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Abstract. microRNAs (miRNAs) are an important class of regula-
tory factors controlling gene expressions at post-transcriptional level.
Studies on interactions between different miRNAs and their target
genes are of utmost importance to understand the role of miRNAs in
the control of biological processes. This paper contributes to these
studies by proposing a method for the extraction of co-clusters of
miRNAs and messenger RNAs (mRNAs). Different from several al-
ready available co-clustering algorithms, our approach efficiently ex-
tracts a set of possibly overlapping, exhaustive and hierarchically or-
ganized co-clusters. The algorithm is well-suited for the task at hand
since: i) mRNAs and miRNAs can be involved in different regulatory
networks that may or may not be co-active under some conditions, ii)
exhaustive co-clusters guarantee that possible co-regulations are not
lost, iii) hierarchical browsing of co-clusters facilitates biologists in
the interpretation of results. Results on synthetic and on real human
miRNA:mRNA data show the effectiveness of the approach.

1 Introduction

microRNAs (miRNAs) are small ribonucleic acid (RNA) molecules
that can be found in most of eukaryotic cells. They are post-
transcriptional regulators that bind to complementary sequences on
target messenger RNA (mRNAs). In the last decade, miRNAs were
recognized as a distinct class of biologic regulators with conserved
functions. In particular, research has revealed multiple roles in nega-
tive regulation (transcript degradation and sequestering, translational
suppression) and possible involvement in positive regulation (tran-
scriptional and translational activation) [6, 19]. By affecting protein
production of genes, miRNAs are likely to be involved in most bio-
logic processes and control many metabolic pathways [26].

The study of the possible bonds between miRNAs with comple-
mentary sequences on target mRNAs has been recognized as an in-
teresting biological research problem that is worth to be investigated.
Indeed, miRNA expression profiles can provide valuable clues for in-
vestigating the properties of miRNAs, such as tissue specificity and
differential expression in cancer/normal cells [18]. On the other hand,
different mRNAs that are bound by the same miRNAs may share
unknown functional properties. In this context, the application of co-
clustering techniques seems to be a natural choice in order to identify
co-clusters of miRNAs and mRNAs. In fact, as recognized in [5], the
task of co-clustering well matches one of the major problems in com-
putational biology: discovering regulatory modules that control gene
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transcription in biological model systems. As a consequence, several
papers in the literature apply co-clustering algorithms in the biologi-
cal domain [3, 28, 21, 4, 7]. However, they work on gene expression
data and not on predictions of miRNA:mRNA interactions.

In order to properly work on miRNA:mRNA interactions, three
important issues have to be considered: i) mRNAs and miRNAs can
be involved in different regulatory networks that may or may not be
co-active under all conditions [4], ignoring this aspect would lead
to the identification of incomplete regulatory networks; ii) in order
to avoid losing possible co-regulations, each miRNA and mRNA
should belong to at least one co-cluster (exhaustiveness); iii) miR-
NAs:mRNAs prediction datasets are inherently large and the applica-
tion of classical co-clustering techniques may result in a high number
of extracted co-clusters, thus negatively affecting the interpretability
of results. In order to face these three issues, it is necessary to ex-
tract overlapping and exhaustive co-clusters which are hierarchically
organized (hierarchy helps biologists in the analysis of the results).

There are a few papers in the literature that extract overlapping co-
clusters from gene expression data. In one of the pioneering works
on this topic [4], a greedy heuristic search is performed to generate
arbitrarily positioned, overlapping co-clusters, based on a homogene-
ity constraint. However, co-clustering is based on iterative insertions
and deletions of genes and conditions asymmetrically (i.e. insertions
and deletions of conditions depend on insertions and deletions of
genes). Moreover, as pointed out in [7], this iterative algorithm is ex-
pensive, since it identifies individual co-clusters sequentially rather
than all at once. The algorithm also causes random perturbations to
the data, while masking discovered co-clusters, which reduces the
co-clustering quality. In [21] genes and conditions are represented
according to a binary matrix which is recursively divided into two
smaller (possibly overlapping) submatrices, after a rearrangement of
columns/rows. This means that this approach follows an expensive
search strategy [1] that is impractical for large datasets. In [1] the au-
thors defined a co-cluster as an order-preserving submatrix (OPSM).
According to this definition, a co-cluster is a group of rows whose
values induce a linear order across a subset of the columns. A subma-
trix is order-preserving if there is a permutation of its columns under
which the sequence of values in every row is strictly increasing. As
in [4] rows and columns are not interchangeable. Moreover, OPSM
does not support hierarchical co-clusters and is designed to identify
only a single co-cluster for each execution. In [3], the authors pro-
pose to extract overlapping and hierarchical co-clusters. However,
co-clustering is non-deterministic, the hierarchy is built on a single
dimension and overlapping is supported on the other dimension.

