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Strategic and Epistemic Reasoning for the Game
Description Language GDL-II

Ji Ruan and Michael Thielscher !

Abstract. The game description language GDL has been devel-
oped as a logic-based formalism for representing the rules of arbi-
trary games in general game playing. A recent language extension
called GDL-II allows to describe nondeterministic games with any
number of players who may have incomplete, asymmetric informa-
tion. In this paper, we show how the well-known Alternating-time
Temporal Epistemic Logic (ATEL) can be adapted for strategic and
epistemic reasoning about general games described in GDL-II. We
provide a semantic characterisation of GDL-II descriptions in terms
of ATEL models. We also provide a syntactic translation of GDL-II
descriptions into ATEL formulas, and we prove that these two char-
acterisations are equivalent. We show that model checking in this
setting is decidable by giving an algorithm, and we demonstrate how
our results can be used to verify strategic and epistemic properties of
games described in GDL-II.

1 Introduction

The general game description language GDL, which has been estab-
lished as input language for general game-playing systems [5, 8], has
recently been extended to GDL-II to incorporate games with non-
deterministic actions and where players have incomplete/imperfect
information [15]. We have previously analysed the epistemic logic
behind GDL-II and in particular shown that the situation at any stage
of a game can be characterised by a multi-agent epistemic (i.e., S5-)
model [10]. However, this result merely provides a static character-
isation of what players know (and don’t know) at a certain stage.
As such it cannot be used to reason about how players’ knowledge
evolves as the game progresses, nor does it allow to reason about
the strategic ability of players to reach a desired state (possibly in
cooperation with other players), etc. All these aspects presuppose
the use of an underlying logic that goes beyond standard epistemic
logic in that it combines both strategic and epistemic reasoning.
Alternating-time Temporal Epistemic Logic (ATEL) [16], an exten-
sion to Alternating-time Temporal Logic (ATL) [1] with incomplete
information, is such a formalism. For strategic reasoning alone, it
has been shown that ATL can be applied to reason about complete-
information games described in the original GDL using model check-
ing methods [12]. Also, model checking for GDL is known to be
EXPTIME-complete [12]. But unfortunately, the addition of incom-
plete information (and perfect recall) in GDL-II renders the model
checking problem of ATL/ATEL undecidable [3].

In this paper we provide an adaption of ATEL for strategic and
epistemic reasoning about general games described in GDL-II. Our
main results are a characterisation of GDL-II descriptions in ATEL
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and a decidability result for the model checking problem. Specifi-
cally, we provide a semantic characterisation of GDL-II descriptions
in terms of ATEL models and a syntactic translation of GDL-II de-
scriptions into ATEL formulas, and we prove that these two char-
acterisations are equivalent. We show that model checking in this
setting is decidable and demonstrate how our results allow to verify
strategic and epistemic properties of games described in GDL-II.

The paper is organised as follows. Section 2 gives preliminaries on
GDL-II and ATEL. Section 3 presents a semantic characterisation of
GDL-II using ATEL models and a syntactic mapping from GDL-II
to ATEL formulas, along with the main equivalence result. Section
4 shows the decidability of model checking problem by giving an
algorithm and discusses the strategic and epistemic properties that
can be used for reasoning about GDL-II games. We conclude with a
discussion on related work. Full proofs of our results can be found in
an accompanying technical report [11].

2 Preliminaries
2.1 Game Description Language GDL-II

A complete game description consists of the names of (one or more)
players, a specification of the initial position, the legal moves and
how they affect the position, and the terminating and winning cri-
teria. The emphasis of game description languages is on high-level,
declarative game rules that are easy to understand and maintain. At
the same time, GDL and its successor GDL-II have a precise se-
mantics and are fully machine-processable. Moreover, background
knowledge is not required—a set of rules is all a player needs to
know to be able to play a hitherto unknown game. The description
language GDL-II uses these keywords:

role(?r) ?r is a player
init (?f) ? £ holds in the initial position
true(?f) ? £ holds in the current position

?r can do move ?m

player ?r does move ?m

? £ holds in the next position
the current position is terminal
goal value for role ?r is ?v

legal (?r, ?m)
does (?r, ?m)
next (?f)
terminal
goal (?r, ?v)

sees (?r, ?p)
random

?r perceives ?p in the next position
the random player

GDL (without sees and random) is suitable for describing fi-
nite, synchronous, and deterministic n-player games with complete
information about the game state [8]. The extended game description
language GDL-II allows to specify games with randomness and im-
perfect/incomplete information [15]. Valid game descriptions must
satisfy certain syntactic restrictions, which ensure that all deductions
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“ used in the following definition are finite and decidable; for de-
tails we have to refer to [8] for space reasons.

