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Abstract. We consider best-reply dynamics for voting games in
which all players are strategic and no coalitions are formed. We study
the class of scoring rules, show convergence of a suitably restricted
version for the plurality and veto rules, and failure of convergence for
other rules including k-approval and Borda. In particular, for 3 can-
didates convergence fails for all rules other than plurality and veto.
We give a unified proof for the convergence of these two rules. Our
proofs in the case of plurality improve the known bound on conver-
gence, and the other convergence results are new.

1 INTRODUCTION

Strategic misrepresentation of a voter’s true preferences, as a way of
obtaining an outcome preferable to that which would be expected by
voting sincerely, dates back thousands of years. The amount of infor-
mation available to voters and their ability to communicate influence
voter behaviour greatly. Here we consider the case in which all play-
ers behave strategically, but coalitions are not formed. The natural
setting then is that of a normal form game with ordinal preferences,
or more generally a game form.
Voting games of this type have enormously many Nash equilibria

and are not necessarily dominance solvable [2]. Eliminating domi-
nated strategies is not also helpful because typically far too many
equilibria remain for the Nash equilibrium to be a credible prediction.
Other refinements such as strong and coalition-proof Nash equilibria
may not always exist [8]. One natural direction of enquiry is to con-
sider best-reply dynamics, where players take turns in moving my-
opically in response to previous moves by other players (these moves
are pure strategies of the associated game). For many games this pro-
cess leads to convergence (necessarily at a pure Nash equilibrium). It
can also be interpreted in the voting context as a method of reaching
consensus, and is in fact used in this way in some applications such
as Doodle (for scheduling). According to Fudenberg and Levine [4],
in some cases, most learning models do not converge to any equi-
librium and just coincide with the notion of rationalizability, but if
best-reply dynamics converges, it necessarily finds a NE. Therefore,
the question that arises here is in which cases these best-reply dy-
namics converge for voting games. To our knowledge, in the voting
context the first paper to discuss best-reply dynamics is [7], which
concentrated on the plurality rule. The authors considered the effect
of initial state, tie-breaking rule, the players’ strategy and weights on
convergence. The results show that this definition of best reply, even
for such a rule which restricts voter expression severely, is too gen-
eral to guarantee convergence. Sequential and simultaneous voting
games for plurality with abstention have been discussed in [1]. For
the sequential case, they provide a complete analysis of the setting
with two candidates, and show that for three or more candidates the
1 Department of Computer Science, University of Auckland, NZ
email:rrey015@aucklanduni.ac.nz, mcw@cs.auckland.ac.nz

equilibria of sequential voting may behave in a counterintuitive man-
ner. The strategy of each voter depends strongly on the information
he has about the other players’ preference orders.

1.1 Our Contribution

A natural extension of [7] is to consider general positional scoring
rules, which we do. We find that non-convergence occurs much more
often in this case, as might be expected because of the much larger
strategy spaces involved. For the antiplurality (veto) rule, which re-
stricts strategy spaces as much as plurality, we give a complete anal-
ysis and show convergence under rather general conditions. We also
give unified simple proofs for plurality and antiplurality and give
more details on the boundary between convergence and nonconver-
gence when tiebreaking methods are considered. We study cycles in
the scoring rules between plurality and antiplurality. For a general
scoring rule, the order in which players respond in the best reply
dynamics influences the convergence considerably. Our results show
that some tightening of the definition of best reply is indeed required
for convergence for plurality and antiplurality. However, a natural
extension of this tighter definition to general scoring rules fails to
guarantee convergence.

2 PROBLEM DESCRIPTION

2.1 Voting Setup

There is a set C of alternatives (candidates) and a set V of players
(voters), withm := |C|, n := |V |. Each voter has a strict total order
on candidates, the preference order of that voter, denoted σv . This
defines the set T of types of voters, and |T | = m!. The function
mapping v �→ σv is the profile. A voting rule (or social choice cor-
respondence) that maps each profile to a nonempty subset of C (the
winner set).
For a voting rule R, we study the game G(V, C, R) where each

voter v submits a permutation πv of the candidates as an action. The
set of pure strategies available to voter i, Si, consists of them! pos-
sible types. In other words, a voter can report a preference order,
which may not be his sincere one. We denote the sincere profile and
the profile at time t respectively by p0 and pt. We order the types
lexicographically, based on a fixed order of candidates.
A voting situation is a multi-set from T with total weight n.