In [7], the authors propose an efficient meta algorithm (called
ROCC) to co-cluster gene expression data. This algorithm works in a
bottom-up fashion and merges co-clusters in order to obtain a hierar-

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-654

654



chy of co-clusters. Merging is performed by identifying the “closest”
co-clusters at each iteration. However, merging works on “relation-
ships” (or edges) rather than objects (e.g. genes and conditions) and
is based on a simple distance function between co-clusters. An ad-
ditional problem is that extracted co-clusters are not exhaustive. Al-
though this is motivated by the necessity of removing noise objects,
it contrasts with one of the issues raised from the application at hand.

Although similar to ours, methods specifically designed to work
with gene expression data have the specific goal of grouping together
rows (columns) with similar (both strong and weak) expressions.
This is different from our purposes, that is to group together miR-
NAs and mRNAs that show (only) reliable interactions.

According to this consideration, we propose an algorithm, called
HOCCLUS (Hierarchical Overlapping Co-CLUStering), for efficient
discovering of overlapping, exhaustive and hierarchically organized
co-clusters according to a bottom-up strategy. Our algorithm does
not focus on “relationships” in the merging process (as ROCC does)
but on objects (units of analysis) directly, with the opportunity of
dealing with unbalanced datasets (i.e. objects of different type par-
ticipate with significantly different cardinalities in the interactions).
Moreover, we use the concept of separability of co-clusters together
with that of distance. This allows us to have co-clusters defined ac-
cording to both density and distance-based criteria.

2 The proposed method

Co-clustering is strictly related to bipartite graph partitioning. A bi-
partite graph is an undirected graph where nodes are partitioned into
Vr and Vc

6 such that no edge connects the nodes in the same parti-
tion. Formally, a bipartite graph G is defined as G = (Vr ∪ Vc, E),
where E ⊆ Vr × Vc, and can be represented by an adjacency matrix
An×m, where n = |Vr|, m = |Vc| and [A]ij is the weight of the
undirected edge eij ∈ E that connects the node i ∈ Vr to the node
j ∈ Vc. Without loss of generality, we impose that [A]ij ∈ [0, 1].

Intuitively, starting from a non-overlapping co-clustering, which
can be obtained by running one of the methods already available in
the literature (e.g., [8, 16, 27]), our method consists of an iterative
process in which, at each iteration, two phases are performed, that is,
overlap identification and merging. In the former, some objects (miR-
NAs or mRNAs) belonging to a co-cluster can be added to another
co-cluster. In the latter, co-clusters are merged when some heuristic
criteria are satisfied. It is noteworthy that at each iteration several
pairs of co-clusters can be merged. Moreover, at each iteration, de-
pending on whether merging is performed, an additional level of the
hierarchy may or may not be added. This iterative process stops when
neither overlaps nor merges are performed in the last iteration.

Formally, the problem we intend to solve is defined as follows:
Given: a bipartite graph G = (Vr ∪ Vc, E), the corresponding ad-
jacency matrix An×m, a co-clustering quality function q : C ×
[0, 1]n×m → R (where C is the set of possible co-clusters) and a
quality threshold α for q(·, ·).
Find: a set of co-clusters Lj for each level j = 1, . . . , k such that:
a) for each set Lj , j = 2, . . . , k we have that ∀ C′ ∈ Lj ∃ C′′ ∈
Lj−1 such that C′′ ⊆ C′ (hierarchical organization);
b) co-clusters at the same level can share objects in Vr and in Vc

(overlapping);
c) for each object o in Vr∪Vc, for each level j = 1, . . . , k, ∃C′ ∈ Lj

for which o ∈ Ci,j (exhaustiveness);

6 Subscripts r and c stand for row and column, respectively. Here rows refer
to mRNAs and columns refer to miRNAs (interchangeable, in HOCCLUS).