A unique game model can be obtained from a valid GDL-II game
description by using the notion of the stable models of logic pro-
grams with negation [4]. The syntactic restrictions in GDL-II ensure
that all logic programs we consider have a unique and finite stable
model [8, 15]. Hence, the game model for GDL-II has a finite set of
players, finite states, and finitely many legal moves in each state [15].
By G - p we denote that ground atom p is contained in the unique
stable model, denoted as SM(G), for a stratified set of clauses G.
In the following definition of a game model for GDL-II, states are
identified with the set of atoms that are true in them.

Definition 1 (GDL-II Game Semantics). Let G be a valid GDL-II
specification. The semantics of G is the state transition sys-
tem (R, so,t,l,u,Z, g) given by

roles R = {r | role(r) € sM(G)},
initial position so = SM(G U {true(f) | init(f) € sM(G)});
terminal positions t = {s | terminal € s},
legal moves | = {(r,m, s) | legal(r,m) € s},
state update function u(M, s) =
SM(G U {true(f) | next(f) € sM(G U s U MI®S)}),
for all joint legal moves M (i.e., where each role in R takes one
legal move) and states s,
e information relation T =
{(r, M, s,p) | sees(r,p) € sSM(G U s U MI°S)};
e goal relation g = {(r,n, s) | goal(r,n) € s}.

Note that a state s contains all ground atoms that are true in
the state, which includes the “fluent atoms” true(f) in, respec-
tively, {true(f) | init(f) € sM(G)} (for the initial state) and
{true(f) | next(f) € sM(G U s U M%)} (for the successor
state of s and M), and all other atoms that can be derived from G
and these fluent atoms.

Different runs of a game can be described by developments, which
are sequences of states and moves by each player up to a certain
round. A player cannot distinguish two developments if he makes
the same moves and perceptions in the two.

Definition 2. /5] Let (R, so,t,l,u,Z,g) be the semantics of a
GDL-II description G, then a development ¢ is a finite sequence

<So7 Ml, S1y...y Sd717Md75d>

such that for all i € {1,...,d} (d > 0), M; is a joint move and
S; = U(Mi, Si_1).

The length of a development 6, denoted as len(9), is the number of
states in 0. By M (j) we denote agent j’s move in the joint move M.
Let §|; be the prefix of § up to length i < len(9).

A player j € R\ {random} cannot distinguish two developments
5 = (so, M1, s1,...) and §' = (so, M1, s ...) (writtenas & ~; &')
iff len(8) = len(8") and for i = len(5) — 1:

o {p| (4, Mi,si—1,p) € I} = {p| (4, M}, si_1,p) € T},
[ ] Ml(‘]) = MZ/(]), and6|i ~j 5/‘1

As an example, Figure 1 provides a GDL-II description of a card
trading game adapted from [6]. In this game, player Bob (abbreviated
as b) plays against the random player (line 1). The deck consists
of Ace, King and Queen (A, K, Q); it is assumed that A beats K,

2 For a joint move M where players 71, ... ,7 take moves m1, ...

we define Mdoes d:ef{ does(ri,m1).,...,does(rg, mg). }.

y Mk
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role(b). role(random) .

1

2 isDeal (A,K). isDeal(A,Q). isDeal(K,A). isDeal (K,Q).
3 isDeal(Q,A). isDeal(Q,K).

4 beats (A, K). beats(K, Q). beats(Q, A).

5 init (round(0)) .

6

7 legal (random, deal (?X,?Y)) <= true (round(0)),isDeal (?X,?Y).
8 legal(b, noop) <= true (round(0)).

