quorum
has voted for any value other than v in a ballot less than b in a
revision equal to r of issue i in cluster c. Likewise, all values are
safe at b if no empowered acceptor has voted for any value in any
revision equal to r or greater.

We use a conceptual construct of the “highest numbered ballot”
(hnb) to explain which values are safe for given (usually quorum-
sized) sets of agents. The hnb for any set of agents Q is the ballot
and value that was voted for in the highest-numbered ballot in which
an agent in Q has voted. The set of hnb for a set C of overlapping
quorums (ie, a cluster) is simply the set containing the hnb of the
quorums Q1...n in C. It is important to note that as both the ballot
number and the value that is voted for determine which values are
safe, the hnb encapsulates a 〈ballot, value〉 pair.

4.3 IPCon algorithm

In this section we will describe the functioning of IPCon by detailing
the parts of it algorithmically using the Event Calculus implemented
in Prolog. Lamport observes in [14, Sec 8] that voting is a refinement
of consensus. We take advantage of this to modify classic Paxos to
create a single collective choice algorithm, IPCon.

4.3.1 Main message flow

This gives the standard flow of the protocol that decides on a value
for an issue as adapted from classic Paxos ([13, Sec 2]).

0A The proposer sends a request0a message to the cluster leader
requesting to know the value of an issue if it has one, or to propose
a value if it does not.

1A The leader sends a prepare1a message to all empowered ac-
ceptors with a ballot number b′ it has chosen.

1B On receipt of a prepare1a message from the leader, an em-
powered acceptor responds with a respond1b message contain-
ing the number of the hnb that they voted in, and the value they
voted for. If they have not yet voted, then they indicate this by re-
plying with a null. This message also represents a promise from
the acceptor not to participate in any ballot numbered lower than
b′. If the leader receives respond1b messages stating that some
acceptors have voted in higher-numbered ballots than b′, this indi-
cates that it should retry with a higher ballot number.

2A Once it has received respond1b messages from a quorum of
empowered acceptors, the leader chooses a value v that has previ-
ously been proposed and is safe at b′ (see Section 4.2) and sends a
submit2a message to the empowered acceptors asking them to
vote for this submitted value.

2B On receipt of a submit2a message from the b′ leader, an em-
powered acceptor either votes for the value v in ballot-b′ by send-
ing a vote2b message, or abstains by sending no message. An
acceptor cannot vote in a ballot if it has already voted in a higher-
numbered ballot on the same issue. A value is chosen once a quo-
rum of agents have voted for it.

4.3.2 Threats to safety

Cluster fragmentation and cluster aggregation are related problems;
in both cases the set of acceptors will change and this will cause
a change in the set of hnb for the cluster; we serialise changes for
simplicity. We provide functions for agents to leave the cluster, and
for the leader to grant and remove agents’ roles.

When two clusters aggregate or a new acceptor joins, there is at
least one extra agent in the set of hnb that has not voted. If a value
has not already been chosen, then this is not a problem because a
consensus that does not exist cannot be violated. If however a value
has been chosen, we must take care that further ballots cannot be
made for values that were not safe before the agent joined. We give
all new agents a choice to ‘sync’ with the cluster’s agreed values as
will be explained in Section 4.3.3 to alleviate this potential problem.

It is only possible for safety to be violated if a new quorum-sized
group is created that does not have the chosen value as its hnb. The
definition of a quorum means that this is only possible if there is
already a group of size new quorum size − 1 that doesn’t have
the chosen value as its hnb (so this new agent will make a group of
new quorum size). This matches with our intuition by only occur-
ring when you have equally sized groups that voted for the value, and
not for the value; the tipping point is when both groups are of size
new quorum size− 1 (quorumsize is

⌊
N
2
+ 1

⌋
for N processes).

When a cluster fragments or an acceptor leaves the cluster, its
votes no longer count. If a value had been chosen and the leaving
acceptor had voted for it, the value may be ‘unchosen’ by causing an-
other value to become safe. A value is safe if a quorum size sized
group of acceptors has it (or “null”) as their hnb, so when an accep-
tor that voted for the currently chosen value leaves the cluster, and
if #votes for = #votes notFor = old quorum size − 1 be-
fore the removal, it will be the case that #new votes for + 1 =
#votes notFor = new quorum size after the removal. This re-
moves a quorum-sized group of agents that voted for the previously
chosen value. Similarly to the addition of acceptors, this is a ‘tipping
point’ that we watch for.