Algorithm 1 Hierarchical and overlapping co-clustering.
Input: the matrix An×m; the function q(·, ·)
L1 =< Ci >i=1..l1← non overlapping coclustering(A);
k ← 1;
repeat
< numOverlaps, L′k >← overlapping(Lk, A);
< numMerges, L′′k >← merging(L′k, A, q(·, ·));
if numMerges > 0 then
k ← k + 1; Lk ← L′′k−1;

else
Lk ← L′k;

end if
until numOverlaps = 0 and numMerges = 0
return L1, L2 . . . Lk

d) for each co-cluster C′ ∈ Lj obtained after merging, q(C′) ≥ α
(quality constraint)7.

It is noteworthy that Lk does not necessarily contain a single co-
cluster, meaning that a forest of co-clusters is actually returned. This
is coherent with the task at hand, where some sets of miRNAs might
be totally unrelated to some sets of mRNAs. Moreover, the qual-
ity threshold implicitly determines the number of the levels and the
number of final co-clusters (which should hopefully be small to fa-
cilitate co-cluster analysis). Algorithm 1 solves the considered prob-
lem: it takes as input the adjacency matrix and the quality function
and returns the hierarchy of co-clusters.

In this work we use METIS [16] to generate an initial non-
overlapping/non-hierarchical co-clustering, which can be obtained
by forcing node weights such that in the same cluster both miRNAs
and mRNAs should appear. METIS requires as input the number of
co-clusters l1. As proposed in [9], the search for the optimal l1 can
be reduced from the range [1, n+m] to [1,

√
n+m] without losing

too much in the approximation. Since the problem of choosing the
right number of co-clusters is mitigated by the hierarchical approach,
we set l1 to the maximum value in the range, i.e. l1 =

√
n+m.

Overlap Identification

The basic assumption behind the overlap identification is that two
non-overlapping co-clusters should be (linearly or not) separable in
the space. According to this assumption, we identify objects belong-
ing to one co-cluster that can be added to another co-cluster.

In particular, given two co-clusters Ci and Cj (belonging to the
same level in the hierarchy), i �= j, we identify two optimal sepa-
rating hyperplanes between Ci and Cj by learning an SVM model
for each dimension (miRNAs and mRNAs). Since our goal is not to
build a good predictive classification model, but to evaluate the sepa-
rability of objects belonging to different co-clusters, the objects in Ci

and Cj are used as both training set and testing set. Misclassified ob-
jects are those which possibly belong to both considered co-clusters.
Intuitively, the separating hyperplane can be interpreted as delineat-
ing the changes of the underlying data distribution between Ci and
Cj . This is coherent with studies that exploit SVMs for clustering
[2]. When learning SVMs, each row (column) object is represented
as its corresponding row (column) vector of A. The use of SVMs as
discriminative methods is motivated by their recognized peculiarity
in dealing with sparse data [14], that is a common situation in a miR-
NAs:mRNAs adjacency matrix. In this way we obtain an overlapping
co-clustering, where the common objects are those objects that can-
not be correctly classified by the separating hyperplane (Figure 1).

7 At this stage we do not impose any additional condition on the quality
function. However, as it will be clarified, it is the co-cluster compactness.
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Figure 1. Overlapping between two clusters along one dimension. The red
object (misclassified) is added to the other cluster.

Figure 2. An example of the objects distribution of the row dimension of
the co-clusters Ci and Cj . In this case, Ci and Cj are candidates for merging.

Note that SVMs have to be constructed on each pair of co-clusters
for each level. In order to obtain a result which is independent of
the order in which pairs of co-clusters are analyzed, the misclassified
objects are added at the end of the overlap identification process.

