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Abstract.

The paper studies distributed cooperative multi-agent explo-
ration methods in settings where the overall benefit of an op-
portunity is the minimum of individual findings and the explo-
ration is costly. The primary motivation for the model is the
multi-channel cooperative sensing problem which draws from
the inter-vehicular cognitive offload paradigm. Here, vehicles
try to coordinate an offload channel through a dedicated com-
mon control channel, and the resulting quality of the channel
eventually selected is constrained by the individual qualities.
Similar settings may arise in other multi-agent settings where
the exploration needs to be coordinated. The goal in such prob-
lems concerns the optimization of the process as a whole, con-
sidering the tradeoff between the quality of the solution ob-
tained for the shared goal and the cost associated with the ex-
ploration and coordination process. The methods considered
in this paper make use of parallel and sequential exploration.
The first approach is more latency-efficient, and the latter is
shown to be more cost-effective. The strategy structure in both
schemes is threshold-based, and the thresholds which are ana-
lytically derived in this paper can be calculated offline, result-
ing in a very low online computational load. A comparative
illustration of the methods’ performance is given using a syn-
thetic environment, emphasizing the cost-latency tradeoff.

1 Introduction
In many multi-agent settings agents need to individually engage in
exploration of the opportunities available to them in the environment
in which they are operating in order to pick one that will satisfy a
desired goal [2]. The purpose of the exploration is to reason about
the nature and value of the different opportunities whenever such in-
formation is a priori unknown. Since such exploration is inherently
costly (either involves direct monetary costs or the consumption of
some of the agent’s resources) the goal of the agent is not necessar-
ily to find the opportunity associated with the maximum value, but
rather to maximize the overall benefit, defined as the value of the op-
portunity eventually picked minus the costs accumulated during the
exploration process [8].

This kind of exploration process becomes more complex when-
ever conducted cooperatively by several agents. For example: when
the agents are robots that need to evaluate several potential locations
for mining a certain mineral on the face of Mars (if all robots need
to cooperate in the mining process then the goal is to find the loca-
tion to which the latest time it takes any of them to arrive is mini-
mized) [10]; a group of buyers that need to evaluate several potential
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sellers for buying different products [20]; when individuals need to
decide on a restaurant to dine in as a group (where the group’s bene-
fit is the minimum of the individual valuations); and secondary users
in Dynamic Spectrum Access applications that need to evaluate dif-
ferent frequencies in order to establish a common communication
link [17]. In such cases, the agents not only need to consider other
agents’ performance, but also the overhead associated with the coor-
dination between them along the process.

In this paper, we formally introduce a model of a multi-agent ex-
ploration in which: (a) each agent sees a different individual value in
each available opportunity; (b) the value of the opportunity picked
eventually (in terms of goal satisfaction or overall quality) is a func-
tion of the individual values the different agents see in that oppor-
tunity; and (c) the performance measure also takes into consider-
ation the costs accumulated by the different agents along the pro-
cess. There are many settings characterized by such a cooperative
exploration model. For example, consider the vehicular ad hoc net-
works (VANETs) domain where cooperative sensing of Secondary
Users (SUs) takes place. Here SUs (vehicles) interested in sharing
high-capacity non-safety related data need to find appropriate shared
spectrum bands (channels) using Cognitive Radio (CR) technology
[4, 22]. The quality (the equivalent to opportunity value in this case)
of the band eventually used is the minimum quality experienced by
the different SUs, and in order for a SU to measure its perceived
quality of a given band it needs to execute a costly sensing. The co-
ordination between the different SUs is done through a dedicated
short-range communication channel (DSRC), which is a rather lim-
ited resource [4]. Alternatively, consider several agents, each repre-
senting a participant in a planned trip. All participants need to get to
the same starting point from which they will all share transportation
to the destination, and participants differ in the time it takes them
to get to different potential starting points. The agents need to co-
operatively explore the benefit from starting at the different starting
points, sharing their arrival time valuations to the different starting
points. The value of the starting point eventually picked is the max-
imum time it takes any of the participants to get to it, as the shared
transport device will be able to leave only when all participants ar-
rive.