For anonymous rules (those invariant under permutations of the vot-
ers), the voting situation gives a more compact description than the
full profile, with no loss of information. For example, if we have
3 candidates a, b and c, and 4 voters with preference orders abc,
bca, cab and bca, the voting situation coinciding with that profile
is (1, 0, 0, 2, 1, 0).
A voting rule (or social choice correspondence) is a mapping tak-

ing each profile to a nonempty subset of C (the winners). A voting
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rule is resolute (or a social choice function) if the set of winners al-
ways has size 1.
The scoring rule determined by a weight vector w with

1 = w1 ≥ w2 ≥ · · · ≥ wm−1 ≥ wm = 0

assigns the score

s(c) :=
∑

t∈T
|{v ∈ V |πv = t}|wπv

−1(c) (1)

to each candidate. For example, several well-known scoring rules are:

• Plurality: w = (1, 0, . . . , 0, 0) in which each voter in effect votes
for one candidate.

• Antiplurality (veto): w = (1, 1, . . . , 1, 0) in which each voter in
effect votes against one candidate.

• Borda: w = (m − 1, m − 2, . . . , 1, 0).

The winners are the candidates with the highest score. These rules
allow ties in scores and to make them resolute, we need to use a
deterministic tie-breaking rule. However, for neutrality (symmetry
between candidates) we need to consider randomized tie-breaking.

2.2 Improvement Step

Let p be a profile. Suppose that voter v changes his vote. We say this
is an improvement step if p′ (the new profile) is preferred to p by
voter v. The fundamental results on strategic manipulation initiated
by Gibbard [5] and Satterthwaite [10] imply that, provided the voting
rule is resolute, under very mild additional conditions (such as not
being dictatorial), and provided that m ≥ 3 and n ≥ 2, some agent
in some sincere voting situation has an improvement step.
In order to describe improvement steps in more detail, we need to

discuss outcomes and payoffs (at least ordinal, if not cardinal). The
obvious way to do this in the case of resolute voting rules is to declare
that the outcome in which the winner is a is preferred by voter v to
the outcome in which the winner is b if and only if a is higher than b
in v’s sincere preference order.

Example 1 (alphabetical tie-breaking) Consider the Borda rule,
given by the weight vector (2, 1, 0), and the voting situation with
2 abc, 2 bac, 2 bca, 3 cab voters. The current winner is b. If one
of the cab voters changes as acb, then a wins. The new outcome is
preferred by that voter because he prefers a to b.

Stochastic dominance

In the case of multiple winners (or randomized tiebreaking), more
assumptions are needed. We unify the two cases by using the idea of
stochastic dominance as in [9]. This corresponds to a rather risk-
averse model of manipulation, as we now describe. It can be de-
scribed in probabilistic language as follows. For each winner set con-
structed by the voting rule, we have a uniform distribution on the
candidates in that set, and other candidates have probability zero as-
sociated to them. Voter v prefers an outcome with winner set W to
an outcome with winner setW ′ if and only if the following condition
holds. List the candidates in decreasing order of preference for voter
v, and consider the probability distributions as described above. We
say thatW is preferred toW ′ if and only if for each k = 1 · · ·m the
probability of electing one of the first k candidates given outcomeW
should be no less than givenW ′. (IfW ′ �= W the condition implies
that this probability will be strictly greater for some k).

Our definition of improvement step implies that, for example, a
vote by a voter with preference bac which changes the winner set
from a to {b, c} is not an improvement. Of course, if we assigned
cardinal utilities to outcomes, there might be some voters for which
such a move increases expected utility. In fact, it is easily shown that
our definition above says that the probability distribution associated
with W first order stochastically dominates the distribution associ-
ated withW ′. It is well known [3] that this is equivalent to requiring
thatW is preferred toW ′ in terms of expected utility, for all cardinal
utilities consistent with the preference order of the voter.

