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Abstract. We present Multiple-Outcome Proof Number Search
(MOPNS), a Proof Number based algorithm able to prove positions
in games with multiple outcomes. MOPNS is a direct generalization
of Proof Number Search (PNS) in the sense that both behave exactly
the same way in games with two outcomes. However, MOPNS tar-
gets a wider class of games. When a game features more than two
outcomes, PNS can be used multiple times with different objectives
to finally deduce the value of a position. On the contrary, MOPNS is
called only once to produce the same information. We present exper-
imental results on solving various positions of the games CONNECT

FOUR and WOODPUSH showing that in most problems, the total num-
ber of node creations of MOPNS is lower than the cumulative number
of node creations of PNS, even in the best case where PNS does not
need to perform a binary search.

1 INTRODUCTION

Proof Number Search (PNS) [4] is a best first search algorithm that
enables to dynamically focus the search on the parts of the search
tree that seem to be easier to solve. While PNS is primarily applicable
to games with two outcomes, win and loss, it can also solve games
with more than two outcomes using a binary search and thresholds
on the outcomes. PNS based algorithms have been successfully used
in many games and especially as a solver for difficult games such as
CHECKERS [17], SHOGI [19], and GO [7].

In this paper, we propose a new effort number based algorithm
that enables to solve games with multiple outcomes. The principle
guiding our algorithm is to use the same tree for all possible out-
comes. When using a dichotomic PNS, the search trees are indepen-
dent of each other and the same subtrees are expanded again. We
avoid this re-expansion sharing the common nodes. Moreover we can
safely prune some nodes using considerations on bounds as in Score
Bounded Monte Carlo Tree Search (MCTS) [6].

There has been a lot of developments of the original PNS algo-
rithm [4]. An important problem related to PNS is memory con-
sumption as the tree has to be kept in memory. In order to alleviate
this problem, V. Allis proposed PN2 [3]. It consists in using a sec-
ondary PNS at the leaves of the principal PNS. It allows to have much
more information than the original PNS for equivalent memory, but
costs more computation time. PN2 has recently been used to solve
FANORONA [15].

The main alternative to PN2 is the Depth-First Proof Number
Search (DFPN) algorithm [11]. DFPN is a depth-first variant of PNS

based on the iterative deepening idea. DFPN will explore the game
tree in the same order as PNS with a lower memory footprint but at
the cost of re-expanding some nodes.
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Conspiracy numbers search [8, 16] also deals with a range of pos-
sible evaluations at the leaves of the search tree. However, the algo-
rithm works with a heuristic evaluation function whereas Multiple-
Outcome Proof Number Search (MOPNS) has no evaluation function
and only scores solved positions. Moreover the development of the
tree is not the same for MOPNS and for Conspiracy numbers search
since MOPNS tries to prove the outcome that costs the less effort
whereas Conspiracy numbers search tries to eliminate unlikely val-
ues of the evaluation function.

The Iterative PNS algorithm [9] also deals with multiple outcomes
but uses the usual proof and disproof numbers as well as a value
for each node and a cache. The main difference between Iterative
PNS and the proposed MOPNS, is that Iterative PNS tries to find the
value of the game by eliminating outcomes step by step. On the other
hand, MOPNS can dynamically focus on newly promising values even
if previously promising values have not been completly outruled yet.

The next section gives some definitions that will be used in the
remainder of the paper. The third section details PNS. The fourth sec-
tion explains MOPNS. The fifth section gives experimental results for
the games CONNECT FOUR and WOODPUSH.

2 DEFINITIONS

We consider a two player game. The players are named Max and
Min. O = {o1, . . . , om} denotes the possible outcomes of the game.
We assume that the outcomes are linearly ordered with the following
preference relation for Max: o1 <Max · · · <Max om, we further as-
sume that the game is zero-sum and derive a preference relation for
Min: om <Min · · · <Min o1. In the following, we will always stand
in the point of view from Max and use oi < oj (resp. oi ≤ oj) as a
shorthand for oi <Max oj (resp. ¬oi <Min oj).

We assume the game is finite, acyclic, sequential and determinis-
tic. Each position n is either terminal or internal and some player is
to move. When a position n is internal and player p is to play, we call
children of n (noted chil(n)) the positions that can be reached by a
move of p. Using backward induction, we can therefore associate to
each position n a so-called minimax value, noted real(n) ∈ O.