To the best of our knowledge, this is the first attempt to analyze
the above model in full. As discussed in the related work section,
former cooperative exploration literature usually does not consider
the overall quality to be a function of the individual qualities of the
different agents or does not adequately take into consideration the
coordination costs. The analysis presented in this paper considers
two main cooperative distributed exploration schemes. In the first,
the exploration process is executed in parallel, which is favorable
when latency is of importance. The second is based on sequential
exploration, which takes longer to execute, however is more efficient
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in terms of the overall expected cost [15]. The paper provides the
expected-benefit maximizing exploration strategy for each of the two
schemes. Furthermore, since both mechanisms are threshold-based,
the coordination cost can be substantially reduced simply by the use
of an intelligent protocol that is tightly coupled with the exploration
strategy.

2 Related Work

While multi-agent cooperation and coordination mechanisms have
been widely studied in AI over the years, most of such work was
dedicated to the way such cooperation is formed and consequently
concerned issues such as the optimal division of agents into disjoint
exhaustive teams [11, 19, 23], division of the payoffs resulting from
cooperation [23] and enforcement methods for interaction protocols
[13]. Very few works considered the cooperative execution of a task
once the cooperation is formed [9].

The problem of a single agent engaged in costly exploration of the
type discussed in this paper has been extensively researched in litera-
ture [8,12]. While the analysis given in the literature adequately ana-
lyzed the tradeoff between the potential gains and the resulting costs
from extending the exploration process, the transition to a multi-
agent exploration is not trivial as these do not take into consideration
coordination aspects (and indeed the nature of the solution is differ-
ent than the one presented in this paper). Those few works that do
go beyond a single agent’s costly exploration considerations merely
consider settings where the agents do not necessarily need to commit
to the same opportunity [5, 7, 17, 20] or where the value of each op-
portunity to all agents is common thus, it is sufficient that only one
of the agents explore any specific opportunity [10]. These inherent
differences typically enable solving the exploration problem through
its mapping to a single agent’s exploration problem and the coordi-
nation between the different agents significantly degenerates. To the
best of our knowledge, the problem of a group of agents that needs to
cooperatively evaluate opportunities and choose one while the ben-
efit of each depends on its values as seen by others, while facing
coordination costs, has not been investigated to date.

Finally, we note that the concept of cooperative exploration is a
common motive in Dynamic Spectrum Access and Cognitive Radio
applications [16,18,21], due to their inherent need for spectrum shar-
ing. Nevertheless, the rich literature of this domain usually focuses
on spectrum optimization (considering a global view of all channels,
aiming to improve channels utilization) [1, 3, 6] rather than consid-
ering the individual agents’ problem of executing an ad-hoc explo-
ration for a single channel. As such, cooperative exploration is ap-
plied to usages such as improving the estimations regarding channels
qualities (e.g., have several terminals sense a given channel in order
to better estimate its availability [16]), sharing the load of collecting
observations [21] and efficiently collecting information that can then
be transferred to a fusion center, which performs a joint optimization
of the different sensing measurements for all channels [18].

3 The Model

We consider a setting where k individual cooperative agents need to
engage in exploration of possible available opportunities, all satisfy-
ing a well-defined shared goal. Each agent may see a different value
in each opportunity and the values are a priori unknown. The values
are assumed to be drawn from a probability distribution function, de-
noted f(y), with which all agents are acquainted. In order to obtain
its actual value from a specific opportunity the agent needs to ex-
plore it, incurring a non-negligible cost (e.g., monetary or in terms of
resources it needs to consume), denoted ce. The cost ce is common
to all agents as they are all assumed to share the same exploration

technology. The agents need to, eventually, cooperatively choose a
single opportunity that will be used to satisfy their shared goal. The
model assumes that the agents can explore as many opportunities as
they require and that the overall value from the specific opportunity
eventually picked is a function of its individual values as perceived
by the different agents. Specifically, the analysis given in the fol-
lowing section considers this function to be the minimum of the k
values. The agents can coordinate their exploration through reliable
message broadcasting (i.e., transmitting the value they see in a given
opportunity through a message that is received by all other agents).
The cost of broadcasting a message is denoted cb and is common to
all agents for the same technological considerations. The model as-
sumes that both ce and cb are additive and can be expressed in terms
of opportunity values. The goal of the agents is therefore to maxi-
mize the expected overall benefit, denoted EB, defined as the value
of the selected opportunity minus the accumulated costs along the
process. One important factor that needs to be considered when eval-
uating different cooperative exploration methods within this frame-
work is the process latency. The model assumes that the time it takes
to broadcast a message is negligible in comparison to the time it takes
to explore an opportunity.