Example 2 (random tie-breaking) Suppose that in profile p the out-
come is that a and c tie as the winner, in profile p′ the outcome is
that b is the absolute winner, and in p′′ the outcome is that a and b
tie as the winner. The probability distribution of winning on (a, b, c)
is (1/2, 0, 1/2) for p, (0, 1, 0) for p′ and (1/2, 1/2, 0) for p′′. Thus,
taking k = 1 in the definition, we see that p′ is not preferred to p by
a voter with sincere opinion abc. Also, taking k = 2 shows that p is
not preferred to p′ either. However, p′′ is preferred to both p and p′.

Other possibilities For example, [7] has considered the case
where voters have fixed but arbitrary cardinal utilities. This allows
for situations in which more moves are considered to be improve-
ment steps than in our stochastic dominance model above.

3 BEST REPLY DYNAMICS

We make the following assumptions in our analysis of best reply dy-
namics for scoring rules.

• No fixed order for players’ turns: in fact, whichever voter has an
improvement step can move next.

• Myopic moves: Voters act as though each move is their only
chance for improving the result, regardless of considering any
chance of changing in the future.

• Costly voting: if there would no change in the winner set, no move
is made.

• Restricted best reply (RBR): we may have several improvement
steps which give the same outcome, in which case we choose the
one that maximizes the winning score margin of the new winner.

• Stochastic dominance-based improvement step for non-resolute
rules.

All the assumptions except the last one are consistent with those in
[7]. The fourth applies only for scoring rules, but the others make
sense for all voting rules.

Example 3 Consider the antiplurality rule with 2 voters V = {1, 2}
and 4 candidates C = {a, b, c, d}, alphabetically tie-breaking. The
sincere profile is p0 = (acbd, bacd). Vetoing candidate c is repre-
sented by −c in the strategy profile of voters. The number above the
arrow represents the player who moves, and the candidate in braces
shows the winner. If voters start from sincere state, we have:

(−d,−d){a} 2−→ (−d,−a){b} 1−→ (−b,−a){c} 2−→
(−b,−c){a}

As you can see in the example, best reply is not unique, for exam-
ple, the last move by the second player can instead be −d. However,
−c (vetoing the current winner) is what we call RBR for antiplurality
.
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4 BEST REPLY DYNAMICS for
ANTIPLURALITY

In this section we show convergence of best reply dynamics under
rather general conditions, for a very special scoring rule, namely the
antiplurality rule.
For the game G(V, C, A), since w = (1, 1, . . . , 1, 0), we can

without loss of generality assume that Si = {−c|c ∈ C} (because
subtracting the vector (1, 1, . . . , 1) from the weight vector makes no
difference to the outcome of the game or to the differences in scores).
In fact, there are (m − 1)! possible orders that give the same score.
Thus, each improvement step can be written−a → −bwhere b �= a.

Remark We define ot as the winner set after the move of player i at
time t. For alphabetical tie-breaking this set is a singleton.

Analogous to the case for plurality [7], there are 3 types of im-
provement steps.

Type 1: a /∈ ot and b ∈ ot−1

Type 2: a ∈ ot and b /∈ ot−1

Type 3: a ∈ ot and b ∈ ot−1

Remark It can easily be shown that if a /∈ ot and b /∈ ot−1, this
move does not change the winner set. Therefore, it is not an improve-
ment step.

Example 4 Suppose we have 2 voters and 3 candidates using an-
tiplurality rule with alphabetical tie-breaking. The sincere profile is
p0 = (abc, bac). If voters start from the sincere state, the current
winner is a. If the second player changes his vote from −c to −a, the
winner switches to b. According to our definition, it is a type 1 move.

Some notations We define some notations that we use through the
rest of the paper.

• We write c � c′ if c has a lower index (higher priority) than c′ in
alphabetical tie-breaking.

• We write s(c′) � s(c) if either s(c′) < s(c) or s(c) = s(c′) and
c � c′(note that it is not a logical notation, and we just use it for
simplicity).