Both tipping points initiate an Event Calculus fluent as shown in
Fig 4 to indicate that we are at risk of violating safety; when an ac-
ceptor does actually join or leave, these fluents are checked. If they
hold at the time, then an obligation to revise is initiated. The pro-
cedures in which this occurs are given algorithmically below, and
revision is then explained in further detail.

holdsAt(possibleAddRevision(R, I, C) = true, T) :−
holdsAt(sync(, Val, R, I, C) = true, T),
numberOfVotesForValue(V, R, I, C, T, For, Against),
For = Against.

holdsAt(possibleRemRevision(V, R, I, C) = true, T) :−
highestVote(V, R, B, I, C, T),
numberOfVotesForValue(V, R, I, C, T, For, Against),
For = Against.

Figure 4. Code fragments

4.3.3 Acceptor addition and loss

When an acceptor joins the cluster the consistency of any previously
chosen values must be maintained. The following procedure ensures
this; if no value has been chosen then this is not required.

1. A new acceptor joins the cluster, either due to a merge or by being
given the role of acceptor by the leader.

2. The leader sends a syncReq message to the new acceptor indi-
cating that a value v has previously been chosen.

3. The new acceptor replies to the leader with a syncAck message.

– If the acceptor agrees with v, then they include it in their reply
and no further action is required.

D. Sanderson and J. Pitt / Institutionalised Paxos Consensus 717

– If the acceptor replies with “no”, they do not agree with the
chosen value and the process continues.

4. As the acceptor has not agreed with the choice of v as the
value, the value of possibleAddRevision (Fig. 4) must be
checked; if it holds then it might be possible for the new agent to
violate safety so an obligation to revise is initiated.

As with addition, the loss of an acceptor requires our attention
when a value has been chosen previously. As the acceptor is leaving
however, it is simpler to deal with as no interaction is required. If no
value has been chosen, then this process is not required.

1. An acceptor leaves the cluster; either by choice, due to the cluster
fragmenting, or by having the role of acceptor removed.

– If it had not voted for the chosen value, there is no possibility
of safety being violated, so no further action is required.

– If it had voted for the chosen value, then the value of
possibleRemRevision (Fig. 4) must be checked; if it
holds then it might be possible for safety to be violated, so an
obligation to revise is created.

2. In either case, all previous votes by the acceptor are erased from
the system or otherwise marked as “no longer valid”.

4.3.4 Revision

By ballot ordering, the promise in 1B of Section 4.3.1, and the restric-
tion on voting in 2B, lower-numbered ballots cannot progress once a
higher-numbered ballot has been interacted with by a quorum size
sized group of acceptors. Our method of tagging ballot numbers with
revision numbers extends the ballot numbering system so that ‘older’
revisions of an issue are explicitly out of date. We can therefore say
that revising an issue safely ‘un-choses’ a value by resetting the hnb

set so that all values are safe. Revision can then be seen as a reset
switch that does not affect safety except in the way that we want it
to; namely by allowing us to change our minds on the chosen value.
Revising also closes all sync fluents and active ballots.

4.3.5 Leadership

The details of electing a process to the role of leader are left as an im-
plementation detail by Lamport [13, Sec 2.4] under the assumption
that a single agent will eventually have the role of leader. Our method
has no impact on the values that are chosen as no values are refer-
enced by the commands, so has no effect on safety. We provide the
commands arrogateLeadership and resignLeadership;
the former allows any agent to claim the leadership of the cluster,
and the latter allows any agent with the role of leader to resign.
We presume some mechanism or agreement whereby the agents will
organise a solution resulting in only one leader at any given time.
As explained by Lamport in [13], duelling leaders can only impede
progress, and we allow agents to leave a cluster; this means that if
a duelling leaders situation occurs, agents may leave the cluster and
reform without them in order to continue progression. Once a “new”
cluster is formed by fragmentation, one of the agents should arrogate
the leadership so that new values can be chosen.

5 CORRECTNESS PROPERTIES

The specification of IPCon is in Prolog, hence it is it own implemen-
tation (i.e. executable specification) and we can run it before sub-
mitting queries for given algorithmic states or situations, and then

check that the result is what we expect. We have run it with clusters
of agents with valid and invalid narratives (sequences of events) and
exhaustive testing provides empirical evidence supporting the cor-
rectness proof shown below. The full sourcecode for the executable
specification is available online2.

The proof of correctness is too verbose to include fully due to
space constraints; we sketch the proof here with a focus on the im-
portant points. Lamport gives a proof by derivation, as a derivation
is “an implementation proof written backwards” [14, Sec 1]. He uses
P1–3 to implement a solution that guarantees S1–3 on the assump-
tion of L1&2 imprecisely stated. We have implemented the core of
our algorithm almost identically to classic Paxos, maintaining the
same message flow and adhering to P1–3; we therefore will show
only that P1–3 results in S1–3 and explain how our additions do not
violate S1-3 and assist in the fulfilment of L1&2.