For exposition purposes, we use the Dynamic Spectrum Access
application terminology in the remaining parts of the paper. Here, the
agents represent secondary users that seek opportunistic channels to
offload their communications and coordinate their exploration using
a shared common control channel. Each secondary user measures a
different quality of each channel (e.g., a channel’s quality may rep-
resent its current availability probability). A channel’s quality can be
obtained through a sensing process, incurring a cost (e.g., handset’s
downtime as well as the resources (e.g., battery power) consumed as
part of the operation). The secondary users need to eventually choose
a single common channel which they will all use to establish their
communication link. The overall quality of a channel is taken to be
the minimum of the individual qualities sensed by all secondary users
for that channel (e.g., in a conference call the quality of the call is
constrained by the minimum quality of any of the participants’ con-
nections). The secondary users can coordinate via message broadcast
through a common control channel (DSRC), which in turn also con-
sumes some of their resources and hence is considered costly. The
goal of the secondary users is to maximize the expected overall ben-
efit, defined as the overall quality of the selected channel minus the
accumulated costs along the process.

4 Analysis

The analysis considers two main cooperative distributed exploration
schemes: parallel and sequential based. In both methods the channels
are evaluated sequentially (in a random pre-defined order, as they
are all a priori alike). The difference is in the way each channel is
evaluated.

4.1 Parallel Exploration

The most straightforward coordinated exploration scheme is to have
all agents simultaneously sense the same channel and broadcast their
derived quality over the control channel. Then, based on the min-
imum sensed quality as reflected in the broadcasts, the agents de-
cide whether to terminate the process and use that channel or to
proceed and sense another channel. This exploration scheme can be
fully mapped to the problem of a single agent’s exploration, where
the cost of evaluating each channel is k(ce + cb) and the value ob-
tained from it is the minimum of k values of the distribution f(y).
The solution to this latter problem is known to be a stationary my-
opic threshold-based rule [14]. According to this decision rule, the
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agents will terminate their exploration only when the minimum of
the k quality sensings of a given channel is above a threshold r. The
expected benefit from using this strategy, denoted V (r) is:

V (r) =

∫∞
y=r

yfmin(y)− k(ce + cb)

1− ∫ r

y=−∞ fmin(y)
(1)

where fmin(y) is the probability distribution function of the mini-
mum of the qualities individually sensed by all agents and is given
by fmin(y) = kf(y)(1 − F (y))k−1 (where F (y) is the appro-
priate cumulative density function). The expected number of chan-
nels evaluated is simply the inverse of the success probability,

1
1−∫ r

y=−∞ fmin(y)
, since this becomes a Bernoulli sampling process

as channels arise independently at each iteration. Therefore, intu-
itively, we can interpret Equation 1 as the composition of the ex-
pected value of the minimum obtained eventually (greater than r),∫∞

y=r yfmin(y)

1−∫ r
y=−∞ fmin(y)

, and the accumulated cost throughout the explo-

ration kce
1−∫ r

y=−∞ fmin(y)
+ kcb)

1−∫ r
y=−∞ fmin(y)

(where the first is the

expected exploration cost and the second is the coordination cost).
The threshold r that maximizes the expected benefit from the pro-

cess satisfies [15]:
k(ce + cb) =

∫ ∞

y=r

(y − r)fmin(y)dy (2)

Intuitively, the value of r according to Equation 2 can be inter-
preted as the one with which the agents are precisely indifferent: the
expected marginal benefit from continuing the exploration process
and exploring an additional channel exactly equals the cost of doing
so.

Single agent exploration literature which problem maps does not
distinguish between the different cost components, ce and cb. In the
multi-agent case, however, there is great importance to that fact since,
by designing a better coordination, a far more efficient overall explo-
ration process can be obtained. First, we note that since the strat-
egy is threshold-based, the purpose of the coordination is merely
to identify if all agents sensed a value greater than the threshold r.
The agents can thus also settle for only broadcasting a binary signal
(rather than the actual value sensed), indicating whether or not the
quality found is above or below r. Furthermore, since the communi-
cation is reliable, many of the broadcasts can be saved if all agents
follow a convention according to which a broadcast is made only if
the sensed quality is below r. This way, the exploration will be re-
sumed as long as at least one agent broadcasts and terminated if no
broadcast received for a given channel. The process is illustrated in
Figure 1(a). The expected benefit according to the improved strategy,
denoted “parallel+” onwards, is:

V (r) =

∫∞
y=r

yfmin(y)dy − k(ce + cbF (r))

1− ∫ r

y=−∞ fmin(y)dy
(3)

The only change from (1) to (3) is the multiplication of cb by the
probability that any of the agents sense a quality lesser than r, F (r).

