
Solving Raven’s IQ-tests:
An AI and Cognitive Modeling Approach

Marco Ragni and Stefanie Neubert 1

Abstract. Human reasoners have an impressive ability to solve ana-
logical reasoning problems and they still outperform computational
systems. Analogical reasoning is relevant in dealing with intelligence
tests. There are two kinds of approaches: to solve IQ-test problems
in a way similar to humans (i.e., a cognitive approach) or to solve
these problems optimally (i.e., the AI approach). Most systems can
be associated with one of these approaches. Detailed systems solving
geometrical intelligence tests, explaining cognitive operations based
on working memory and producing precise predictions and results
such as error rates and response times have not been developed so
far. We present a system implemented in the cognitive architecture
ACT-R, able to solve analogously developed problems of Raven’s
Standard and Advanced Progressive Matrices. The model solves 66
of the 72 tested problems of both tests. The model’s predicted error
rates correlate to human performance with r = .8 for the Advanced
Progressive Matrices and r = .7 for all problems together.

1 Introduction

Geometrical intelligence tests such as Raven’s Progressive Matrices
require analogical reasoning. Raven’s intelligence test consists of a
3×3 matrix and eight possible solutions. Each but the last cell in this
matrix contains differently arranged geometrical objects. Consider
the following problem (cp. Figure 1):
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Figure 1. A geometrical reasoning problem. The solution is no. 4.

This is an example of one kind of Raven’s Progressive Matrices,
more examples can be found in Figure 3. The task of the reasoner
is to identify an implicitly given geometrical function and apply this
function to derive a solution. There are two kinds of tests with simi-
lar problems differing in their reasoning difficulty. On the one hand,
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there is the Standard Progressive Matrices test (short: SPM). This
test is designed to measure average intelligence. It consists of five
sets each with twelve problems. The reasoning difficulty of the prob-
lems increases within a set; the difficulty of the sets altogether is
also increasing [8, p. 37]. Gifted adults are tested by the Advanced
Progressive Matrices test (short: APM). It consists of two sets with
12 training problems and 36 test problems. Human reasoning per-
formance decreases almost monotonically. Hence, the first problems
can be solved by almost all participants, whereby the last problem is
answered incorrectly by most human reasoners [9, p. 33].

One of the first computer programs to solve simple geometrical
analogy problems was developed by Evans [5, p. 271]. The prob-
lems solved were only one-dimensional and hard coded. Recently,
Cirillo and Ström [4] developed a computational program, that is
able to solve 28 out of the 36 problems of the SPM of the subsets C
through E by computing the solutions without considering the given
possible solutions [4, p. 32]. Their program does not model arbitrary
geometrical problems and they excluded all aspects of human prob-
lem solving. Carpenter and colleagues [3] analyzed rules necessary
to solve the APM and implemented this model – called BETTER-
AVEN – in the architecture 3-CAPS [3]. This model tries to solve
the problems like an above average student by managing a larger set
of goals in working memory as opposed to another previous model
(FAIRAVEN). Lovett and colleagues [12] combined CogSketch [7]
(for the visual analysis) and the Structure Mapping Engine [6] (for
the computation of the analogies) to a model which is able to solve
Evans’ problems but additionally includes some assumptions about
human cognitive processes [12, p. 1194]. Consequently they ex-
tended their model to solve most problems of the SPM (Sets B to
E) [11]. Problems the program could not solve were considered dif-
ficult for humans [11, p. 2765]. An interesting approach combining a
symbolic approach with probabilistic components is Hofstadter and
Mitchell’s Copycat [13, 10]. It has a representation for long-term
memory (the slipnet) and working memory (workspace) and uses
domain dependent rules to identify patterns. These rules do not al-
ways fire and can show a non-deterministic behavior. It has so far
not been applied to geometrical reasoning problems but only for rea-
soning with letters. We will see, however, that ACT-R 6.0 offers – to
some extend – as well some probabilistic behavior.