In Algorithm 1, overlapping(Lk, A) is in charge of identifying
possible overlaps. It returns the number of objects that have been
added to co-clusters and the updated set of co-clusters with added
objects. In our implementation, the algorithm used for learning
SVMs is SMO [20] with the default kernel (linear). The usage of
SMO is motivated by its linear time complexity.

Merging

Once a set of overlapping co-clusters has been obtained, we can an-
alyze them to evaluate if some pairs of co-clusters can be reasonably
merged. A naı̈ve approach would consider only distance or the num-
ber of common objects, neglecting the statistical distribution of the
objects. Here, we assume that objects in a co-cluster are normally
distributed and we consider the distance between pairs of co-clusters
in order to merge those for which a defined percentage of (possibly
unknown) objects can statistically be in common.

Formally, two co-clusters Ci, Cj are candidates for merging if:
dist(C

(r)
i , C

(r)
j )− 2σ(C

(r)
i )− 2σ(C

(r)
j ) ≤ 0 or

dist(C
(c)
i , C

(c)
j )− 2σ(C

(c)
i )− 2σ(C

(c)
j ) ≤ 0

where C
(r)
i (C(c)

i ) is the cluster of row (column) objects belonging
to the co-cluster Ci, dist(x, y) is the euclidean distance between the
centroids of the clusters x and y and σ(x) is the standard deviation of
the cluster x (see Figure 2). Considering the factor 2 for σ(x), we in-
clude in each sphere about 95.4% of the objects of the corresponding
cluster, as a consequence of the Chebyshev’s inequality.

If a pair of co-clusters {Ci, Cj} is a candidate for merging, the
quality constraint q(Ci ∪Cj , A) > α is evaluated. α allows the user
to decide the minimum quality value that each co-cluster obtained
after a merging step has to satisfy. Low values of α facilitate merging
at the price of low quality co-clusters.

As quality function, we have considered the following function:

q(C,A) =

∑
x∈C(r)

∑
y∈C(c) [A]r(x),c(y)

|C(r)| ∗ |C(s)|

where r : C(r) → [1, n] (c : C(c) → [1,m]) is a function that

Algorithm 2 merging(Lj , A, q(·, ·))
Input: set of co-clusters Lj ; the matrix An×m; the function q(·, ·)

mergeCandidates ← ∅; L ← Lj ; numMerges ← 0;
for all pairs of co-clusters Ci, Cj ∈ L do

if (dist(C(r)
i , C

(r)
j ) − 2σ(C

(r)
i ) − 2σ(C

(r)
j ) ≤ 0 or

dist(C
(c)
i , C

(c)
j ) − 2σ(C

(c)
i ) − 2σ(C

(c)
j ) ≤ 0) and q(Ci ∪

Cj , A) > α then
add < Ci, Cj , q(Ci ∪ Cj , A) > to mergeCandidates;

end if
end for
sort mergeCandidates in descending order, w.r.t. the quality;
for all candidate cand ∈ mergeCandidates do

if (cand.first ∈ L) and (cand.second ∈ L) then
newCocluster ← union(cand.first, cand.second);
remove cand.first from L; remove cand.second from L;
add newCocluster to L;
numMerges ← numMerges+ 1;

end if
end for
return < numMerges, L >;

maps a row (column) object to the corresponding row (column) index
of the matrix A. The quality function q measures the intra-cluster
cohesion (also known as “compactness” in classical clustering) and
is computed as the normalized sum of the edge weights in C.

As in the overlapping step, in order to obtain a result which is
independent of the order in which pairs of co-clusters are analyzed,
merging is actually performed at the end of the procedure. Obviously,
a co-cluster could be a candidate for more than one merging. For ex-
ample, assuming that the algorithm identifies {Ci, Cj} and {Ci, Cz}
as two candidate pairs, we consider that with the maximum value of
the quality function (see Algorithm 2).

As stated before, our overlap identification and merging proce-
dures allow us to consider both the density of co-clusters and the
distance among the objects at no additional time complexity. It can
be proved8 that our choices lead to a max{O(u∗n∗m), O(u∗ (n+
m)

3
2 )} worst-case time complexity (u is the number of iterations).