Solving a position consists in obtaining its minimax value. It is
possible to compute directly the minimax value of a given position by
building the whole subsequent game tree and using straightforwardly
the definition of minimax values. This naive procedure, however, is
resource intensive and more practical methods can be sought. Indeed,
not every part of the subsequent game tree is needed to compute the
minimax value of a position. For instance, if we know that Max is to
play in a position n and one child has the best value possible, then
real(n) does not depend on the value of the other children and they
need not be calculated.

As the current game tree is not necessarily completely expanded,
the following classification of nodes arises. Internal nodes corre-
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spond to internal positions and have their children in the tree. Ter-
minal nodes correspond to terminal positions and have no children.
Non-terminal leaf nodes (leaves for short) correspond to internal po-
sitions and do not have their children in the tree.

We call effort numbers heuristic numbers which try to quantify the
amount of information needed to prove some fact about the minimax
value of a position. The higher the number, the larger the missing
piece of information needed to prove the result. When an effort num-
ber reaches 0, then the corresponding fact has been proved to be true,
while if it reaches ∞ then the corresponding fact has been proved to
be false.

3 PROOF NUMBER SEARCH

PNS is an algorithm that can solve positions without exploring the
whole game tree. It is essentially designed for games with two out-
comes O = {Lose,Win}. In the context of PNS, proving that the
minimax value of a node is Win is called proving the node, while
proving that it is Lose is called disproving the node.

3.1 Determination of the effort

PNS is a best first search algorithm which tries to minimize the effort
needed to solve the root position. Two effort numbers are associated
to each node in the tree, the proof number (PN) represents an esti-
mation of the remaining effort needed to prove the node, while the
disproof number (DN) represents an estimation of the remaining ef-
fort needed to disprove the node. When a node n has been proved,
we have PN(n) = 0 and DN(n) = ∞, when n has been disproved,
PN(n) = ∞ and DN(n) = 0.

The effort needed to solve a node in the tree is determined in dif-
ferent ways depending on its type. They are summarized in Figure 1.
The Win and Lose rows designate terminal nodes, in which case the
node is already solved. The Leaf row designates a leaf node. Such
a node has not been expanded yet, and the proof and disproof num-
bers are initially set to 1, although more elaborate initializations exist
(see Section 4.6). The Max (resp. Min) row designates internal nodes
where Max (resp. Min) is to play. For such nodes, the numbers are
deduced from the effort numbers of the children nodes.

Node type PN DN

Win 0 ∞
Lose ∞ 0
Leaf 1 1
Max minc∈chil(n) PN(c)

∑
c∈chil(n) DN(c)

Min
∑

c∈chil(n) PN(c) minc∈chil(n) DN(c)

Figure 1: Determination of effort numbers for PNS

3.2 Descent and expansion of the tree

If the root node is not solved, then more information needs to be
added to the tree. Therefore a (non-terminal) leaf needs to be ex-
panded. To select it, the tree is recursively descended selecting at
each Max node the child minimizing the proof number and at each
Min node the child minimizing the disproof number.

Once the node to be expanded, n, is reached, each of its children
are added to the tree. Thus the status of n changes from leaf to in-
ternal node and PN(n) and DN(n) have to be updated. This update

may in turn lead to an update of the proof and disproof numbers of
its ancestors.

After the proof and disproof numbers in the tree are updated to be
consistent with formulae from Figure 1, another most proving leaf
can be expanded. The process continues iteratively with a descent of
the tree, its expansion and the consecutive update until the root node
is solved.

3.3 Multi-outcome games

Many interesting games have more than two outcomes, for instance
CHESS, DRAUGHTS and CONNECT FOUR have three outcomes: O =
{Win,Draw,Lose}. We describe the game of WOODPUSH in the
fifth section. A game of WOODPUSH of size S has 2× S × (S + 1)
possible outcomes. For many games, it is not only interesting to know
who is the winner but also what is the exact score of the game.

If there are more than two possible outcomes, the minimax value
of the starting position can still be found with PNS by using a di-
chotomic search [4]. This dichotomic search is actually using PNS on
transformed games. The transformed games have exactly the same
rules and game tree as the original one but have binary outcomes.
If there are m different outcomes, then the dichotomic search will
make about lg(m) calls to PNS.