Taken together, there are programs that try to solve the SPM
problems in an AI-fashion [5, 4] and programs which solve them
similarly to humans [11, 3]. None of these approaches have been
applied to APM and SPM problems at the same time and none
of these approaches uses working memory assumptions, makes re-
sponse time predictions or is generalizable to arbitrary analogical
problems (probably besides [11, 13]). To overcome this problem and
to have a program which is able to solve the problems in general
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Figure 2. The cognitive architecture ACT-R [1]. The architecture assumes
different modules and buffers, which have precise defined roles.

and is at the same time cognitively more adequate, we decided to
use the cognitive architecture ACT-R [1, 2]. ACT-R is a production
rule system (which is Turing complete) and consists of a symbolic
layer and a sub symbolic layer. A model/program can be specified by
production rules. Information knowledge is represented by so-called
chunks. These chunks are n-tuples coding the information about the
objects and their relative position. ACT-R assumes a modular struc-
ture of the mind. Each module is responsible for specific kinds of
information and there are buffers attached to each module. The vi-
sual deals with perceiving objects; the goal is for general control
issues; the imaginal is for problem specific representations, and the
declarative stores declarative knowledge. More information can be
found in [1, 2].

The remainder of this article is structured as follows: In the next
section, we will briefly introduce the cognitive and AI model imple-
mented in the cognitive architecture ACT-R and the rules, which are
able to solve such problems. An evaluation and discussion concludes
the article.

2 Cognitive Model

A typical geometrical analogical problem consists of a matrix and a
solution. Each cell contains geometric objects which can be classi-
fied by the following attributes: shape (e.g., triangle, circle, etc.), size
(e.g., represented numerically 1, 2, 3), number of sides (e.g., a trian-
gle has 3 sides), width, height (for objects which are not of the same
height and width, e.g., a rectangle), color (e.g., black, white etc.),
texture, line art (e.g., solid, dotted), rotation (e.g., 0 degree), position
(inside a cell), and quantity. Consider the triangles of Figure 1. The
shape is triangle, size 1, number of sides 3, width 1, height 1, color
white, texture white, line art solid, rotation 0, position 2 and quantity
1.

To compare attribute values, the model saves the name of the at-
tribute as well as three values in a chunk. If, for example, triangles
with a rotation of 0, 45, and 90 degrees exist in the first row, the
model creates a chunk of the following type: (rotation, 0, 45, 90)
representing the change in the triangles across the row.

Some geometrical intelligence test problems have an increasing
number of objects in a row, e.g., one triangle in the first cell and
three in the second cell, in this case the model must conclude that
it is likely that the next cell will contain 5 triangles. Such arithmeti-
cal knowledge is relevant to solve such problems. Consequently, we
added different number series of two number consisting of all single-
digit to the model’s declarative memory. This is the standard way to

use fact knowledge, which has in the case for small numbers not to be
calculated anymore [1]. Each number series encodes if the series in-
creases or decreases and the function. Declarative memory contains
addition facts with two addends and a sum as well. With the number
series, the model is able to validate attribute values when applying
quantitative pairwise progression (see below). So if a row contains
objects with the sizes 1, 2 and 3, the model calls the number series
(1, 2) and (2, 3), which both contain the direction increasing and the
factor +1.

With the addition facts, the model is able to check the objects’
quantity when applying the rule figure addition. If a row contains
two, one and three objects, the model calls the addition fact (2 + 1
= 3) to validate the assumed rule. The objects are grouped accord-
ing to the matching names heuristic [3, p. 417]. Hence, objects are
grouped according to their names appearing in the shape attribute.
This grouping of objects is given with the encoding of the problem.

2.1 Identified Rules and Model Application

To solve the problems of the Progressive Matrices, various relational
rules describing the relations of the objects in a row or column are
necessary. Carpenter and colleagues [3] and Cirillo and Ström [4]
identified five rules which are sufficient to solve almost all problems
of the Progressive Matrices [3, p. 408]. We briefly introduce the rules:

Rule 1: Constant in a row / Identity. If all attributes of the objects
in a row are identical, then the rule constant in a row can be applied.
This rule inserts the identical object of the previous cell into the final
cell. The objects can of course differ among the rows.