Proof of S1: Only a value that has been proposed may be chosen.
A value can only be chosen by being voted for (by the definition of
‘chosen’). A value can only be voted for in a ballot by empowered
agents (by P1 and the definition of ‘vote’). A value has to have been
proposed by an agent with the role of proposer to be submitted to a
ballot (by step 2A in Section 4.3.1).

Proof of S2: Only a single value is chosen. A value can only be cho-
sen by being voted for (by the definition of ‘chosen’). A value can
only be voted for in a ballot by empowered agents (by P1 and the
definition of ‘vote’). A ballot must have a “safe” value (by P1). A
safe value cannot have been chosen before, and once a value has
been chosen that is the only safe value (by P3, so can’t choose dif-
ferent values in two ballots). Ballots can only have a single value (by
P2, so can’t choose multiple values in the same ballot).

Proof of S3: Only chosen values are learned. Assume that agent L
learns that value V was chosen when it has not actually been cho-
sen. If it has not been chosen, there is no group of agents of size
Q that have voted for it (by the definition of ‘chosen’ where Q is
the quorum size). By the definition of a ‘quorum’ and institutional
membership requirements, all quorums have at least one member in
common. By the definition of ‘learning’, L must have observed at
least Q acceptors voting for V . This is a contradiction.

Correctness of revision. Our concept of revision by adding another
part to the ballot number can be seen as equivalent to starting a new
instance of Lamport’s classic Paxos. In classic Paxos there is no pos-
sibility of different instances interfering with each other, so we only
have to consider the requirement for agents to know when a value
has been revised. This can be accomplished by broadcasting the act
of revision to all agents - this is in fact required, because the accep-
tors must be informed that they now have the role of acceptor in a
new revision of the issue. If an agent does not receive this broad-
cast for whatever reason, we must still ensure that they are informed
of the change. This does not require any additions to the protocol,
as all messages from 1A onwards contain the ballot number, which
includes the revision number. Therefore, it is not possible for a func-
tioning agent to be unaware of a revision having taken place, or for a
lower-numbered revision to continue (Section 4.3.4).

6 FURTHER & RELATED WORK

Issues of teamwork, consensus, and coalition formation have been
well studied in the multi-agent systems literature, for example from

2 https://s3-eu-west-1.amazonaws.com/dws04-academic-storage/IPCon.zip

D. Sanderson and J. Pitt / Institutionalised Paxos Consensus718

perspectives of evolutionary game theory [6], opinion formation in
social networks [9], rules and agent attitudes [5], computational so-
cial choice theory for design and evaluation of preference selection
mechanisms [3], and learning norms in agent institutions [15]. IPCon
is the first algorithm to leverage a distributed systems algorithm with
well-established safety properties, use it as the foundation for a self-
organising system using institutionalised power and dynamic norm-
governed specifications [2], and show that those safety properties are
preserved in an open system as clusters aggregate and fragment.

Similarly, the idea of ‘platooning’ in VANETs has received much
attention [1, 8, 17], motivated by the desire to reduce fuel consump-
tion and lower carbon emissions. However, all these approaches take
either a centralised approach, or rely on emergence based on local
interactions with respect to physical rules and ‘brute’ facts. Our ap-
proach uses a form of organised adaptation which uses local commu-
nication and computation with respect to physical and conventional
rules, lifting the ‘brute’ facts to conventionally-agreed institutional
facts. This provides a greater degree of flexibility and fine-grained
control over cluster parameters, and allows a ‘memory’ of potentially
advantageous 〈issue, value〉 pairs to be preserved as clusters frag-
ment and aggregate, rather than having to re-emerge the values each
time a cluster forms or fragments. This ‘memory’ could also be used
as the basis for machine learning or case-based reasoning algorithms
to generate new institutional regulations based on experience [15].

In further work, we intend to extend this research by integrating
it as the meso level of a three tier micro-meso-macro constitution
of Intelligent Transportation. At the micro-level there are interact-
ing agents, at the macro-level there are global system properties,
while institutions operate at the meso-level to encourage trust, reci-
procity and collective action which map micro-level behaviour into
desired macro-level outcomes [16]. We note that a similar concept
has been proposed in the work of Dopfer [4] on micro-meso-macro
level economic analysis. To accomplish this, we need to implement
the IPCon algorithm in an agent architecture with anticipatory expec-
tations and embed this in a network animation tool which can simu-
late metropolitan area networks with a large population of agents.

A more theoretical refinement of IPCon concerns judgement ag-
gregation [7]. Currently agents converge on, maintain and update val-
ues for what are, logically, multi-valued fluents. We propose inves-
tigating the use of Paxos in converging on values for propositional
formulas, where the agreed truth of a formula in a distributed system
is not necessarily given by summing the truth values of component
propositions and applying the traditional meaning of the connective
to the summed values.