3 Experiments

In this section, we evaluate the performances of the proposed algo-
rithm (HOCCLUS) on a real dataset9. The dataset, which concerns
the human genome, consists of a set of mRNA:miRNA pairs pre-
dictions (for a total of 13,130 mRNAs and 470 miRNAs), extracted
by miRNAMap database [12]. miRNAMap collects experimentally
verified miRNAs and experimentally verified miRNA target genes in
human, rat and other metazoan genomes and also provides data on
miRNA targets in 3’-UTR (UnTranslated Region) of genes predicted
by using three algorithms (miRanda, RNAHybrid and TargetScan)10.

The prediction strength of each mRNA:miRNA pair (i, j) is de-
scribed by the following three values:

• w
(1)
ij ∈ {1, 2, 3} (criterion 1) is the number of algorithms which

predicted the miRNA target site;
• w

(2)
ij ∈ N (criterion 2) is the number of miRNA target sites

found in the same UTR region;

8 Due to space constraints, proof is not reported in this paper.
9 ftp://mirnamap.mbc.nctu.edu.tw/miRNAMap2/miRNA_
Targets/Homo_sapiens/miRNA_targets_hsa.txt.tar.gz

10 All the material required to replicate experiments is available at:
http://www.di.uniba.it/%7Ececi/micFiles/systems/
HOCCLUS/index.html
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• w
(3)
ij ∈ {0, 1} (criterion 3) is the accessibility of the target site.

According to these criteria, the unnormalized adjacency matrix A′ is

[A′]ij = γ1 · w(1)
ij + γ2 ·

w
(2)
ij

max∀pairs(x,y) w
(2)
xy

+ γ3 · w(3)
ij

where γ1, γ2, γ3 are set to 1000, 10, 100, respectively. These pa-
rameters are set by the domain experts (biologists co-authors of this
work) and are considered as background knowledge. The rationale is
that they consider the importance of the three criteria at three differ-
ent orders of magnitude, that is, criterion 1 dominates over the other
two criteria while criterion 3, ceteris paribus on criterion 1, domi-
nates over criterion 2. It should be noted that the proposed weighing
implicitly allows us to handle noisy data (e.g. false predictions). In
fact, the value of w(1)

ij can be considered as a good indicator of the
confidence we have in the prediction.

Information on the position of the target site is ignored and
the maximum value of the weights is considered for duplicate
mRNA:miRNA prediction pairs.

The adjacency matrix A is then obtained by normalizing each
weight for the absolute maximum value of the matrix:

[A]ij = [A′]ij/maxi=1,2,...n;j=1,2,...m [A′]ij .
Co-clusters are evaluated on the basis of the average co-clustering

compactness, which measures the strength of the intra-co-clusters
connections: p(L,A) = 1∑

Ci∈L |Ci|
∑

Ci∈L |Ci| q(Ci, A), where

L is the set of co-clusters obtained at the last iteration and r(x) and
c(y) are the mapping functions defined in Section 2. We notice that
the average compactness is biased towards small co-clusters. This
justifies the consideration of an additional evaluation measure, called
average co-cluster co-regulation, which is defined as follows:

g(L,A) =
1∑

Ci∈L
|Ci|

·
∑

Ci∈L

|Ci|
|C(c)

i |
∑

y∈C(c)
i

s(y,A,Ci)

where s(y,A,Ci) is the percentage of mRNAs that are bound by
both the miRNA y and at least another miRNA in Ci. Formally,

s(y,A,Ci) =

∣
∣
∣{x∈C(r)

i

∣
∣
∣[A]r(x),c(y)>0,∃y′∈C(c)

i ,y′ �=y, [A]r(x),c(y′)>0}
∣
∣
∣

∣
∣
∣{x∈C(r)

i

∣
∣
∣[A]r(x),c(y)>0}

∣
∣
∣

The average co-cluster co-regulation is particularly useful to biol-
ogists since it allows them to identify co-regulations of mRNAs from
miRNAs. Indeed, while p(·, ·) prefers small co-clusters, g(·, ·) is bi-
ased towards large ones. Our goal is to keep a good trade-off between
compactness and co-regulation with a limited number of co-clusters.