Theorem 1. For the “parallel+” exploration model:
(a) The expected-benefit maximizing threshold r is given by:

kce + cb(1 + (k − 1)F (r)) =

∫ ∞

y=r

(y − r)fmin(y)dy (4)

(b) The expected benefit when using the expected-benefit maximizing
threshold r satisfies: V (r) = r + cb

(1−F (r))k−1

Proof. Equating the first derivative of (3) to zero and applying some
mathematical manipulation obtains (a).
Substituting V (r)

(
1−∫ r

y=−∞ fmin(y)dy
)
=

∫∞
y=r

yfmin(y)dy−
k(ce + cbF (r)) (based on (3)) in (4) obtains (b).

The relation V (r) = r + cb
(1−F (r))k−1 is in contrast to the regular

parallel model (as well as to the various other single-agent threshold-
based exploration models found in literature [14]), where V (r) = r.
While the change may seem minor, the two equations actually de-
rive from different sets of considerations: In the new model the value
of r no longer captures the indifference between resuming the ex-
ploration, obtaining V (r) and terminating the exploration, obtain-
ing r. Instead, the value of the revenue-maximizing r is derived
from the threshold by which any single agent becomes indifferent
to broadcasting if sensing a quality r. If broadcasting, the agent in-
curs a broadcast cost cb. The marginal expected benefit V (r) − r in
this case is obtained, however, only if none of the other agents have
sensed a quality below r (since otherwise the exploration process is
resumed anyhow, and the broadcast of the agent is redundant). The
probability of the latter event is (1−F (r))k−1, thus the indifference
equation is (1 − F (r))k−1(V (r) − r) = cb, which transforms into
V (r) = r + cb

(1−F (r))k−1 .
The expected number of channels evaluated when using “par-

allel+” uses the same formula as in the regular parallel model,
1

1−∫ r
y=−∞ fmin(y)

(except that the value r used is different). The ex-

pected latency in both cases equals the expected number of channels
evaluated.

Finally, we note that an alternative to broadcasting only when
the sensed quality is below r is to broadcast only if it is above r.
In this case, however, the expected-benefit maximizing threshold is
given by kce + cb(k − 1)(1 − F (r)) =

∫∞
y=r

(y − r)fmin(y)dy,
and the expected benefit of using that threshold satisfies V (r) =
r− cb

(1−F (r))k−1 (as the indifference now is between potentially sav-
ing cb, which may resume the exploration in case all other agents
broadcast, and giving up a value r that might have been more bene-
ficial than V (r)). The decision of which convention to use should be
made based on solving for both cases and choosing the one yielding
the maximum V (r). One inherent advantage of broadcasting if below
r is that it enables all agents to transmit in parallel, so that even if a
collision occurs, a valid decision may be made since it is sufficient to
know that at least one agent broadcasts (hence the exploration should
be resumed).

4.2 Sequential Exploration

If the system is latency tolerant, a far more efficient (cost-wise) strat-
egy can be derived, taking advantage of sequential exploration. In
this case, instead of having all agents sense and broadcast the quality
of a channel simultaneously, each agent dynamically decides, in its
turn, whether to sense and broadcast-based on broadcasts received
from other agents related to this channel. The idea is that if one of
the agents experiences poor quality, then it is unnecessary to have
all agents spend resources sensing that channel. Specifically, we de-
fine our strategy as a set of thresholds S = {r1, r2, .., rk}. Agents
sense and broadcast their quality for a specific channel sequentially,
according to a predefined list. Since the qualities sensed by the differ-
ent agents derive from the same distribution, there is no importance
to the order according to which a channel is sensed by the differ-
ent agents and any arbitrary pre-defined order is appropriate as long
as all agents obey it. The sensing of a channel continues as long as
the the minimum between the quality values reported by the i agents
that have already sensed the channel is greater than a threshold ri
(1 ≤ i < k). Otherwise, if the minimum obtained after the i − th
(1 ≤ i < k) sensing is below ri, the agents will switch to the next
channel. If all k agents have sensed the channel, then a threshold rk
will be used to determine whether to: (a) terminate the exploration
(i.e., choosing to use the current channel for the session), if the min-
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Figure 1. (a) “parallel+” - all agents perform sensing in parallel, and only those with quality below r broadcast. The process terminates when none of the
agents broadcast. (b) “sequential” - each agent in its turn senses and broadcasts. The transition to the next channel is performed if a broadcast reveals a value
lesser than ri and the exploration terminates if none of the agents broadcast a value lesser than rk . (c) “sequential+” - each agent i senses in its turn, however