The model checks if the objects differ in some attributes by means
of a pairwise comparison of objects within each row. The solution is
constructed by taking the attribute values of the previously consid-
ered object.

Rule 2: Distribution of three values / Distribution of three en-

tities. If an attribute of the objects in a row differs and the same
values of this attribute occur in every row, then the rule distribution
of three values can be applied. In Figure 3a the attribute texture dif-
fers. The attribute values occurring in each row are black, striped and
white.

The model stores the attribute name and the existing values in
declarative memory. In the other cells the objects’ attribute values
are checked for concordance with the first row. The order in which
the objects appear is not relevant. In problem 3a, the attribute name
texture and the values white, black and striped are stored. In the sec-
ond and the third row the appearing texture values are compared to
the stored values. The model then retrieves the stored values. The
value that has not appeared in the third row is then entered into the
solution. In the depicted example, a square with the missing texture
value black is created. In Figure 4 the model’s processing of a prob-
lem requiring distribution of three values is depicted.

Rule 3: Quantitative pairwise progression / Numeric Progres-

sion. If the values of an attribute are increasing or decreasing con-
tinuously in a row then the rule quantitative pairwise progression can
be applied. This rule is used in Figure 3b, where the objects’ rotation
increases by 45 degrees in each cell.

Once the model has associated two objects in a row, the model re-
trieves a number series containing the changes of the attribute values.
The model then stores the information about the increase or decrease
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Figure 3. Problems illustrating the different rules. In 3a the rule distribution of three values is required. The solution is no. 4. Problem 3b requires the rule
quantitative pairwise progression. The solution is no. 6. In Problem 3c the rule figure addition is required. The solution is no. 8.

consider object in cell 1 and 2

no yesattribute
differs?

rule
constant in a row

store attribute name
and values of cell 1 and 2

consider object in cell 3

no yes
value of cell 3 differs

from 1 and 2?

rule
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rule distribution of three values

store attribute value of object in cell 3

consider next object

no yesattribute value
existing in row 1?

rule
quantitative pairwise progression

store attribute value

yes noconsidered last
object?

create solution with attribute values of last object

retrieve values of previous row

compare with stored values of row 3

add missing value as attribute value into solution

consider objects in cell 1 and 2

yes noother attribute
different?

no

other objects
in cells?

find solution in possible solutions

yes

Figure 4. The model’s processing of a problem requiring the rule
distribution of three values.

of the values and the functional change. Again, for the associated ob-
jects in the second and the third cell of this row a matching number
series is retrieved. This procedure is repeated in every row. Problem
3b gives an example. It first requires a call of a number series accord-
ing to the first two associated objects’ rotation with the values 0 and
45, the direction increasing and the function is +45 degrees. In the
following, a number series with direction increasing and +45 is re-
trieved. This contains the values 45 and 90 degrees. To construct the

solution, a number series is retrieved from declarative memory. This
series contains 135 as the first value, referring to the object’s rotation
in the matrix cell number seven. The second value is 180, which is
identified as the solution.

Rule 4: Figure addition / Binary OR. If all objects of the third
column appear in their respective rows in the first two columns, the
rule figure addition can be applied. An example is depicted in Figure
3c.

There are two possibilities to apply the rule figure addition for
the model. On the one hand, the considered objects can be identical
except of their quantities. The quantity of the last object results from
the addition of the first two objects’ quantities. The model tries to
retrieve an addition fact that contains the first two objects’ quantities
as addends and the quantity of the last object as sum.

On the other hand, if additional object attributes differ, the model
checks for each object, if this object is in the third cell of the current
row. No addition facts have to be retrieved. For each object in the
last row, a separate solution is created. This type of rule is required
to solve problem 3c. Accordingly, the rule figure subtraction can be
applied if the objects in a column are subtracted from the objects in
another column to get the objects of the third column.