Results are collected by considering the quality function defined
in Section 2 and by using different values of the threshold α.

Quantitative evaluation

Results reported in Table 1 show that the number of obtained levels is
relatively low. Moreover, a closer analysis of the obtained hierarchies
shows that they are generally balanced. Both aspects guarantee a high
level of interpretability of the hierarchies.

The dataset is also analyzed with ROCC [7], that returns overlap-
ping and hierarchical co-clusters. This analysis led to obtain a set
of co-clusters that include only 33% of mRNAs and 53% of miR-
NAs (co-clusters are non-exhaustive) with low average compactness
and co-regulation (0.010 and 0.015, respectively). The poor com-
pactness results obtained by ROCC are motivated by the fact that
ROCC extracts co-clusters with a highly balanced number of rows
and columns. Although this property is desirable in principle, it does
not enable ROCC to respect the original proportion among rows and

Figure 3. (a) Average elapsed time for each iteration, with different per-
centages of the number of mRNAs. (b) Number of co-clusters obtained at the
last iteration with different percentages of the number of mRNAs.

Table 1. Results obtained by varying α. iter is the number of executed iter-
ations, lev is the number of hierarchy levels, #cc is the number of co-clusters
at the last level. Comparison with METIS (lev = 1) and ROCC is reported.

α iter lev #cc p(·, ·) g(·, ·) t(s)11

HOCCLUS 0.1 16 6 21 0.096 0.853 1711
0.2 13 6 52 0.198 0.794 1709
0.3 15 5 85 0.290 0.753 2767
0.4 16 4 98 0.339 0.739 3364
0.5 15 4 104 0.362 0.734 3322

METIS - - - 115 0.412 0.746 10
ROCC - - - 198 0.010 0.015 1517

Table 2. Scalability test on different portions of the dataset. The number
of sampled miRNAs is kept constant (470). The first column represents the
percentage of sampled mRNAs for each sampling.

% iter lev #cc p(·, ·) g(·, ·) t(s)11 t/iter

10% 10 4 34 0.146 0.295 58 6
20% 11 4 42 0.161 0.854 143 13
30% 15 4 49 0.161 0.000 348 23
40% 16 5 50 0.169 0.820 499 32
50% 16 6 52 0.162 0.783 750 46
60% 14 6 55 0.182 0.802 844 60
70% 17 5 63 0.168 0.737 1503 90
80% 18 6 54 0.175 0.796 1618 92
90% 12 6 59 0.186 0.755 1491 121

100% 13 6 52 0.175 0.794 1709 131

columns (in the dataset we have 470 miRNAs and 13,130 mRNAs).
Moreover, ROCC groups together rows (columns) with similar (both
strong and weak) expressions and does not group together miRNAs
and mRNAs that show (only) reliable interactions.

Another important aspect is that METIS reveals its ability to ob-
tain a set of co-clusters with the best values of compactness and
co-regulation. However, it cannot define a hierarchy of co-clusters,
which is the actual advantage of our method. Although in Table 1
only the results obtained at the last hierarchy level are reported, the
proposed algorithm returns all the identified hierarchy levels (includ-
ing the first level, obtained by METIS), with a (generally) decreas-
ing average compactness. In fact, this aspect gives the biologists the
possibility to browse hierarchies of co-clusters of miRNAs and mR-
NAs whose higher levels consist of a relatively small number of co-
clusters, each of which represents similar co-regulation roles.

Observing the overall results, in this dataset, the combination that
presents the best trade-off between compactness, co-regulation and
the number of co-clusters is that with α = 0.2. As already stated,
α = 0.2 guarantees that each co-cluster obtained by merging two
co-clusters has at least a compactness value of 0.2. Finally, running
times are comparable with those observed for ROCC.

11 Experiments are run on a 4 Intel CPUs @4Ghz system, 16GB of RAM.
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Figure 4. Average F-Measure (among levels) by varying the noise.