9 legal (random, noop) <= true (round(l)).

10 legal (b, trade) <= true (round(l)).

11 legal(b, keep) <= true (round(l)).

12
13 next (round(1l)) <= true(round(0)).
14 next (round(2)) <= true(round(l)).
15 next (holds (b, ?X)) <= does(random, deal(?X,?Y)).

( <= does (random, deal (?X,?Y)).

( true(holds (b, ?X)).

16 next (holds (random, ?Y))
17 next (holds (b, ?X)) <= does(b, keep),
18 next (holds (b, ?22)) <= does (b, trade), true(holds(b, ?X)),
19 true (holds (random, °?Y)), isDeal(?Z, ?X), isDeal(?Z, ?Y).
20 next (holds (random, ?X)) <= true(holds (random, ?X)).

21

22 sees (b, holds(b, ?X))
23 sees (b, holds(random,
24 true (round(1l)).

25

26 terminal <= true(round(2)).

<= does (random,
?X))

deal (?X,?Y)).
<= true(holds (random, ?X)),

27 goal (b, 100) <= true(holds(b, ?X)),
28 true (holds (random, ?Y)), beats(?X, ?Y).
29 goal(b, 0) <= true(holds(b, ?X)),
30 true (holds (random, ?Y)), beats(?Y, ?X).
31 win <= goal(b, 100)
Figure 1. A card trading game in GDL-II
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Figure 2. The game model for the card trading game.

K beats @, but @ beats A (lines 2-4). The game starts at round 0
(line 5). Lines 7-11 describe the possible moves for the players in
different rounds: First, random deals one card to b and one card to
itself. Then b decides whether to trade his card for the one in the
deck or to keep the current one. The player with the better card wins
the game. Lines 13-20 define what will be true in the next state. For
example, if random does deal (?X, ?Y), then b will hold ?X in
the next state (line 15). Lines 22-24 specify what b can see in the
next state: if random does deal (?X, ?Y), then b will see that it
holds card ?X in the next state (line 22), and if random holds ?Xin
round 1, then b sees this in the next state (i.e., in round 2) (lines 23—
24). Line 26 specifies when the game is terminal, and lines 27-31
give the goal values of player b (where goal(b, 100) implies a win
for b). The corresponding game model is sketched in Figure 2. Due
to limited space, the noop actions are not shown in the joint actions;
e.g., for (noop, deal(A, K)) we only show deal(A, K). States that
player b cannot distinguish are connected by a dashed line.

2.2 ATEL with Finite Computations

Definition 3 (Language of ATEL, [16]). The language of ATEL (with
respect to a set of agents Ag and a set of atomic propositions ®), is
given by the following grammar:
pu=plop eV [ (XDOe | (XN0e | (X)elUy |
Kip| Cxe

where p € ® is an atomic proposition and X C Ag is a set of
agents. Other logic constants and connectives T, L, V,— are de-
fined as usual.
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Intuitively, (X)) O ¢ means a coalition of agents X can ensure that
o will hold in the next state; ((X))(Je means a coalition of agents
X can ensure that ¢ will always hold; (X)) U 1 means a coalition
of agents X can ensure that ¢ will hold until ¢ holds; K;¢ means
agent ¢ knows ; and C'x¢ means that ¢ is common knowledge
among the agents in X. For example, “agent ¢ knows that agent j
knows p” can be expressed as K; K;p.

We will interpret ATEL formulas on finite tree-like structures
(game trees) derived from GDL-II games (such as shown in Fig-
ure 2). A game is well-formed if it terminates after finite steps and
if all players have at least one legal move in non-terminal states [8].>
In addition, the setup of general game playing competitions is such
that all agents are aware of the time progressing (Synchronicity) and
remember what they have seen and done in the past (Perfect Re-
call) [15]. For this reason, we adapt the ATEL models from [16, 6]
by adding an explicit set of terminal states. These terminal states cor-
respond to those games states in which terminal holds.