If the minimax value is already known, e.g., from expert knowl-
edge, but needs to be proved, then two calls to PNS are necessary and
sufficient.

4 MULTIPLE-OUTCOME PROOF NUMBER
SEARCH

MOPNS aims at applying the ideas from PNS to multi-outcome games.
However, contrary to dichotomic PNS and iterative PNS, MOPNS dy-
namically adapts the search depending on the outcomes and searches
the same tree for all the possible outcomes.

MOPNS shares many similarities with PNS. A game tree is kept in
memory and it is extended through cycles of descent, expansion and
updates. MOPNS also makes use of effort numbers.

In PNS, two effort numbers are associated with every node,
whereas in MOPNS, if there are m outcomes, then 2m effort num-
bers are associated with every node. In PNS, only completely solved
subtrees can be pruned, while pruning plays a more important role in
MOPNS and can be compared to alpha-beta pruning.

4.1 Effort Numbers

MOPNS also uses the concept of effort numbers but different num-
bers are used here in order to account for the multiple outcomes.
Let n be a node in the game tree, and o ∈ O an outcome. The
greater number, G(n, o), is an estimation of the number of node
expansions required to prove that the value of n is greater than or
equal to o (from the point of view of Max), while conversely the
smaller number, S(n, o), is an estimation of the number of node ex-
pansions required to prove that the value of n is smaller than or equal
to o. If G(n, o) = S(n, o) = 0 then n is solved and its value is o:
real(n) = o.

Figure 2 features an example of effort numbers for a three out-
comes game. The effort numbers show that in the position under
consideration Max can force a draw and it seems unlikely that at that
point the Max can force a win.2

2 S(n,Win) �= 0 means that it was not assumed that the game is finite and
it has not been proved yet that Min can force the game to end.
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Outcome G S

Win 500 3
Draw 0 10
Lose 0 ∞

Figure 2: Example of effort numbers for a 3 outcome game

4.2 Determination of the effort

The effort numbers of internal nodes are obtained in a very similar
fashion to PNS, G is analogous to PN and S is analogous to DN. Ev-
ery effort number of a leaf is initialized at 1, while the effort numbers
of an internal node are calculated with the sum and min formulae as
shown in Figure 3a.

If n is a terminal node and its value is real(n), then the effort
numbers are associated as shown in Figure 3b. We have for all o ≤
real(n), G(n, o) = 0 and for all o ≥ real(n), S(n, o) = 0.

Node type G(n, o) S(n, o)

Leaf 1 1
Max minc∈chil(n) G(c, o)

∑
c∈chil(n) S(c, o)

Min
∑

c∈chil(n) G(c, o) minc∈chil(n) S(c, o)

(a) Internal node

Outcome G S

om ∞ 0
. . . ∞ 0
real(n) 0 0
. . . 0 ∞
o1 0 ∞

(b) Terminal node

Figure 3: Determination of effort numbers for MOPNS

4.3 Properties

G(n, o) = 0 (resp. S(n, o) = 0) means that the value of n has
been proved to be greater than (resp. smaller) or equal to o, i.e., Max
(resp. Min) can force the outcome to be at least o (resp. at most o).
Conversely G(n, o) = ∞ means that it is impossible to prove that
the value of n is greater than or equal to o, i.e., Max cannot force the
outcome to be greater than or equal to o.

As can be observed in Figure 2, the effort numbers are mono-
tonic in the outcomes. If oi ≤ oj then G(n, oi) ≤ G(n, oj) and
S(n, oi) ≥ S(n, oj). Intuitively, this property states that the better an
outcome is, the harder it will be to obtain it or to obtain better.

0 and ∞ are permanent values since when an effort number
reached 0 or ∞, its value will not change as the tree grows and more
information is available. Several properties link the permanent values
of a given node. The proofs are straightforward recursions from the
leaves and are omitted for lack of space. Care must only be taken that
the initialization of leaves satisfies the property which is the case for
all the initializations discussed here.

Proposition 1. If G(n, o) = 0 then for all o′ < o, S(n, o′) = ∞
and similarly if S(n, o) = 0 then for all o′ > o, G(n, o′) = ∞.