We used α=0.2 to execute a scalability test, in order to empirically
evaluate the time complexity with respect to the number of miRNAs
and mRNAs. It is noteworthy that the test can be performed with any
α value since this parameter does not directly affect time complexity.
In this test, three samples obtained with a uniform sampling over the
mRNAs are used and the average results are collected (see Table 2).

From the results in Table 2 and from Figure 3(a), it is possible
to observe that the average running time for each iteration increases
coherently with the time complexity reported in Section 2.

Finally, as it can be observed in Figure 3(b), the number of
co-clusters identified at the last iteration is almost constant and does
not increase considerably when the number of miRNAs increases.
This is a positive aspect, which allows us to conclude that the
number of co-clusters is generally independent from the number of
objects, but mainly depends on objects distance and density.

Significance of the extracted hierarchies

In this section, we evaluate the significance of the hierarchy extracted
by HOCCLUS. To this end, we generate a set of synthetic datasets,
each of which includes 256 column and 16128 row objects. An initial
dataset is generated by simulating a hierarchy in the underlying dis-
tribution of the data. This is obtained by imposing the strongest edge
weight between objects of the 128 groups (l1 =

√
n+m = 128)

at the first level (for each group, we have 2 column and 126 row ob-
jects). Seven additional levels are simulated by imposing decreasing
weights such that the compactness at the last level is greater than 0.2.
We expect that the entire 8-levels hierarchy would be completely dis-
covered with α = 0.2. Starting from this initial dataset, 30 datasets
are generated by adding a noise ∼ N(0, σ2), with different values of
σ. This allows us to evaluate how our method is robust to noise.

Results are measured in terms of the average F-Measure, by
considering as expert’s judgment the hierarchy imposed in the
initial (noise-free) dataset. It is noteworthy that average F-Measure
implicitly evaluates overlapping, since it is defined for multi-class
classification problems. Results show (see Figure 4) that the hierar-
chy structure is almost correctly discovered, even in the case of very
high noise (σ = 0.3 for a range of the weights of [0,1]).

Qualitative evaluation

In this section, the effectiveness of the algorithm in extracting biolog-
ically relevant co-clusters is presented. At this purpose, two different
criteria are used: i) the similarity of co-clustered miRNAs on the ba-
sis of their classification in the same miRNA family or gene cluster12;
ii) validated information on functional associations of co-clustered
miRNAs and mRNAs. The main resources used for the analysis of
co-clusters are Rfam database [11], for miRNA family classifica-
tion, miRBase [17], to search complete information about miRNAs,
PubMed [10], to search for literature references and DAVID [13], for

12 It has been proved that highly related miRNAs are organized as gene clus-
ters, transcribed as polycistronic primary transcripts, and may act on the
same mRNA or on different mRNAs with conserved binding sites [24].

functional classification of co-clustered mRNAs.
We verify whether the merging step identifies significant pairs of

co-clusters to be merged. As an example13, we now examine the co-
clusters with ID “50” and “52” belonging to the level 0 of the hi-
erarchy (identified by METIS) and the co-cluster with ID “50-52”14

obtained by merging them during the first iteration, with α = 0.2.
We chose co-cluster 50-52 since it is one of the co-clusters with
the highest compactness/co-regulation. Quantitative information on
these co-clusters are shown in Table 3.

The first analysis, carried out by using miRBase, shows that, ex-
cept hsa-miR-372, the miRNAs in the co-clusters 50 and 52 are
grouped coherently with their family. As for genomic clustering, it
follows more or less the same trend. Exceptions are hsa-miR-520e,
which does not belong to any miRNAs gene cluster, and hsa-miR-
372, which belongs to a separate cluster.

This initial analysis confirms that the algorithm used for the non-
overlapping co-clustering step (METIS, in this case) provides us a
good starting point for our algorithm. However, the evaluation of the
co-cluster 50-52 requires a more detailed analysis. In particular, miR-
Base annotates for miRNAs in the co-cluster 50-52 only one useful
cross-reference with [24]. In this paper, published in 2004, authors
report about the results of a cDNA cloning study of miRNAs, ex-
tracted by human embryonic stem (hES) cells. They have discovered
a series of new miRNAs that are expressed by human cells in the
first step of embryonic development as unique and highly specialized
gene set. This includes all the miRNAs grouped in the co-cluster 50
and hsa-miR-372, that initially belongs to the co-cluster 52.