• We use the symbol a �i b when voter i prefers candidate a to b.
• We denote the score of candidate a after the improvement step at
time t by st(a).

• We use the notation x
i−→ y when voter i changes his vote from

x to y.

Theorem 5 Suppose that −a → −c is a type 2 improvement step at
time t, and let b ∈ ot−1. Then −a → −b is a type 3 improvement
step leading to the same set ot. Furthermore, in this case the margin
of victory of the new winner will be more than in the original case.

Proof After the improvement step −a → −c at time t, we have

st(a) = st−1(a) + 1

st(c) = st−1(c) − 1.

Since a ∈ ot (according to the definition of type 2) and b ∈ ot−1 and
st−1(b) = st(b), in alphabetical tie-breaking, we have

st(a) � st(b) � st(c) and st(a) � st(y) y ∈ C \ {a, b} (2)

If we had the improvement step −a → −b at time t instead, (we
denote the score in this case with s′t)

s′t(a) = st(a) and s′t(b) = st(b) − 1;

s′t(c) = st(c) + 1 and s′t(y) = st(y).

By substituting in Equation (2), we have s′t(a) � s′t(y) for each y ∈
C. Therefore, a is the new winner. For randomized tie-breaking, we
can substitute � by ≥. Also, the margin of victory with a type 3
improvement step would be s′t(a) − s′t(b) = st(a) − st(b) + 1
which is more than the original margin st(a) − st(b).

We now make a key definition of the allowed moves. Allowing
type 2 moves can lead to a cycle. An example for plurality has been
presented in [7] (Proposition 4). We have a similar example for an-
tiplurality with 7 candidates and 10 voters that we omit because of
space constraints.

Definition 6 (RBR) A restricted best reply is any improvement step
of type 1 or type 3, in which the player making the step vetoes his
least preferred member of ot−1, denoted βt−1.

From now on, we consider only improvement steps using restricted
best replies. It is also clear from the definition that no two consecutive
improvement steps can be made by the same voter.

Example 7 When voters start from the sincere initial state, and the
sincere scoreboard is a tie among all candidates, all improvement
steps would be type 3 ones. Therefore, no improvement step can oc-
cur, as voters have already voted against their least desirable candi-
date, and any change will allow that candidate to win.

Definition 8 (set of potential winners) The set of potential winners
at time t, Wt consists of those candidates who have a chance of win-
ning at the next step (time t + 1), depending on the different RBR of
voters.

Remark If candidate c can win by type 1, it can also win by type 3
because when a candidate can win without increasing its score, it is
obviously still a winner when its score is increased by 1. Therefore,

Wt = {c | if some player moves−c → −b at time t + 1,
then c ∈ ot+1} (3)

4.1 Alphabetical Tie-breaking

Lemma 9 If t < t′ then Wt ⊆ W ′
t .

Proof Consider an improvement step −a → −b at time t. Accord-
ing to Definition 6, ot−1 = b. Let c ∈ Wt−1 and y ∈ C \ {a, b}.
Then, by considering that the scores of c and y, ∀y ∈ C; y �= a, b
don’t change at time t, we have:

st(c) + 1 = st−1(c) + 1 � st−1(b) − 1 = st(b) (4)

st(c) + 1 = st−1(c) + 1 � st−1(y) = st(y) (5)

If the improvement step is of type 3, then best reply −c → −b at
time t gives the same scores as the best reply −a → −b followed by
−c → −a at time t + 1. Therefore, c ∈ Wt.
If the improvement step is of type 1, let b′ = ot. Note that b′ /∈

{a, b}.
According to equation (5), for y = b′,
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st(c) + 1 � st(b
′) > st(b

′) − 1 (6)

According to the definition of winner,

st(b
′) � st(y); ∀y ∈ C (7)

In particular for y = a,

st(c) + 1 � st(b
′) � st(a) (8)

Thus, by transitivity of� (which follows from the underlying transi-
tive lexicographic order on C), c ∈ Wt.