Proposition 2. If G(n, o) = ∞ then S(n, o) = 0 and similarly if
S(n, o) = ∞ then G(n, o) = 0.

4.4 Descent policy

We call attracting outcome of a node n, the outcome o∗(n) that has
not been proved to be achievable by the player on turn and minimiz-
ing the sum of the corresponding effort numbers. We have for Max
nodes o∗(n) = argmino,G(n,o)>0(G(n, o)+S(n, o)). Similarly, we
have for Min nodes o∗(n) = argmino,S(n,o)>0(G(n, o)+S(n, o)).
As a consequence of the existence of a minimax value for each po-
sition, for all node n, there always exists at least one outcome o,
such that G(n, o) �= ∞ and S(n, o) �= ∞. Hence, G(n, o∗(n)) +
S(n, o∗(n)) �= ∞.

We call distracting outcome of a Max (resp. Min) node n the
outcome just below (resp. above) its attracting outcome, we note it
o′(n). When the attracting outcome of a Max (resp. Min) node is
the worst (resp. best) outcome in the game, we set the distracting
outcome to be equal to the most likely outcome. That is, if n is a
Max node with o∗(n) = ok, then o′(n) = omax(k−1,1) and if n is
a Min node, then o′(n) = omin(k+1,m). As the name indicates, the
distracting outcome of a node is the one towards which it would be
simplest for the opponent to deviate if he or she wanted to disprove
the attracting outcome.

Consider Figure 2, if these effort numbers were associated to a
Max node, then the attracting outcome would be Win and the dis-
tracting outcome would be Draw, while if they were associated to a
Min node then the attracting outcome would be Draw and the dis-
tracting outcome would be Win.

From now on, unless we specify otherwise, we will only consider
the attracting and distracting outcomes of the root node r of the tree
and note o∗ = o∗(r), o′ = o′(r). We assume Max is at turn in the
root node. We can now define the root descent policy that specify
how the leaf to be expanded is selected (see Algorithm 1). We first
estimate which outcome is attracting at the root node, then we try to
prove this value at Max nodes and to disprove it at Min nodes.

Algorithm 1 Root descent policy
argument root Max node r
compute o∗ and o′

n ← root.
while n is not a leaf do

if n is a Max node then

n ← argminc∈chil(n) G(c, o∗)
else

n ← argminc∈chil(n) S(c, o
′)

end if

end while

return n

Proposition 3. For finite two outcome games, MOPNS and PNS de-
velop the same tree.

Proof. If we know the game is finite, the Max is sure to obtain at
least the worst outcome so we can initialize the greater number for
the worst outcome to 0, we can also initialize the smaller number
for the best outcome to 0. If there are two outcomes only, O =
{Lose,Win}, then we have the following relation between effort
numbers in PNS and MOPNS: G(n,Win) = PN(n), S(n,Lose) =
DN(n). If the game is finite with two outcomes, then the attract-
ing outcome of the root is Win and the distracting outcome is Lose.
Hence, MOPNS and PNS behave in the same manner.
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4.5 Pruning

We define the pessimistic and optimistic bounds for a node
n as pess(n) = argmaxo(G(n, o) = 0) and opti(n) =
argmino(S(n, o) = 0). The following inequality gives their name to
the bounds pess(n) ≤ real(n) ≤ opti(n), pess(n) (resp. opti(n))
is the worst value possible (resp. the best value possible) for n con-
sistent with the current information in the tree. For any node n, n is
solved as soon as pess(n) = opti(n). Although the definition is dif-
ferent, these bounds coincide with those described in Score Bounded
Monte Carlo Tree Search [6].

We also define relevancy bounds that are similar to alpha and beta
bounds in the classic Alpha-Beta algorithm [13]. For a node n, the
lower relevancy bound is noted α(n) and the upper relevancy bound
is noted β(n). These bounds are calculated using the optimistic
and pessimistic bounds as follows. If n is the root of the tree, then
α(n) = pess(n) and β(n) = opti(n). Otherwise, we use the rele-
vancy bounds of the father node of n: if n ∈ chil(f), we set α(n) =
maxMax(α(f), pess(n)) and β(n) = minMax(β(f), opti(n)).