Definition 4 (Model of ATEL). An Action-based Alternating Epis-
temic Transition System (AAETS) is a tuple

(Q,50,T, Ag,{Aci | i € Ag}, p, 7, {~iri € Ag}, ®,V)
where

e () is a finite, non-empty set of possible states;

® so € Q is the initial state;

o T C Q is a non-empty set of terminal states;

e Ag is a finite, non-empty set of n agents;

o Ac; is a finite, non-empty set of actions for each i € Ag;

e p: Aca, — 29 is an action precondition function, which for
each action a € Acag(=U,¢ 5, Aci) defines the set of states p(a)
from which a may be executed (for any action a it is assumed
that T N p(a) = 0, which means that no actions are possible in
terminal states);

e 7 : Aci X -+ X Acp, X Q — Q is a partial system tran-
sition function, which defines the state T(M,s) that would re-
sult from agents’ actions M (= ai,...,an) on state s, given
that s € p(M(i)) for all agent i € Ag (i.e., agent i’s action
M (i) = a; can be executed at state s);

o & js a finite, non-empty set of atomic propositions;

e cach ~;C Q X Q is an equivalence relation (called the accessi-
bility relation) for agent i,

o V : Q — 2% is a valuation function that assigns each state a set
of atomic propositions (said to be true in that state).

A computation of an AAETS is a finite sequence of states A =
5081...8% € QT such that for each 0 < u < k, there is a joint action
M’ such that s, = 7(M’, s,—1). A computation \ starting in state
s is referred to as an s-computation. If 0 < u < || (the size of A),
then we denote by A[u] the u-th state in A, by A[0, u] the finite prefix
$0...8w Of A, and by last()) the last state of .

In addition to finiteness, we stipulate the following three properties
for our AAETS in accordance with the general game playing setting
as discussed above.

Definition 5 (Tree, Synchronicity and Perfect Recall). 4n AAETS
A has tree property iff any state s is reached from initial state so via
a unique computation. We denote such a computation by A(so, s).

3 In general, termination is not guaranteed as GDL-II can describe games that
run forever, but all games considered in general game playing competitions
are required to be well-formed [5, 8]. Some games (such as TicTacToe)
terminate naturally, and in other games (such as Chess) a step counter can
be added to enforce termination after finitely many moves.

An AAETS A has synchronicity iff for all s,t € A and agents
i, § ~; t implies that the computations from the initial state so to s
(i.e., A(s0, 8)) and from sg to t (i.e., X(so,t)) have the same length,
i.e, |A(s0,s)| = |A(so0, )|

An AAETS A has perfect recall iff for all finite computations
XN € QY and agents i, \ ~; X implies that last()\) ~; last(\')
and A0, |\| — 2] ~; N[0, |N| — 2].

Given an agent ¢ € Ag and a state s € @, we denote the op-
tions available to ¢ in s—the actions that ¢ may perform in s—by
options(i,s) = {m | m € Ac;ands € p(m)}. We then de-
fine a perfect recall strategy for an agent i € Ag to be a function
0i : QT — Ac; that must satisfy

o the legality constraint that o;(\) € options(i, last(\)) for all fi-
nite computations A € Q*, and

e the uniformity constraint that for any two finite computations
)\1,)\2 S Q+, if A1 ~; Ao then Ui(Al) = O’i(Az).

A perfect recall strategy for a coalition X = {i1,...,ix} C Ag
is a tuple of strategies (o1, ...,0%), one for each agent i € X. We
denote 4’s component of ox by o’. The outcome of applying a
strategy for coalition X on a finite computation A is defined as
out(ox,\) = {s | 3IM such that M (i) = o’ (\) for i € X, and
s =71(M,last(\)}.

Given a perfect recall strategy ox for some coalition X, and a
state s € @, we define comp(ox, s) to be the set of all finite compu-
tations that may occur if every agent ¢ € X follows the correspond-
ing strategy o, starting when the system is in state s € () and ending
with a terminal state in T": comp(ox,s) = {\ | A\[0] = s,last(N) €
TandV0 < u < |A] = 1: Aju+ 1] € out(ox, A[0,u])}.