Rule 5: Distribution of two values / Binary XOR. The rule dis-
tribution of two values is applied if there are exactly two equal values
and one differing value of an attribute in a row. This rule is necessary
to solve the problem in Figure 1. There are exactly two associated
objects in a row, the third object is null.

For the model, there are also two possibilities to apply this rule.
On the one hand, two identical objects are in a row, therefore one of
the cells is empty. If in the last row a single object appears, the model
constructs a solution identical to this object. If there are two objects,
no solution is created. The problem in Figure 1 depicts this type of
the rule. In each row, there are exactly two diamonds, triangles and
squares.

If there are two equal and one differing attribute values in a row,
the model also assumes distribution of two values. The existing at-
tribute values are stored. In the second and third row the model
checks, whether the same values appear once or twice. To construct
the solution, the missing value is identified using the values in the
third row and the stored values. This kind of rule is required in prob-
lem 5a. The texture values in each row are black twice and white
once. In the third row, a black and a white object appear, hence the
missing texture value is black.

The description of the rules focuses on rows, which is sufficient
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Figure 5. The model processes 5a several times. It considers, analogously
to humans, one attribute at a time: first the quantity (1), the texture (2), then

the number of sides (3), and there is no predefined order. The steps are
depicted in Figure 5b. The solution is no. 7.

to solve the Standard and Advanced Progressive Matrices. Hence,
the application to columns is not implemented in this model. For
some problems several rules can be applied. For example, if there are
three objects in the first cell, two objects in the second cell and one
object in the third cell, both rule quantitative pairwise progression
with a decreasing quantity and rule distribution of three values with
the quantity values 3, 2 and 1 can be applied.

2.2 Procedure of solving a problem

The cognitive model initially chooses a first object in the first cell. All
objects that share the same shape with this object are considered first.
All other remaining objects are ignored. Then, the model considers
the associated object in the second cell, which is then compared to
the first object. If an attribute differs then the attribute name and the
two existing values are stored. Next, the third object is compared to
the second object and its attribute value is also stored. The stored
values are interpreted as a rule now. In the following, the model anal-
yses the second row as it did the first row, but the attribute values are
compared to the stored values to find possible discrepancies and an-
other rule if required. The two objects in the third row are analyzed
as in the previous rows. In addition, the missing attribute value is
called from declarative memory to construct the solution. If further
attributes differ in the current group of objects, the procedure is re-
peated. To construct the new solution, the according attribute value
is adapted in the existing solution. When all remaining attributes are
equal, possible further objects, ignored up to now, are analyzed as
described. When no more objects are left, the model moves on to
find the correct solution.

2.3 Processing an example

We demonstrate the developed model on the example depicted in
Figure 5a. This example requires the application of the rule distribu-
tion of three values and distribution of two values. The model first
identifies one differing attribute, namely quantity. The quantity val-
ues of the third and the first cells are identical, wherefore distribution
of three values and quantitative pairwise progression cannot be ap-
plied. The model assumes figure addition, consequently in the third
cell there should be two objects with quantities 1 and 2. There is no
second object in the cell, however – this marks a conflict. The model
now assumes distribution of two values. The values occurring in the

Goal Visual Retrieval Imaginal

1
Rule: -; Attr.: - polygon

2
Rule: -; Attr.: - polygon polygon

3
Rule: -; Attr.: quantity polygon polygon quantity 1 2

4
Rule: 4; Attr.: quantity quantity 1 2 1

5
Rule: 5; Attr.: quantity polygon

6
Rule: 5; Attr.: quantity polygon polygon quantity 1 2

7
Rule: 5; Attr.: quantity polygon polygon quantity 1 2 1

8
Rule: 5; Attr.: quantity polygon polygon

9
Rule: 5; Attr.: quantity polygon quantity 2

10
Rule: 5; Attr.: quantity polygon quantity 2 1

11
Rule: 5; Attr.: quantity quantity 2 1 1

12
Rule: 5; Attr.: quantity polygon

13
Rule: 5; Attr.: quantity polygon quantity 1 2 1 quantity 1

14
Rule: 5; Attr.: quantity polygon quantity 1 2 1 quantity 1 1

15
Rule: 5; Attr.: quantity polygon solution

16
Rule: -; Attr.: quantity polygon

17
Rule: -; Attr.: - polygon polygon

18
Rule: -; Attr.: texture polygon polygon texture 1 2

. . .