A counter-example for an arbitrary deterministic tie-breaking
rule Consider a situation with candidates a, b, c and x under the an-
tiplurality rule. Suppose the set of candidates with the highest score
after round t − 1 is {b, x} and st−1(a) = st−1(c) = st−1(b) − 1.
Suppose further that the order of candidates in tie-breaking is as fol-
lows: b � x and c � x and x � a and a � c. Based on Definition
6, c ∈ Wt−1. Consider a best reply −a → −b at time t. If it is a
type 3 move then ot = a and c is still inWt, as −c → −a makes c
winner. Suppose the move is of type 1 and ot = x. According to the
tie-breaking rule, b � x and c � x � a but, a � c. Thus, c is not in
Wt because −c → −x does not make c win.

Lemma 10 Each voter has at most one type 1 move and at most
m − 1 moves of type 3.

Proof Suppose a step−a
i−→ −b is a type 1 move by voter i at time

t. We claim this improvement step is the first improvement step of
voter i. If it is not his first improvement step, according to Definition
6, a has been a winner before. Therefore, a has been in the winner set
in the past.. In other words, ∃t′ : t′ < t a = ot′ and therefore, a ∈
Wt′ . According to Lemma 9, a ∈ Wt−1 which means after im-
provement step −a → −b at time t, a is a winner. However, this
has contradiction with the assumption of improvement step of type
1. Therefore, voter i has at most one type 1 move. According to the
definition of improvement step, at every step −a

i−→ −b of type 3,
it must hold that a �i b . Therefore, each voter has at most m − 1
steps of type 3.

Theorem 11 Restricted Best Reply Dynamics (RBRD) for
G(V, C, A) with alphabetical tie-breaking will converge to a
NE from any state in at most mn steps.

Proof If we have n voters, Lemma 10 implies that each voter makes
at mostm moves.

4.2 Randomized Tie-breaking

Lemma 12 If t < t′ then Wt ⊆ W ′
t .

Proof The proof is very similar to the alphabetical case (Lemma 9).
Except, we do not need to deal with tie-breaking. Therefore, we can
substitute the notation� by≥. For the second part of the proof where
we consider a type 1 improvement step, we can always find such a
b′. To see this, note that according to the definition of improvement
step, the winner set should be changed and the score of b decreases.
Therefore, b cannot be the unique winner at time t as it results in b
being the unique winner at time t− 1, contradicting the definition of
improvement step.

Lemma 13 Each voter has at most one type 1 move and at most
m − 1 moves of type 3.

Proof The first part can be proved in a similar way to Lemma 10.
For the second part, similarly, we show that a �i b if voter i makes
the type 3 improvement step −a → −b. According to the definition
of type 3 improvement step, b ∈ ot−1 and a ∈ ot. We define p(a) as
the probability of winning of a. Two cases can occur.
Case 1: a ∈ ot−1

p(a) increases to 1 and p(b) decreases to 0. The probability of win-
ning of candidates in the set ot−1 decreases and for other candidates
stay 0.
In this case, a becomes the unique winner at time t. Therefore, ac-

cording to the definition of stochastic dominance improvement step,
a should be preferred to all other elements of ot−1.
Case 2: a /∈ ot−1

i) b = ot−1 In this case, p(a) and p(c) increases to 1
k+2

and p(b)

decreases from 1 to 1
k+2

(assuming the number of candidates (c)
whose score is 1 point behind b is k) and for other candidates it re-
mains the same.

ii) b ∈ ot−1 therefore, p(a) increases and p(b) decreases and p(c)
stays the same. Therefore a �i b, otherwise, it is not an improvement
step.

The analogue of Theorem 11 now follows.

Theorem 14 RBRD for G(V, C, A) with randomized tie-breaking,
will converge to a NE from any state in at most mn steps.

Remark The only part in the proof for randomized tie-breaking,
where we used stochastic dominance assumption of improvement
step is for the bound on type 3 moves. An example of cycle is al-
ready shown in [7] for a fixed utility case.

4.3 Who Can Win?

In this part, we describeWt in more detail.