Note that herein lies the major difference between our models and
the models defined in other ATL/ATEL papers [1, 16, 6]. In our case,
all the computations in comp(cx, s) are finite in accordance with
well-formed GDL-II games, whereas they are infinite in other papers.
This results in the following modified semantics.

Definition 6 (Semantics of ATEL). For a finite AAETS A and a
state s, let X\(so, s) denote the finite computation starting from so
and ending with s. The truth of ATEL formulas is inductively defined
as follows:

AsEpiffip e V(s)
A s |E-piff A s = @
AsEeVYIiffAsEporAsE;

A, s = (X)Oyiff Jox, such that VA € comp(ox, s) we have
[A| > 1 and A, A\[1] = ¢;

A, s = (X)Oy iff Jox, such that VA € comp(ox,s) we have
A, Nu] = forall0 < u < |A|;

A, s = (X)eU iff Jox, such that VA € comp(ox,s) there
exists some u < |\| such that A, \[u] = ), and forall 0 < v < u
we have A, \[v] = ¢,

A, s = K iff Vs' such that X(so, s) ~i A(so, "), A, s’ |E ¢,
A, s = Cx iff Vs’ such that X(so,s) ~% A(so0,s), A, 8" E ¢
where ~ is the transitive and reflexive closure of Ujc x ~i.

(wherep € ®);

3 Mapping GDL-II into ATEL

GDL-II serves as a language to describe games, while ATEL is for
reasoning about such games. We build two links between GDL-II and
ATEL:

e On the semantic level, every GDL-II description G induces an
AAETS model Ac.
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e On the syntactic level, every GDL-II description G can be trans-
lated into an ATEL theory Gater (defined as Tsyn (G) below).

Thus, we are able to interpret ATEL formulas ¢ over G either
via ATEL semantics, i.e., define G | ¢ as Ag EateL ¢. Or, we
can use the syntactic characterisation, i.e., define G = ¢ as E=ateL
Tsyn(G) — . As our main result, we will prove that these two
characterisations are equivalent. The following diagram depicts the
main idea, and we are now going to present it in detail.

G ——————— Toym GaTEL

7/
/
/
s

has a derived has isomorphic
AAETS model AAETS models

\ L
Ve
/7
Ac

Since ATEL does not support first-order predicates, we follow
[13, 12] in applying a pre-processing step to GDL-II descriptions by
replacing all predicates with variables, such as isdeal (?X, ?Y),
by all relevant instances (also called ground atoms), such as
isdeal (A, K). This maps an arbitrary GDL-II description into an
equivalent variable-free specification. We then translate such ground
atoms to atomic propositions in ATEL.

Definition 7 (Translation ¢ and tpre). Let Atgpr.ir be the set of
ground atoms in GDL-II, and AtateL be the set of atomic propo-
sitions in ATEL. The translation t maps every GDL-II formulas to an
ATEL formula as follows.

Base case:

t(p) = p forallp € Atgprp

where p € AtaTEL.
Extended cases:

t(not p) =
t({p1,. - pe}) =

Note that a literal is either p or not p for all p € Atgpyr.;. Fur-
thermore, let tpre be defined by tpre(p) = t(p)pre for the base case
(and similar to t for the extended cases). An atom pypr. will represent
the value of atom p in the previous state (in ATEL). For convenience,
we abbreviate does (i, m)pre by done(i, m).

—t(p);
t(p1),. .., t(px)} for all literals p;.

We define how to induce an AAETS from a GDL-II description.

Definition 8 (Semantic interpretation of GDL-II in ATEL). Given
a GDL-II description G with semantics (R, s(,t,l,u,L,g), an
AAETS for G (denoted as Ac) is a tuple

where

Q is the set of states of G

so € Q is the initial game state 50,

T is the set of terminal states as t;

Ag is the set of roles R\ {random} (assume n agents);

Aci ={m | (i,m,s) € l,s € Q} is the set of moves of agent i,
T: Aci X -+ X Acn, X Q — Q is a partial function that maps
a set of action and a state to another state such that T(M,s) =
u(M, s);

o ~;C Q X Q is the accessibility relation for agent i € Ag given by
(s,s") € ~i (also written as s ~; s') iff role i cannot distinguish
any two developments § and &' such that § = (so ...s) and §' =
(so...8") (cf Definition 2);

o & C AtareL is a set of atomic propositions translated by t and
tpre from the atoms in Atgpr.i1;

o V : Q — 2% is an interpretation function which associates with
each state s the set of atoms that satisfies the following require-
ments: if p € s then t(p) € V(s), if s = w(M, s') then for any
agent i we have done(i, M (i)) € V(s), and for any p € s’ we
have tyre(p) € V(s); and pinit € V (so).