The relevancy bounds of a node n take their name from the fact
that if real(n) ≤ α(n) or if real(n) ≥ β(n), then having more
information about real(n) will not contribute to solving the root of
the tree. Therefore they enable safe pruning.

Proposition 4. For each node n, if we have β(n) ≤ α(n) then the
the subtree of n need not be explored any further.

Subtrees starting at a pruned node can be completely removed
from the main memory as they will not be used anymore in the proof.
This improvement is crucial as lack of memory is one of the main
bottleneck of PNS and MOPNS.

We now show that pruning does not interfere with the root descent
policy in the sense that it will not affect the number of descents per-
formed before the root is solved. For this purpose, we prove that the
root descent policy does not lead to a node which can be pruned.

Proposition 5. If r is not solved, then for all nodes n traversed by
the root descent policy, α(n) < o∗ ≤ β(n).

Proof. We first prove the inequality for the root node. If the root po-
sition r is not solved, then by definition of the attractive outcome,
o∗ > pess(r) = α(r). Using Proposition 1, we know that all out-
comes better than the optimistic bound cannot be achieved: ∀o >
opti(r) = β(r), G(o, r) = ∞. Since G(r, o∗) + S(r, o∗) �= ∞,
then α(r) < o∗ ≤ β(r).

For the induction step, suppose n is a Max node that satisfies the
inequality. We need to show that c = argminc∈chil(n) G(c, o∗)
also satisfies the inequality. Recall that the pessimistic bounds of
n and c satisfy the following order: pess(c) ≤ pess(n) and ob-
tain the first part of the inequality α(c) = α(n) < o∗. From the
induction hypothesis, o∗ ≤ β(n) ≤ opti(n), so from Proposi-
tion 1 G(n, o∗) �= ∞, moreover, the selection process ensures that
G(c, o∗) = G(n, o∗) �= ∞, therefore G(c, o∗) �= ∞ which using
Proposition 2 leads to o∗ ≤ opti(c). Thus, o∗ ≤ β(c). The induction
step when n is a Min node is similar and is omitted.

4.6 Applicability of classical improvements

Many improvements of PNS are directly applicable to MOPNS. For
instance, the current-node enhancement presented in [3] takes ad-
vantage of the fact that many consecutive descents occur in the same
subtree. This optimization allow to obtain a notable speed-up and can
be straightforwardly applied to MOPNS.

It is possible to initialize leaves in a more elaborate way than pre-
sented in Figure 3a. Most initializations available to PNS can be used
with MOPNS, for instance the mobility initialization [20] in a Max
node n consists in setting the initial smaller number to the number of
legal moves: G(n, o) = 1, S(n, o) = | chil(n)|. In a Min node, we
would have G(n, o) = | chil(n)|, S(n, o) = 1.

A generalization of PN2 is also straightforward. If n is a new leaf
and d descents have been performed in the main tree, then we run
a nested MOPNS independent from the main search starting with n
as root. After at most d descents are performed, the nested search
is stopped and the effort numbers of the root are used as initializa-
tion numbers for n in the main search. We can safely propagate the
interest bounds to the nested search to obtain even more pruning.

Similarly, a transformation of MOPNS into a depth-first search is
possible as well, adapting the idea of Nagai [11]. Just as in DFPN,
only two threshold numbers would be needed during the descent,
one threshold would correspond to the greater number for the current
attractive outome at the root and one threshold would correspond to
the smaller number for the distractive outcome.

Finally, given that MOPNS is very close in spirit to PNS, a care-
ful implementer should not face many problems adapting the various
improvements that make DFPN such a successful technique in prac-
tice. Let us mention in particular Nagai’s garbage collection tech-
nique [11], Kishimoto and Müller’s solution to the Graph History
Interaction problem [7], and Pawlewicz and Lew’s 1 + ε trick [12].