Wt = W 0
t ∪ W 1

t ∪ W 2
t (9)

where W 0 is the level of winner set which includes the candidates
who are tied with the winner, W 1 contains the candidates who can
win by a type 1 move andW 2 those who can win by a type 3 move
and not a type 1 move. LetMt = st(ot) and dt(c) = Mt − st(c). In
fact dt(c) represents the score difference of candidate c and the win-
ner after move t. Therefore,W 0 = {c | d(c) = 0}. The description
of the other two subsets is straightforward.

Proposition 15 For alphabetical tie-breaking,

W 1
t = {c | d(c) = 1, c � c′; ∀c′ ∈ W 0

t } (10)

W 2
t = {c | d(c)= 2 and unique winner and c�c′; ∀c′ ∈ W 1

t ∪W 0
t }.
(11)

For the case of randomized tie-breaking,

Wt = {c | dt(c) ≤ 1 or dt(c) = 2 and there is a unique winner }.
(12)

To obtain a better idea about who is really winning in practice
at equilibrium, we ran several simulation experiments with different
initial profiles (sincere, random). The numerical results suggest that
in the cases with sincere initial state, the winner set of equilibrium
is contained in W0. However, this is not true when we start from an
arbitrary state.
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5 PLURALITY

The results in this section are completely analogous to those in Sec-
tion 4, and are quite similar to [7] but with easier proofs. We remove
some details of proofs as they are similar to previous section.

Definition 16 (RBR) For plurality rule, a restricted best reply is any
improvement step of type 1 or type 3, in which

Type 1: a /∈ ot−1 and b ∈ ot

Type 3: a ∈ ot−1 and b ∈ ot

The restricted best replies defined above are similar to the best replies
in [7], where the phrase “better reply” is used for non-restricted best
replies.

Remark (set of potential winners) For plurality also, we just con-
sider the candidates who can win by type 3 moves because of the
same argument as antiplurality. Therefore, the set of potential win-
ners is

Wt = {c | if some player moves a → c and a ∈ ot then c ∈ ot+1}
(13)

5.1 Alphabetical Tie-breaking

Lemma 17 If t < t′ then W ′
t ⊆ Wt.

Proof Consider an improvement step a → b at time t. By the defini-
tion of best reply in Definition 16, b = ot. Let c ∈ Wt. Considering
the new scores of b, c and y, ∀y ∈ C; y �= a, b we have:

st−1(c) + 1 = st(c) + 1 � st(b) − 1 = st−1(b) (14)

st−1(c) + 1 = st(c) + 1 � st(y) = st−1(y) (15)

If the improvement step a → b is of type 3, then best reply a → b
followed by b → c at time t + 1 give the same scores as best reply
a → c at time t. Therefore, c ∈ Wt−1.
If the improvement step is of type 1, let a′ = ot−1; Note that

a′ /∈ {a, b}.
According to Equation (15), for y = a′,

st−1(c) + 1 � st−1(a
′) (16)

According to the definition of winner,

st−1(a
′) � st−1(y); ∀y ∈ C (17)

In particular for y = a,

st−1(c) + 1 � st−1(a
′) � st−1(a) (18)

Thus, by transitivity of� (which follows from the underlying transi-
tive lexicographic order on C), c ∈ Wt−1.

Lemma 18 The number of type 1 moves is at most m and each voter
has at most m − 1 moves of type 3.

Proof Suppose a step a → b is a type 1 move at time t. We claim
a /∈ Wt. If a ∈ Wt then b → a makes a winner but we know
b → a makes a′ win (the two consecutive moves have cancelled
out each other). Therefore, a /∈ Wt. According to Lemma 17, a /∈
Wt′ ; ∀t′ > t. Therefore, the number of type 1 moves is limited and
equals the maximal set of potential winners which at most can have
m elements. Also, as at every step a

i−→ b of type 3, it must hold
that b �i a because of the definition of improvement step, each voter
has at mostm − 1 moves of type 3.

Theorem 19 RBRD for G(V, C, P ) with alphabetical tie-breaking
will converge to a NE from any state in at most m +(m− 1)n steps.

Proof If we have n voters, Lemma 18 implies that convergence must
occur with at mostm + (m − 1)n steps.

5.2 Randomized Tie-breaking

Lemma 20 If t < t′ then W ′
t ⊆ Wt.