only broadcasts if below ri. The transition to the next channel is performed if the i− th agent broadcast and exploration terminates if no agent broadcasts in its
turn.

imum found so far is above rk; or otherwise (b) resume the explo-
ration, switching to the next channel and using the same procedure.
This process is illustrated in Figure 1(b).

We use V (S) to denote the expected benefit of using strategy
S = {r1, r2, .., rk}. The thresholds in the expected-benefit maxi-
mizing strategy satisfy: r1 > r2 > .. > rk−1 > rk = V (S).
Intuitively, this is explained by the fact that as the sensing process
for a specific channel approaches the end of the chain, the proba-
bility for a further decrease in the minimum found so far becomes
smaller, hence ri decreases as i increases. Formally, this is proven
by showing that any sequence S′ = {r′1, r′2, .., r′k} where r′i < r′i+1

is dominated by a modification of that sequence in which r′i = r′i+1.
The equality rk = V (S) is the essence of the threshold concept —
if the minimum quality of the channel, based on all k sensing opera-
tions, is lower than the expected benefit of resuming exploration over
the next channel (V (S)), then the exploration process should be re-
sumed. Otherwise, the exploration process should be terminated and
the current channel should be selected. The formal proof of this lat-
ter equality is omitted since it is a specific case of the proof given for
Theorem 2 below.

Here again, the process can be further improved either by broad-
casting above or below the threshold used (either using a binary sig-
nal or actually broadcasting the value sensed), and having the agents
follow a convention according to which a broadcast is made by the
ith agent only if its sensed quality is below a threshold ri. The ex-
ploration of the same channel will be resumed as long as none of
the agents have broadcast during their sensing turn. Once an agent
broadcasts, the agents will switch to the next channel. The process is
illustrated in Figure 1(c).

The expected benefit of using the improved sequential exploration
strategy S (denoted “sequential+” onwards), V (S), can be calculated
recursively. We represent the state of the system by the pair (w, l),
where l is the number of agents that have already sensed the specific
channel and broadcast their observed quality, and w is the lowest
quality sensed so far for that channel. We use EB(w, l) to denote
the expected benefit, onwards, from being in state (w, l) and using
strategy S. The value of EB(w, l) is in fact the expected minimum
quality of the channel in which the exploration will terminate, minus
the expected sum of costs accumulated along the process. Formally,
the value of EB(w, l) is given by:

EB(w, l) = −ce + F (rl)(V (S)− cb) (5)

+

∫ w

y=rl

EB(y, l + 1)f(y)dy+(1−F (w))EB(w, l + 1)

where EB(w, k + 1) = w. Therefore, V (S) = EB(∞, 1).

Theorem 2. The expected-benefit maximizing “sequential+” explo-
ration strategy is a set S = {r1, r2, .., rk}, which is the solution to
the set of k equations:

V (S)− cb = EB(rl, l + 1), for l = 1, .., k. (6)

Proof. Equating the first derivative of (5) to zero and applying some
mathematical manipulation (in particular notice that dV (S)/drl = 0
for the expected-benefit maximizing rl) obtains (6).

Intuitively, (6) can be explained as follows. Each threshold rl is in
fact the quality value for which the system is indifferent between
switching to exploring the next channel (which requires a broad-
cast and thus incurs a cost cb), yielding expected benefit V (S),
and sticking with the current channel, yielding an expected benefit
EB(rl, l + 1) (or obtaining the value rk if l = k).