The interpretation function requires that if there is a transition
from s’ to s, then the moves that were made on s’ are recorded in
V (s) and the atoms true in s" are also recorded in s using the corre-
sponding atoms labelled with pre. The accessibility relation of states
is given according to the developments that end with such states. This
ensures that Ag always has synchronicity and perfect recall.

Next, we give the full syntactic translation of GDL-II descriptions
into ATEL formulas.

Definition 9 (Syntactic Translation Tsy»). Given a game description
G, we define its ATEL theory GateL = Tsyn(G) as a conjunction:

Fini A I—‘nor'm, A Fleg A Fact A Fmem A Fnezt A Fsees~
These conjuncts are described in detail as follows.

e [';,;. The initial state is captured by a conjunction of: all the fluent
atoms that are initially true plus the extra atomic proposition p;n¢
(which is only true in sp). Formally,

Pint = Asmssiorec true(£) A (ponis A (YO ()Dpine).

e [',0rm. For normal rules (i.e., rules without any of the keywords
role, init, next or sees in the head), we group those by heads:
ri: op < bdy
Tk P <= bdk
Such rules decide whether p is true in the current state. Let R, =
{r1,...,7&}, H be the heads of all such rules, and AH be the set
of atoms that do not appear in the heads of any rules and are not
“does” atoms, then:

Lnorm = (VO(Apers (CP(Rp) ALF(Rp)) A Npe arr —t(P))

where CP(Ry) = t(p) <> (Vc(1. (A t(bd;))), and LF(Rp) is
a loop formula (see below). Notice that bd; (a set of literals) is the
body of rule 7. Specially, if bd; is empty, then A ¢t(bd;) is T, and
if p does not appear in the head of any rules and is not a “does”
atom, then it must be false, which is captured by —¢(p).

Formula CP(R;) applies Clark’s completion [2] to a given set
of GDL-II rules Rp. An example from the card trading game is:
CP(Ruin) = win <> goal(b,100). But in general the semantics
of the completion of a (stratified) logic program is too weak to
fully characterise the standard model in the presence of redundant
rules like p <= p. The standard model remains the same when such
“superfluous” clauses are added, but Clark’s completion is weak-
ened by them [7]. This issue is solved by a propositional formula
denoted as LF(Rp) (which is also called a loop formula); we refer
to [7] for a detailed algorithm to compute such a formula.
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e I';.y. In all non-terminal states, each agent must make one legal
move. This means that if legal(i,m) is true in the current state,
then agent ¢ can enforce done(i, m) to be true in a next state and
on the other hand if done(i, m) is true in the current state, then
legal(i,m), must be true in the previous state, i.e., legal (i, m)pre
is true in the current state. This is captured by the following:

Tieg = {(HO(—terminal —
Nic agmeac, (legal(i,m) < (i) O done(i, m))A
i€ Ag,me ac,; (done(i,m) — legal(i,m)pre)).

e ... For all non-initial states, each agent should have done ex-
actly one action in the previous state, and agents always know
what they did:

Lact = {(DO(=pinit = Njc 4y XORme ac, done(i, m))A
B(Aicagmeac, (done(i,m) +» Kidone(i,m))).
where XOR is the exclusive OR operator.

e T'pem. For non-terminal states, we use the atom ¢, (p) to record
the truth-value of ¢(p) for it to be used in the next states. Let At
be Atgpr..n1 but without “does” atoms, then:

Tmem = {()TO(—terminal —
Npear(t(@) < ()Otpre(p)) A (7t(p) > (DO ~tpre(p)))-

e I';czt. Suppose these are all the rules with head next(f):
r1: next(f) < bdy
rr: next(f) < bdg
There are two alternatives for translating these rules into ATEL
formulas. From the perspective of a current state, the truth of £ in
the next state is determined by the truth of the propositions in the
bodies of rules r1, ..., 7, in the current state and the actions that
are chosen by the agents for the transition. From the perspective
of a next state, the truth of f in this state is determined by the
previous truth of the propositions in the bodies of rules r1, ..., %
and the actions that have just been done. We adopt the second
perspective. Let H N be the heads of all such rules, and define
Crext = (NO(—pinit —
Naexe(eyern (true(f) < (Ve i (A tore(bd)))))).

® ['sces. The rules with “sees” are similar to those with “next”,
but instead of defining what will be true they specify what will be
seen by the agents next. Suppose these are all the rules with head
sees(i,x):

r1: sees(i,x) < bdy
ri: sees(i,x) < bdx.

Again we adopt the perspective of a next state. Let HS be the
heads of all “sees” rules, and define
Tsees = <<>>D(ﬁpm1t —

/\sees(i,x)EHS((Kisees(i’x) AN (VJe 1. k](/\tme(bd INIA
(Kimsees(i,z) <> (Ve (Atpre(bd;))))))-

Note that the size of the ATEL theory is polynomial in the size
of a variable-free GDL-II description. Our translation is correct in
the sense that the resulting ATEL formula is satisfiable in the ATEL
model derived from the same game description.

Proposition 1 (Correctness). For a GDL-II game description G,
Ac | GateL.

To show that Ty, is an adequate syntactic characterisation of
GDL-II descriptions, we define an equivalence relation on AAETSs.

Definition 10 (AAETS  Isomorphism). Let A =
(Q,s0,T,Ag,{Ac; | i € Ag},p,7,{~i| i € Ag},®,V) and

= <Q/7 367 T/> Aga {AC; | &S Ag}7 p/77—l7 {N;‘ (S Ag}7 o, V/>
be two AAETSs, then they are isomorphic (denoted as A = A') iff
there is a function f such that:

o f maps every state in Q to a state in Q' and it is a bijection; in
particular f(so) = sq, and for all s € T, f(s) € T';

o f maps every acton in Ac; to an action in Ac; and it is a bijection;

o for every state s and action m, s € p(m) iff f(s) € p'(f(m));

o for every state s, s’ and joint action M, s = 7(M, s iff f(s) =
T/ (f(M),f(s"));

o for every state s and agent i, s ~; s’ iff f(s) ~} f(s');

e for every proposition p and state s € Q, p € V(s) iff p €
V'(£(s)).

The existence of an isomorphism between two AAETSs implies
that they satisfy the same formulas.

Proposition 2. Given two AAETSs A and A’ along with an arbi-
trary ATEL formula o,

A= A implies (A= ¢ iff A = ).

Proposition 3. Let G be a game description and p an ATEL formula,
then the following holds

= Gater — ¢ iff Ac = .

Proof. (Sketch) The direction from left to right follows from Propo-
sition 1. The direction from right to left is proved by showing that
for any AAETS A with synchronicity and perfect recall such that
A E Gate, there is an isomorphism between A and Ac; the result
then follows from Proposition 2. See [11] for details. |

This is a main result in this paper. It shows that G'ateL completely
characterises GG in ATEL in the sense that it entails any formula that
is satisfied in the AAETS derived from G directly, and vice versa.

4 Model Checking Strategic and Epistemic
Properties

Our main result in this paper allows us to consider the following
model checking problem: given a game represented by GDL-II, and a
property represented by an ATEL formula, decide whether the prop-
erty is true for the game description. If the agents have incomplete in-
formation and perfect recall, the model checking problem for ATEL
in traditional semantics is undecidable (see [3]). Hence, had we used
the standard semantics, the above problem would also be undecid-
able since we can reduce the problem by deriving an ATEL model
from a GDL-II description and then perform the ATEL model check-
ing. However, with our new ATEL semantics—over AAETS models
with finite computations—the model checking problem becomes de-
cidable as we can give an algorithm for it.