Proof The proof is very similar to the alphabetical case (Lemma
17). Except, we do not need to deal with tie-breaking. Therefore, we
can substitute the notation � by ≥. For the second part of the proof
where we consider a type 1 improvement step, we can always find
such a a′ by similar reasoning as in proof of Lemma 12.

Lemma 21 The number of type 1 moves is at most m and each voter
has at most m − 1 moves of type 3.

Proof The proof is very similar to Lemma 13 by considering the
differences of Lemma 18 and 10.

Theorem 22 RBRD for G(V, C, P ) with randomized tie-breaking
will converge to a NE from any state in at most m +(m− 1)n steps.

Proof If we have n voters, Lemma 21 implies that convergence must
occur with at mostm + (m − 1)n steps.

Remark The only part in the proof for randomized tie-breaking
where we used the assumption of stochastic dominance is for the
bound on type 3 moves. Note that an example is given in [7] showing
that if we use fixed utility function, and improvement is defined by
expected utility increase, a cycle can occur. The stronger definition
of improvement step using stochastic dominance allows us a general
convergence result.

6 COUNTEREXAMPLES and INTERESTING
PHENOMENA

Best reply dynamics for scoring rules other than plurality and an-
tiplurality does not necessarily converge (symbol ♦ shows the stage
from which the cycle becomes apparent). Each of the examples in
this section starts from the sincere initial state.

Example 23 (Cycle for Borda) Consider the sincere profile p0 =
(abc, bca) and voting rule Borda and alphabetical tie-breaking.

(abc, bca){b} 1−→ (acb, bca){a} 2−→ (acb, cba){c} 1−→
(abc, cba){a} 2−→ (abc, bca){b} ♦.

Remark The allowed moves in the previous example are reason-
able for restricted best replies with 3 candidates. Putting the desir-
able candidate (the new winner) at the top and the current winner at
the bottom maximizes the winning score margin of the new winner.

Cycle for scoring rules “close to Plurality”:

• Suppose we have 3 candidates a, b and c and p0 = (abc, bca). The
scoring rule is w = (1, α, 0); 0<α ≤ 1

2
and we use alphabetical

tie-breaking.
(abc, bca){b} 1−→ (acb, bca){a} 2−→ (acb, cba){c} 1−→
(abc, cba){a} 2−→ (abc, bca){b} ♦

• generalm and n = 2

(ab · · · c, bc · · · a){b} 1−→ (a · · · cb, bc · · · a){a} 2−→
(a · · · cb, cb · · · a){c} 1−→ (ab · · · c, cb · · · a){a} 2−→
(ab · · · c, bc · · · a){b} ♦
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Cycle for scoring rules “close to antiplurality”:m = 3, n = 4
Suppose we have 3 candidates a, b and c. The sincere profile is p0 =
(abc, bac, cab, bca). Our scoring rule is (1, α, 0); 1

2
≤ α < 1 with

alphabetical tie-breaking.
(abc, bac, cab, bca){b} 1−→ (acb, bac, cab, bca){a} 4−→

(acb, bac, cab, cba){c} 1−→ (abc, bac, cab, cba){a} 4−→
(abc, bac, cab, bca){b} ♦
Example 24 (Order of players matters) To understand the impact of
the order of players on the dynamics, we consider Borda rule with
4 voters and 3 candidates. Suppose p0 = (acb, acb, cab, cba) and
players start from the sincere state. The winner is c. The first player
is not satisfied with the result and changes his vote to abc to make
a the sole winner. For simplicity, we show the moves of players as
below:

(acb, acb, cab, cba){c} 1−→ (abc, acb, cab, cba){a} 3−→
(abc, acb, cba, cba){c} 2−→ (abc, abc, cba, cba){a} 4−→
(abc, abc, cba, bca){b} 1−→ (acb, abc, cba, bca){1} 4−→
(acb, abc, cba, cba){c} 1−→ (abc, abc, cba, bca){b} ♦

Note p4 = p7 and we have a cycle.
Now let’s consider another order for the players. We start with

another profile coinciding with V = (0, 2, 0, 0, 1, 1).