Furthermore, substituting EB(rl, l+1) according to (5) in (6) ob-
tains:

ce =

∫ rl−1

y=rl

(EB(min(y, rl−1), l + 1)−(V (S)− cb))f(y)dy (7)

The value of the expected-benefit maximizing rl can thus be inter-
preted as the quality value for which the cost of an additional explo-
ration of the current channel equals the marginal benefit from execut-
ing such an exploration (rather than switching to the next channel).

The computational complexity of solving the set of k equations
according to Theorem 2 highly depends on the distribution func-
tion f(y). For some distribution functions (e.g., uniform or multi-
rectangular) the integrals can be directly calculated, resulting in a set
of linear equations that can be solved with a complexity of o(k3)
(e.g., using Gaussian Elimination). For other distribution functions,
numerical methods should be used.

The expected number of channels that will be explored when us-
ing the sequential exploration is ηchannels = 1∏k

i=1(1−F (ri))
. This

is equivalent to a Bernoulli sampling process with a success proba-
bility of having all values sensed be greater than the threshold used.
The expected number of sensings for each channel that is not even-

tually selected is given by: ηsensings =
∑k

i=1 iP (i)

1−∏k
i=1(1−F (ri))

, where

P (i) = F (ri)
∏i−1

l=1(1 − F (rl)) denotes the probability that the
agents switch to the next channel after the i−th sensing. The overall
expected latency is thus (ηchannels−1)ηsensings+k (as k sensings
need to be made for the last channel explored).

Before concluding this section we note that the regular sequential
exploration discussed at the beginning of this section (i.e., when the
agents always broadcast their findings) is a specific case solved by
replacing (5) with: EB(w, l)=−ce−cb+F (rl)V (S)+

∫ w

y=rl
EB(y, l+
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Figure 2. (a) Expected benefit of 3-agents’ exploration as a function of the
ratio cb/ce (keeping ce = 0.05). (b) Expected benefit of k agents
exploration as a function of k (using cb = 0.005 and ce = 0.02).

1)f(y)dy+(1−F (w))EB(w, l + 1) and Theorem 2 holds in this
case with the following modification of (6): V (S) = EB(rl, l+ 1).

Finally, we note that as an alternative to broadcasting only when
the sensed quality is below rl we can broadcast only if it is above
rl. In this case, the term F (rl)(V (S) − cb) in (5) changes to
F (rl)V (S) − (1 − F (rl))cb and (6) in Theorem 2 changes to
V (S) = EB(rl, l + 1) − cb. The method can thus be improved
by individually setting a different convention for each agent’s broad-
cast, indicating whether a broadcast or its absence indicate a value
above or below a threshold (i.e., the agents with thresholds for which
F (rl) < 0.5 will broadcast only if receiving a value below rl and
vice versa). Seemingly, the solution in this case will require solving
for all possible combinations of individual conventions and choosing
the one associated with the maximum expected benefit. Neverthe-
less, since the thresholds necessarily decrease along the sequence,
the transition in conventions can happen only once (and only from
broadcasting if above threshold to broadcasting if below threshold).
Therefore the number of combinations that needs to be solved for is
linear in the number of agents.

5 Numerical Illustration

In order to illustrate the performance achieved with the different
methods, we use a tractable synthetic setting that simplifies calcu-
lations, yet demonstrates the effectiveness and the cost latency trade-
offs encapsulated in the parallel and sequential exploration strategies.
The setting uses a uniform distribution function defined over the in-
terval (0, 1).

We first demonstrate the effect of an increase in the number of
agents that need to coordinate their exploration and the increase in
the ratio between cb and ce over the expected benefit (see Figure
2). As expected, the “sequential+” method dominates all other meth-
ods, as far as expected benefit is concerned, and both the increase in
exploration costs and in the number of agents that need to be coordi-
nated result in a decrease in the expected benefit (in all methods). As
the broadcast becomes the dominant among the two cost factors, the
improvement achieved by selectively performing broadcast becomes
more significant. The correlation between the expected benefit and
the number of agents is explained by the fact that as the number of
agents increases, more exploration needs to take place and the ex-
pected minimum of the observed quality of each channel decreases.

Figure 2(a) illustrates the overhead incurred by the costly coordi-
nation. The case of cb = 0 is in fact the equivalence of free coor-
dination, hence in this case there is no benefit in saving broadcasts
(reflected by the similar result in both sequential-based methods and
both parallel-based methods). As the value of cb increases, the de-
crease in expected benefit fully measures the “cost of coordination”
in each of the models.