5 EXPERIMENTAL RESULTS

To assess the validity of our approach, we implemented a prototype
of MOPNS and tested it on two games with multiple outcomes, namely
CONNECT FOUR and WOODPUSH. Our prototype does not detect
transposition and is implemented via the best first search approach
described earlier. As such, we compare it to the original best-first
variation of PNS, also without transposition detection. Note that the
domain of CONNECT FOUR and WOODPUSH are acyclic, so we do
not need to use the advanced techniques presented by Kishimoto and
Müller to address the Graph History Interaction problem [7]. Addi-
tionally, the positions that constitute our testbed were easy enough
that they could be solved by search trees of at most a few million
nodes. Thus, the individual search trees for PNS as well as MOPNS

could fit in memory without ever pruning potentially useful nodes.
In our implementation, the two algorithms share a generic code for

the best first search module and only differ on the initialization, the
update, and the selection procedures. The experimental results were
obtained running OCaml 3.11.2 under Ubuntu on a laptop with Intel
T3400 CPU at 2.2 GHz and 1.8 GiB ofmemory.

For each test position and each possible outcome, we performed
one run of the PNS algorithm and recorded the time the number
of node creation it needed. We then discarded all but the two runs
needed to prove the final result. For instance, if a position in WOOD-
PUSH admitted non-zero integer scores between −5 and +5 and its
perfect play score was 2, we would run PNS ten times, and finally out-
put the measurements for the run proving that the score is greater or
equal to 2 and the measurements for the run disproving that the score
is greater or equal to 3. This policy is beneficial to PNS compared to
doing a binary search for the outcome.

To compare MOPNS to PNS on a wide range of positions, we created
the list of all positions reached after a given number of moves from
the starting position of a given size. These positions range from being
vastly favourable to Min to vastly favourable to Max, and from triv-
ial (solved in a few milliseconds) to more involved (each run being
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around two to three minutes).

5.1 CONNECT FOUR

CONNECT FOUR is a commercial two-player game where players
drop a red or a yellow piece on a 7 × 6 grid. The first player to
align four pieces either horizontally, vertically or diagonally wins
the game. The game ends in a draw if the board is filled and neither
player has an alignment. The game was solved by James D. Allen
and Victor Allis in 1988 [2].

Table 1 presents aggregate data over our experiments on size 4×5
and 5×5. In both cases, we used the positions occuring after 4 moves.
In the first case, 16 positions among the 256 positions tested were a
first player win, 222 were a draw while 18 were a first player loss. In
the second list of positions, there were 334 wins, 267 draws, and 24
losses.

Table 1: Cumulated time and number of node creation for the MOPNS

and PNS algorithms in the game of CONNECT FOUR. For both algo-
rithm, Lowest time indicates the number of positions that were soved
faster by this algorithm, while Lowest node creations indicates the
number of positions which needed fewer node creations.

MOPNS PNS

Size 4× 5,
256 positions
after 4 moves

Total time (seconds) 99 85
Total node creations 16,947,536 20,175,238
Lowest time 21 235
Lowest node creations 227 13

Size 5× 5,
625 positions
after 4 moves

Total time (seconds) 11,230 9055
Total node creations 1,557,490,694 1,757,370,222
Lowest time 55 570
Lowest node creations 406 140

Figure 4 plots the number of node creations needed to solve each
of the 256 4×5 positions. We can see that for a majority of positions,
MOPNS needed fewer node creations than PNS. There are 16 positions
that needed the same number of node creations by both algorithm and
these positions are exactly the positions that are first player wins.

104

105

104 105

N
od

e
cr

ea
tio

ns

PNS node creations

MOPNS
PNS

Figure 4: Comparison of the number of node creations for MOPNS and
PNS for solving 256 CONNECT FOUR positions on size 4× 5.

5.2 WOODPUSH

The game of WOODPUSH is a recent game invented by combinatorial
game theorists to analyze a game that involves forbidden repetition of

the same position [1, 5]. A starting position consists of some pieces
for the left player and some for the right player put on an array of pre-
defined length as shown in Figure 5. A Left move consists in sliding
one of the left pieces to the right. If some pieces are on the way of the
sliding piece, they are jumped over. When a piece has an opponent
piece behind it, it can move backward and push all the pieces behind,
provided it does not repeat the previous position. The game is won
when the opponent has no more pieces on the board. The score of
a game is the number of moves that the winner can play before the
board is completely empty.

� � � �
Figure 5: WOODPUSH starting position on size (10, 2)

The experimental protocol for WOODPUSH was similar to that of
CONNECT FOUR. The first list of problems corresponds to positions
occuring after 4 moves on a board of length 8 with 3 pieces for each
player. The second list of problems corresponds to positions occuring
after 8 moves on a board of length 13 with 2 pieces for each player.
Table 2 presents aggregates data for the solving time and the num-
ber of node creations, while Figure 6 presents the number of node
creations for each problem in the second list.