(acb, acb, cba, cab){c} 1−→ (abc, acb, cba, cab){a} 4−→
(abc, acb, cba, cba){c} 2−→ (abc, abc, cba, cba){a} 3−→
(abc, abc, bca, cba){b} 4−→ (abc, abc, bca, cab){a} (equilib-
rium)

Thus, in contrast with previous order, we reach an equilibrium with
this order of players. 8 of 12 profiles coinciding with this voting situ-
ation do not converge.

Example 25 (an example of cycle for 2-approval voting)
Consider 4 candidates C = {a, b, c, d} and 2 voters with
p0 = {acdb, dbca} under 2-approval voting rule with weight
vector w = (1, 1, 0, 0). Players start from sincere state and we
use alphabetical tie-breaking. Therefore, the sincere winner is c.
As voters need to to approve two candidates we show the dynamic
process as below:

(ac, db){a} 2−→ (ac, dc){c} 1−→ (ab, dc){a} 2−→
(ab, db){b} 1−→ (ac, db){a} ♦

7 CONCLUSION and FUTURE DIRECTIONS

A summary of results:

• The upper bound of convergence for plurality in our paper ism +
(m− 1)n. However, it ism2n2 in paper [7]. Our upper bound for
antiplurality ismn.

• The possibility of winning of a candidate depends on the type of
improvement step and also candidate’s priority in tie-breaking.

• The number of type 2 moves is not bounded, so we need to use
RBR for convergence.

• We need to use stochastic dominance RBR for randomized tie-
breaking for plurality and antiplurality. Without this assumption
we can have cycles, as shown in [7] and [6].

• Convergence fails for some deterministic tie-breaking rules.
• The order of players influences convergence, equilibrium result
and also speed of convergence.

• We have examples of cycling for 2-approval.

During the writing of this paper, we noticed that Lev and Rosen-
schein have also considered similar questions and have obtained

quite similar results [6]. However, our paper is completely indepen-
dent from their work and has a different approach. We now give a
brief discussion of the similarities and differences between these pa-
pers.
Both papers give convergence results for antiplurality under alpha-

betical tiebreaking: our Theorem 11 corresponds to [6, Theorem 13].
Both show nonconvergence for k-approval (Example 25 vs Theorem
19) and Borda (Example 23 vs Theorem 11). The counterexample
for Borda in [6] works for any tiebreaking rule, and for m ≥ 4,
whereas ours works for m ≥ 3 but uses a specific tiebreaking rule.
In addition, [6] gives a counterexample for the maximin rule with a
non-lexicographic deterministic tiebreaking rule, while we consider
only scoring rules.
[6] deals only with deterministic tiebreaking, while we discuss

randomized tiebreaking in some detail and show that stochastic
dominance is the correct condition for ensuring convergence. Fur-
thermore, we consider plurality and show how the proofs for an-
tiplurality and plurality are essentially dual to each other. Our con-
vergence proofs are shorter and, in our view, simpler. The upper
bound in [6, Lemma 17] for antiplurality is (m − 2)n which can
be contradicted by considering p0 = (bac, cab). If voters start
from (−b,−c){a} 1−→ (−a,−c){b} 2−→ (−a,−b){c} 1−→
(−c,−b){a } ♦ where first voter hasm − 1 improvement steps.
As far as future directions go, the key issue in extending to other

voting rules is to properly define a notion of restricted best reply
which is general enough to encompass all “reasonable” moves by
rational agents seeking to maximize their payoff at each step, yet
doesn’t allow cycles. Already Example 23 shows that this will be
difficult for Borda. Our proof skeleton for plurality and antiplural-
ity could be adopted provided this difficulty is overcome. However
for this approach to work easily, we would need the composition of
two improvement steps to yield the same situation as a single im-
provement step (as in the discussion of type 3 moves in the proof of
Lemma 9). One possible way of overcoming this problem would be
to impose a domain restriction (do not allow all possible preference
profiles to occur). Conceivably this might even allow type 2 moves as
defined above to be reinstated as allowable improvement steps, while
still maintaining convergence.
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