7 SUMMARY & CONCLUSIONS

This paper has presented IPCon as a method for robust collective-
choice in electronic institutions. After identifying a problem in open,
decentralised and resource-constrained systems, we have modified
Paxos and applied it at different levels of abstraction in a new domain
to create the IPCon algorithm. IPCon includes an explicit represen-
tation of both institutional roles and power and of mutually agreed
mutable institutional facts; this allows the internals of the electronic
institution to be reasoned about by the member agents. We have
allowed the clusters comprising the electronic institutions to them-
selves be dynamic in that their size and membership may change
permanently; this has been achieved by providing a set of methods
for the automated resolution of clusters fragmenting or merging.

We have also provided a proof of correctness adapted from Lam-
port’s proof for the classical Paxos algorithm to show that the original

properties and their normative equivalents still hold. The preservation
of the normative properties in IPCon is due to the essential robust-
ness of the underlying Paxos algorithm. By giving a formal definition
of IPCon in the Event Calculus, we substantiate the proof of correct-
ness through an executable specification. This implementation can
be animated to demonstrate that original safety properties and their
normative equivalents still hold and that it provides resilience to role
failures and institutional fragmentation and aggregation.

Paxos is a remarkable achievement; its longevity and wide appli-
cability is indicative of its core quality and this allows us to leverage
it without structural (syntactic) changes. Our innovative contribution
to the Paxos canon is generalising it to institutional settings in which
empowered agents perform designated acts to assert facts, making it
applicable to the class of open distributed systems of particular im-
portance to multi-agent systems research.

In conclusion, this research contributes to the general field of elec-
tronic institutions, but differs from those of others [18] in its explicit
representation of institutional power, which means our work is ap-
plicable to open distributed systems in which reasoning about roles,
counts-as and context is necessary and significant. The work is also
a part of an ongoing research program on the formalisation of socio-
economic principles for enduring institutions, inspired by those given
by Ostrom [16]. IPCon in particular encapsulates the third principle
that requires the participation of the institution members; nothing can
be done unless a quorum of members agrees on it.

ACKNOWLEDGEMENTS

This research was supported by an IBM Faculty Award.

REFERENCES

[1] The SARTRE Project http://www.sartre-project.eu/.
[2] A. Artikis, ‘Dynamic Specification of Open Agent Systems’, Journal

of Logic and Computation, (2011).
[3] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet, ‘A short introduc-

tion to computational social choice’, SOFSEM 2007: Theory and Prac-
tice of Computer Science, 51–69, (2007).

[4] K. Dopfer, J. Foster, and J. Potts, ‘Micro-meso-macro’, Journal of Evo-
lutionary Economics, 14(3), 263–279, (2004).

[5] B.M. Dunin-Keplicz and R. Verbrugge, Teamwork in Multi-Agent Sys-
tems: A Formal Approach, Wiley, 2010.

[6] J.M. Epstein and R. Axtell, Growing artificial societies: social science
from the bottom up, The MIT Press, 1996.

[7] S. Hartmann and G. Pigozzi, ‘Aggregation in multi-agent systems and
the problem of truth-tracking’, AAMAS vol, 5, 674–676, (2007).

[8] T. He, K.W. Lee, N. Sofra, and K.K. Leung, ‘Utility-based Gateway
Deployment for Supporting Multi-domain DTNs’, SECON, (2010).

[9] R. Hegselmann and U. Krause, ‘Opinion dynamics and bounded confi-
dence models, analysis, and simulation’, JASSS vol, 5(3), (2002).

[10] A. J. I. Jones and M. Sergot, ‘A Formal Characterisation of Institution-
alised Power’, Logic Journal of IGPL, 4(3), 427–443, (1996).

[11] R. Kowalski and M. Sergot, ‘A logic-based calculus of events’, New
generation computing, 4(1), 67–95, (1986).

[12] L. Lamport, ‘The part-time parliament’, ACM TOCS, 16(2), 133–169,
(1998).

[13] L. Lamport, ‘Paxos made simple’, ACM SIGACT News, 32(4), 18–25,
(2001).

[14] L. Lamport, ‘Byzantizing Paxos by Refinement’, DISC, 211–224,
(2011).

[15] J. Morales, M. López-Sánchez, and M. Esteva, ‘Using Experience to
Generate New Regulations’, in 22nd IJCAI, 307–312, (2011).

[16] E. Ostrom, Governing the commons, CUP, 1990.
[17] K. Sampigethaya, L. Huang, M. Li, and R. Poovendran, ‘CARAVAN:

Providing location privacy for VANET’, Constraints, 1–15, (2005).
[18] C. Sierra, JA. Rodriguez-Aguilar, and P. Noriega, ‘Engineering multi-

agent systems as electronic institutions’, European Journal for the In-
formatics Professional, 4, (2004).

D. Sanderson and J. Pitt / Institutionalised Paxos Consensus 719