Figure 6. Contents of the buffers when processing problem 5a. The model
first considers an object in the first cell, which appears in the visual buffer.
When considering the object in the second cell, the model retrieves the first
cell’s object from the retrieval buffer. In the goal buffer, the model stores the

differing attribute (quantity). In the imaginal buffer, a chunk is created
containing the values of the first row. First, the model assumes rule 4 (figure
addition). In conflict to rule 4, no second object exists in cell three. Hence,
the model assumes rule 5 (distribution of two values). Ensuing, the model
considers the second row (line 8 - 11), storing the values in the imaginal
buffer again. To construct the temporary solution, one of the chunks is

retrieved (line 13). The procedure described is repeated for the attributes
texture and number of sides.

first row (1, 2 and 1) are stored, as well as those in the second and the
third rows. To identify the missing value, the previously stored values
are retrieved. The solution is constructed with the missing quantity
value 2. The resulting solution is depicted in Figure 5b (1).

The model considers another differing attribute now, texture. The
missing value, black, is identified as described above. The existing
solution is retrieved and adapted by entering the identified texture
value. Figure 5b (2) shows the resulting solution.

The last differing attribute is number of sides. The attribute values
of the first row (1, 4 and 3) are stored. The model assumes distribu-
tion of three values, since all values are different. In the second row,
the values are also stored and checked for occurrence in the first row.
In the third row, the model retrieves the stored values to identify the
missing value 1, which is entered into the existing solution. Figure
5b (3) shows the resulting solution. Since all remaining attributes are
equal and no more objects are existing in the cells, the model moves
on to find the solution. The buffer contents are shown in Figure 6.

Analysis of complexity. The complexity of each problem depends
on the type of the rule needed to solve the problem, the number of
required rules and the difficulty of associating objects covered by one
rule.

The order of the rules mentioned above corresponds to the prior-
itized order of the subjects according to Carpenter et al. This was
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identified in various signs, like the simplicity of constant in a row,
the preference of figure addition over distribution of two values and
the preference of quantitative pairwise progression over distribution
of two values [3, p. 421]. Therefore, BETTERAVEN tests the rules
in the order depicted above, except for quantitative pairwise progres-
sion, which is tested before distribution of three values [3, p. 421].
The exact reason for this preference is not explained, however. The
model prefers distribution of three values, because this rule requires
less calls to the declarative memory and hence is simpler to apply. In
addition, if the model tested quantitative pairwise progression before
distribution of three values, a lower correlation with the subjects’ cor-
rectness as well as a lower correlation of the model’s response times
with its error rates is achieved. The error rates of the subjects also
depend on the number of rules required [3, p. 411]. Thus, a prob-
lem that most solve correctly requires only one rule, but a problem
difficult for the subjects requires the application of up to eight rules.

If the cells of a problem contain more than one object, another
complexity is to associate the objects covered by one rule. In most
of the problems, the objects are associated clearly. However, in the
Advanced Progressive Matrices there are problems in which the as-
sociation of the objects may be difficult. The grouping of the objects
follows the matching names heuristic [3, p. 417], whereby the ob-
jects are grouped according to their names. The objects’ names are
determined in their shape attribute. Hence, in Problem 1 squares as
well as diamonds and triangles are grouped.

3 The Evaluation

The cognitive model was tested on different sets of problems which
are functionally equivalent to the Set II of the Advanced Progressive
Matrices and Sets C through E of the Standard Progressive Matrices.
The empirical data was collected from Heller et al. [8, 9].

3.1 Cognitive Approach

The conclusions described below correspond to the best achievable
correlation to the Standard and Advanced Progressive Matrices with
individual parameters. The correlation was computed using Pear-
son’s correlation coefficient.