Table 2: Cumulated time and number of node creation for the MOPNS

and PNS algorithms in the game of WOODPUSH.

MOPNS PNS

Size (8, 3),
99 positions
after 4 moves

Total time (seconds) 718 702
Total node creations 31,328,178 34,869,213
Lowest time 25 74
Lowest node creations 76 23

Size (13, 2),
256 positions
after 8 moves

Total time (seconds) 4796 4573
Total node creations 155,756,022 174,285,199
Lowest time 98 158
Lowest node creations 205 51
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Figure 6: Comparison of the number of node creations for MOPNS and
PNS for solving 256 WOODPUSH positions on size (13, 2).

In WOODPUSH (8, 3), it is possible to create final positions with
scores ranging from −18 to 18 but these positions might not be ac-
cessible from the start position. Indeed, in our experiments, no final
position with a score below −5 or over 5 was ever reached. How-
ever, while the scores remained between −5 and 5, the exact range
varied depending on the problem. While doing a binary search for the
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Table 3: Detailed results for the 86th WOODPUSH problem on size (8, 3).

PNS Dichotomic PNS MOPNS

Setting ≥ −4 ≥ −3 ≥ −2 ≥ −1 ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 [-5, 5] [1, 3] [-5, 5] [1, 3]

Time 0.508 0.500 0.884 1.188 1.200 1.204 3.084 1.360 1.356 6.676 4.288 4.556 3.684
Nodes 39340 39340 68035 84184 84568 84545 178841 98069 98069 351366 263386 210183 191127
Result true true true true true true false false false 2 2 2 2

outcome is the natural generic process for solving a multi-outcome
game with PNS, we decided to compare MOPNS to the ideal case for
PNS which only involves two runs per position. On the other hand, we
only assumed for MOPNS that the outcome was in [−5, 5]. Therefore,
the results presented in Table 2 and Figure 6 significantly favour PNS.

Table 3 details the results for the position presented in Figure 7.
The PNS tree did not access any position with a score lower or equal
to −4 nor any position with a score greater or equal to 5.

� � � � � �
Figure 7: 86th WOODPUSH problem on size (8, 3).

6 CONCLUSION AND DISCUSSION

We have presented a generalized Proof Number algorithm that solves
games with multiple outcomes in one run. Running PNS multiple
times to prove an outcome develops the same nodes multiple times
while in MOPNS these nodes are developed only once. MOPNS has
been formally proved equivalent to PNS in two-outcome games and
we have shown how safe pruning could be performed in multiple out-
come games. For small CONNECT FOUR and WOODPUSH boards, in
most cases MOPNS solves the games with fewer node creations than
PNS even if it already knows the optimal outcome of the game and no
binary search is needed.

We have assumed in this article that the game structure was a tree.
In most practical cases it actually is a Directed Acyclic Graph (DAG)
and in some cases the graph contains cycles.3 The theoretical results
presented in this article still hold in the DAG case, provided the def-
inition of the relevancy bounds is adapted to reflect the fact that a
node may have multiple parents and some of them might not yet be
in the tree. The double count problem of PNS will also affect MOPNS

in DAGs, but it is possible to take advantage of previous work on the
handling of transpositions in PNS [18, 10]. Similarly, the problems
encountered by MOPNS in cyclic graphs are similar to that of PNS and
DFPN in cyclic graphs. Fortunately, it should be straightforward to
adapt Kishimoto and Müller’s ideas [7] from DFPN to a depth-first
version of MOPNS.

In future work, we plan on trying to adapt the PN2 paralellization
scheme suggested by Saffidine et al. [14] to games with multiple out-
comes via MOPNS. We would also like to study a depth-first version
of MOPNS that can be obtained via Nagai’s transformation [11].

Finally, studying how MOPNS can be extended to deal with prob-
lems where the outcome space is not known beforehand or is con-
tinuous in order to develop an effort number algorithm for non-
deterministic two-player games is definitely an attractive research
agenda.

3 For instance, the original rules for CHESS result in a DAG because of the
50-moves rule, but this rule is usually abstracted away, resulting in a cyclic
structure.
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