Figure 3 illustrates the effect of changes in the number of agents

Figure 3. The expected number of channels explored (left) and the
expected exploration latency (right) as a function of the number of agents k.

The costs used are: ce = cb = 0.002.

exploring cooperatively over the expected number of channels the
agents may request to explore and the expected resulting latency
when using the different exploration methods. As expected, in the
parallel exploration models both the number of channels evaluated
and the latency decrease as the number of agents that need to coordi-
nate their exploration increases. The reason for the decrease in both
cases is the resulting decrease in the thresholds used by the agents, as
reflected in (2) and (4) (indirectly due to the decrease in the expected
minimum value attributed to a channel, fmin(y), that results from the
increase in the number of agents). A different behavior is observed
in the sequential-based models. Here, when the number of agents in-
creases, both the expected number of evaluated channels and the ex-
pected latency may increase up to a certain point and then decrease.
This non-intuitive behavior is explained by the conflicting effects the
increase in the number of agents has on the thresholds used when
using sequential-based exploration: the increase in the number of
agents results in a decrease in the thresholds used as discussed above.
This, however, results in a decrease in the expected number of chan-
nels explored (and consequently in the overall latency), as the agents
are likely to terminate their exploration even when encountering rela-
tively small minimum values. On the other hand, since the number of
agents increases, the chances of all agents sensing a quality above the
thresholds used decreases also (despite the decrease in the thresholds
used) and therefore more channels need to be explored. Furthermore,
the fact that the lower thresholds are used suggests that as part of any
channel’s exploration more agents will perform sensing, on average,
before a decision is made to switch to the next channel. This latter
argument holds for the overall latency rather than the expected num-
ber of channels explored, hence explaining the fact that the decrease
in the expected overall latency is observed for a greater number of
agents (in comparison to the case with the expected number of chan-
nels).

Finally, Figure 4 depicts the 99.9th percentile of the number of
channels that will be requested by the agents (i.e., the maximum
number of channels that will need to be evaluated in 99.9% of the
cases) as a function of the exploration and broadcast costs. The area
below each curve represents settings in which in 0.1% of the cases
the agents will request to explore more channels than its associated
number states. From the figure we observe that for most reasonable
values of ce and cb, the number of channels that will need to be eval-
uated is relatively moderate (e.g., in this example the probability of
actually needing to explore more than 200 channels is practically
insignificant). The importance of this observation is twofold: first,
it justifies the use of a stationary set of thresholds as the probabil-
ity that the number of channels that the agents will want to evaluate
will exceed the number of available channels is, in most settings,
negligible. Second, it reassures that the four methods are applicable
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Figure 4. The maximum number of channels that the agent will request to evaluate in 99.9% of the cases (the 99.9th percentile), in the different exploration
methods. Each curve represents the set of (cb, ce) values for which the 99.9th percentile number of channels that will be requested to evaluate equals the value

associated with that curve. The number of agents used is k = 3.

latency-wise.

6 Conclusion

The need to coordinate multi-agent exploration in a distributed man-
ner arises whenever a group of agents engage in costly exploration
and individual goals are governed by a common function of all find-
ings. The offload cognitive channel exploration coordinated among
secondary users sharing a common control channel with scarce re-
sources is just one out of many examples of this kind.

From Section 5 we learn that costly coordination can substantially
worsen the performance (in terms of expected benefit) in distributed
cooperative multi-agent exploration applications. The performance
can be enhanced by reducing the amount of information that needs
to be broadcasted (if at all); instead of broadcasting the sensed in-
dividual quality, the agents broadcast only upon finding a quality
that is above or below pre-defined thresholds and interpret broad-
casts and their absence according to a predetermined protocol. All
the strategies proposed in this paper can be calculated offline with a
polynomial complexity and all the online processing involves merely
threshold-based decisions. The different exploration schemes differ
mainly in the tradeoff they offer between expected benefit and la-
tency. Future work includes introducing minimum overall quality
constraint and additional latency effective models. For example, any
of the methods can be tuned to guarantee better latency by decreas-
ing the thresholds used. Another promising direction involves sens-
ing several channels prior to broadcasting, considering the tradeoff
between the additional costs of potentially unnecessary sensing and
the potential savings on broadcasts.
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