Standard Progressive Matrices. The model is able to solve 35
out of the 36 problems. The correlation between the percentage of
problems solved correctly by subjects and by the model is r = .5.
This correlation is achieved with the parameter values listed in Ta-
ble 1, column SPM. Towards the standard values of ACT-R, learned
chunks are forgotten faster, but the point where a chunk is forgot-
ten, is later. As a consequence the chunks learned early on are more
difficult to retrieve than the most recent.

Table 1. Parameter values of the best correlations with the different
IQ-tests and the parameter setting to solve all problems correctly.

Tested Total SPM APM Maximal
range correctness

Noise [0.3, 0.5] 0.5 0.5 0.4 0.0
Retrieval threshold [−0.3,−1] −0.6 −0.6 −0.6 −1
Decay parameter [0.9, 0.99] 0.94 0.97 0.9 0.95
Pearson’s Correlation r .70 .5 .8

Advanced Progressive Matrices. The model solves 31 out of the
36 problems of the Advanced Progressive Matrices Set II. We get

a correlation of r = .8 between the subjects’ data and the parame-
ter values listed in Table 1, column APM. Only for the three hardest
problems, does the visual-num-finsts parameter have to be set to 32
(this means that the model is able to recognize 32 objects as consid-
ered), with a standard value of 4. This relatively high value can be
associated with some kind of reasoning difficulty: the more differ-
ent objects have to be kept in working memory the more difficult a
problem is.

The first problems can be solved by the model, as by the subjects,
with few errors. The reasoning difficulty associated with a higher er-
ror rate increases with the increasing number of the problem. High
deviation at some problems can be explained by the fact that the dif-
ficulty of this problems consists of the difficulty in grouping the ob-
jects covered by one rule, because the objects look similar. The ap-
plication of the rule at the group of objects is comparatively simple
or fewer rules are required. Because the grouping is pretended, this
type of problems is easier for the model than for subjects.

3.1.1 Response Times

The model requires 13.03 seconds, on average, to solve a problem,
with a standard deviation of 3.75 seconds. A correlation of r = .54
between the model’s response time and its error rates was achieved.
Hence, the model requires more time to solve a more complex prob-
lem than a simple problem. This is explained by the requirement of
more rules to solve the problems as well as the greater amount of
time a rule requires. In addition, more time is needed if the model
first assumes the wrong rule, after which it finds a conflict and has
to start again. This often occurs if the rule covers a higher number of
objects, like figure addition.

Note that the time the model needs to find the correct solution
depends considerably on the number of the solution. The reason is
that it takes more time to consider each putative answer – requiring
to consider every possible solution if the correct solution is the last
one, but only one possible solution if it is the first one.

3.1.2 Comparison of Performance to BETTERAVEN

Overall, our model solves 66 out of 72 problems, whereof 31 out of
the 36 problems of the Advanced Progressive Matrices Set II. Car-
penter and colleagues’ model BETTERAVEN solves 7/12 problems
of Set I and 25/36 of Set II of the Advanced Progressive Matrices [3].
Two of the tested problems can not be solved by BETTERAVEN, as
these problems do not adhere to one of the five rules identified by
Carpenter and colleagues [3, p. 421]. The performance of an addi-
tional 9 problems were not reported. Seven out of these 9 problems
are solved by our model.

In contrast to BETTERAVEN our model produces error rates. This
allows for conclusions about the cognitive reasoning difficulty of the
respective problem. The correlation between the model’s and the sub-
jects’ error rates is r = .7. Further, the model produces response
times that are higher for difficult and lower for simple problems. The
predicted response times correlate with r = .54 with the error rates.