We only sketch the algorithm below for the case of (X)) O ¢ due
to space limitations. This algorithm terminates because only a finite
number of strategies and computations needs to be checked.

mcheck (A, s, <<X>> O Phi) {
found := True
foreach 51gma(X) do {

foreach c in comp(sigma(X), A, s) do {

|c|=1 or mcheck(A,c[1],Phi) == False
then ound := False;
if found == True then return True; }

return False; }
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How complex is the problem? We know for sure that the problem
is at least 2EXPTIME-hard due to [9], which shows that the outcome
problem of the Private-PEEK game is complete in double exponen-
tial time (2EXPTIME-complete). The Private-PEEK game can be
rather straightforwardly specified in GDL-II and the outcome prob-
lem can be equivalently expressed as deciding whether (1)) Qwin,
is true in the initial state of the game. Finding an upper bound for the
complexity, however, is left for future work.

In [12], ATL is used to characterise some interesting playability
properties for the original GDL games. With ATEL being the lan-
guage to express properties for GDL-II games, we can now not only
express the above properties but also a new class of properties that
are not expressible in ATL. We discuss two kinds of such properties.

Coherence Knowledge Properties. There are some properties
that involve pure knowledge, i.e., where no temporal modalities oc-
cur in . For such ¢, we call {()) Co a coherence knowledge property.
We know that A, so = (()) ¢ iff ¢ is true in all reachable states from
S0.

In GDL-II, agents may not always know their legal moves. In order
to check this, we can express the property that “if a move is legal for
an agent then the agent knows it” as a formula:

o /\ieAg,meACi (legal(i,m) — K;legal(i,m)).

The following is not necessarily true for a GDL-II game: if the
game has terminated, then this is common knowledge,

)O(terminal — Cagterminal).

If we want to ensure that a GDL-II description G has this prop-
erty, then we can either verify Ag,so | ({()O(terminal —
Cagterminal), or prove

E Gater — {()O(terminal — Cagterminal).

Properties with knowledge and strategic power. This class of
properties mixes knowledge and coalition modalities, allowing us to
talk about the agent’s knowledge and power simultaneously.

The following property says that if ¢ has a winning strategy, then
he knows it:

(i) Qwing — K (i) Qwini.

Suppose that in the current state A, s |= K {(i)) Qwin,. This does
not give a winning strategy for agent ¢ explicitly. But agent i can
check the following on any state that he cannot distinguish from s
(e, s ~; s'):

A, s' = ()0 (done(i, m) A (i) Dwins).

If the above holds, then agent ¢ can safely choose does(i, m), and
it still guarantees him a winning position in the next state.

We conclude with the following strategic property, which says that
if ¢ knows ¢, then he can ensure that agent j knows 1) next:

Kip — (i) O K;v.

5 Related Work and Conclusion

There are just a few papers on reasoning about games in GDL and
its extension GDL-II. In [12], a method based on ATL is given to
verify properties of general games, but this is restricted to original
GDL and hence to games where players can maintain complete state
information. Our paper extends this approach to GDL-II and uses a

version of ATEL for this purpose. Our characterisation formula is
inspired by the one given in [12], but we make these improvements:
(1) we can deal with imperfect-information games; (2) we show that
the models that satisfy this formula are isomorphic to Ag, rather
than a weaker relation as alternating bisimulation given in [12]; (3)
we do not require an extra “sink” state as there is no need to make
computations infinite with our new semantics.

In [14], it is shown how GDL-II can be formally translated into the
Situation Calculus as a first-order axiomatisation that allows players
to reason about their percepts and what they know about the legality
and effects of moves based on the game description. In [10], the epis-
temic structure and expressiveness of GDL-II is analysed in terms of
epistemic modal logic. It was shown that the operational semantics
of GDL-II entails that the situation at any stage of a game can be
characterised by a multi-agent epistemic (i.e., S5-) model and GDL-
II is sufficiently expressive to model any situation that can be de-
scribed by a (finite) multi-agent epistemic model. Our work extends
the static epistemic model into a dynamic AAETS, and therefore a
lager class of strategic and epistemic properties can be addressed by
our approach.
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