3.1.3 Performance at both the Standard and Advanced
Progressive Matrices

The highest overall correlation with identical parameter settings is
r = .7 for all problems of the Standard and Advanced Progressive
Matrices together. The respective parameter values are listed in col-
umn Total in Table 1. Compared to the parameter values achieving
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the highest correlation at the Standard Progressive Matrices, the pa-
rameters induce faster forgetting (i.e., the chunk activation falls be-
low the retrieval threshold). This is explained by the fact that the so-
lutions created by the model can be retrieved with greater difficulty.
Focusing on the parameter values achieving the highest correlation at
the Advanced Progressive Matrices, forgetting knowledge is slowed
down. Hence, the model forgets created solutions more slowly and is
able to retrieve them especially in complex tasks more often. Hence,
the model is more accurate in solving the problems. Since the model
is not forced to consider the cells’ objects in a given order, the per-
formance is decreased in problems where the order of the considered
objects is important. Testing conflicting rules first can lead to the
neglect of previously created correct solutions, which cannot be re-
membered in the solution finding process, as the creation occurred
too long ago.

3.2 AI Approach

If we eliminate several human-like features such as the ability to
forget identified patterns, eliminate reinforcement learning and the
calculation of utilities for different production rules we allow a de-
terministic processing of the model. This in turn can be used to test
how many problems can be solved overall. Different production rules
can be still in conflict. The parameter values to achieve the maximal
performance is the visual-num-finsts parameter of 32 and the param-
eter values listed in Table 1, column Maximal correctness. Hence,
the model is able to solve 90.7% of all tested Matrices problems.

4 Conclusion

Intelligence tests such as Raven’s Progressive Matrices still pose
problems for computational systems and cognitive theories. Our mo-
tivation is to develop a system that is able to solve geometrical rea-
soning problems both from a formal, i.e., to solve as many problems
as possible, and a cognitive side, i.e., to solve them like humans do
– reproducing their errors and explaining why some problems can
be solved more easily than others. There are several reasons for this:
First, ambiguous situations which call for several production rules
may lead to the application of the wrong rules. Second, a reasoner has
to keep track of all the identified patterns. This is reflected in ACT-R
by the visual-num-finst parameter. It tells ACT-R how many items
the model can keep track of. After that many items are attended,
the model forgets if the first attended object already was attended.
Hence, the model considers this object as unattended. For problems
containing many objects, the visual-num-finst parameter has to be
set to a value much higher than the standard value given by ACT-
R. For instance, to solve the last APM problem, a visual-num-finst
parameter value of 32 is required, whereas the standard value is 4.
This change of the default parameter is necessary as otherwise the
model considers objects which were already investigated. Changing
this parameter value can be avoided by storing the x-coordinate and
pretending a fixed order in which the objects are considered. This
forces the model, however, to consider the objects in the first cell
from left to right, thus, no random order is possible anymore.

Six of the problems cannot be solved by the model. To solve four
of them, the model has to take account of the solution possibili-
ties and choose the one matching best the self created solution. The
model currently constructs an exact solution and is not able to solve a
problem where creating an exact solution is not possible. According
to cognitive science, it is apparent that subjects take into account pos-
sible solutions and choose the one matching the self created solution

best. Two further problems can be solved with two additional rules.
On the one hand, particular attributes of the first and second column
are used to construct the object of the third column. For example, the
shape of the first column as well as the rotation of the second column
yields the object in the third column. On the other hand, the quan-
tity of the objects is added, where objects of one type count positive
and objects of another type count negative. However, each of the two
additional rules would be applied on a single specific problem only.
We wanted to present a model which solves the Progressive Matrices
using general rules. Thus, we did not implement rules which only
match a single specific problem.

Overall, the model is able to solve 66 of the 72 problems. The er-
ror rates of the single problems provided by ACT-R are similar to
human data, hence problems which are complex for the subjects are
also complex for the model. The predicted response times correlate
with the subjects’ error rates. Again, solving complex problems re-
quires more time for the model. The problems on which the model
failed, can be solved by implementing two additional rules and tak-
ing into account the possible responses and choosing the one best
matching the created solution. Further, the model is able to simulate
an above-average intelligent subject who is able to solve 90.7% of the
problems. Future work will investigate if fluid concepts (as concep-
tualized in Copycat [13]) can be used to solve geometrical analogy
problems and how to extend ACT-R 6.0 with such concepts.
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