Furthermore, in [23], the authors report that miR-302 and miR-
372 promote human fibroblasts reprogramming to pluripotent stem
cells through the targeting of multiple mRNAs . However, these find-
ings still do not explain why hsa-miR-372 is in the co-cluster 52,
why the co-cluster 50-52, obtained by merging co-clusters 50 and
52, has so high compactness and co-regulation values and why hsa-
miR-520e, that is not included in the miRBase gene cluster of hsa-
miR-520b, hsa-miR-520c and hsa-miR-526b* is in the co-cluster 52.
By extending the search of correlations among hsa-miR-302, hsa-
miR-372 and hsa-miR-520 miRNAs to specialized web resources,
we find that miRDB[25], a database on miRNA target predictions
and functional annotations, reports that hsa-miR-302a, hsa-miR-
302b, hsa-miR-302c, hsa-miR-302d, hsa-miR-372, hsa-miR-520b,
hsa-miR-520c and hsa-miR-520e share the same seed sequence.

Finally, we find confirmation of functional associations of co-
clustered miRNAs of the co-cluster 50-52 in [22], in which the re-
sults of a study on the differential expression of miRNAs during the
differentiation of hES cells are described. The authors demonstrated
that, among all the miRNAs differentially expressed in undifferenti-
ated hES cells, the members of the miR-302 cluster on chromosome
4 and miR-520 cluster on chromosome 19 were highly expressed.
The members of these two clusters share a consensus 7-mer seed se-
quence and their targeted genes had overlapping functions. All these
findings together fully confirm our predictions and completely satisfy
the question above. By using DAVID for the functional classification
of mRNAs of the co-clusters 50, 52 and 50-52, we find that some of
them fall into common KEGG [15] pathways. This confirms the abil-
ity of the algorithm to group together mRNAs putatively involved in
the same pathways, on the basis of their association with miRNAs.

13 As it will be clear from the rest of the section, it is not possible to analyze
several cases because of the inherent complexity of the biological analysis.

14 The co-cluster ID is only an identifier. It is not used by HOCCLUS and
brings with it information about its original co-clusters (after merging).
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ID #mRNAs p(·, ·) g(·, ·) miRNAs

50 126 0.784 1.000 hsa-miR-302a, hsa-miR-302b,
hsa-miR-302c, hsa-miR-302d

52 126 0.723 1.000 hsa-miR-372, hsa-miR-520b,
hsa-miR-520c, hsa-miR-520e,
hsa-miR-526b*

50-52 280 0.602 1.000 hsa-miR-302a, hsa-miR-302b,
hsa-miR-302c, hsa-miR-302d,
hsa-miR-372, hsa-miR-520b,
hsa-miR-520c, hsa-miR-520e,
hsa-miR-526b*

Table 3. Quantitative information about the co-clusters 50 and 52 (level 0)
and the co-cluster 50-52 (level 1). Note that the number of mRNAs in 50-52
is greater than the sum of mRNAs of the co-clusters 50 and 52. This is due to
the overlapping step that added some mRNAs from other co-clusters.

4 Conclusions

In this paper we have presented a co-clustering algorithm that faces
issues coming from the study of miRNA:mRNA relationships. The
proposed algorithm discovers overlapping, exhaustive and hierarchi-
cally organized co-clusters, from an initial set of non-hierarchical
and non-overlapping co-clusters. The algorithm is iterative and, at
each iteration, possible overlaps between co-clusters are identified
and then pairs of co-clusters are merged together when some heuris-
tic criteria are satisfied. Possible overlaps are identified through an
SVM-based algorithm and merging exploits statistical properties in
the data. Merging defines the hierarchical organization of co-clusters.

Experiments on human miRNAs:mRNAs data extracted from the
miRNAMap database show that the proposed algorithm allows us to
extract a relatively small number of co-clusters that preserve both
compactness and co-regulation. A detailed biological analysis con-
firms that co-clusters extracted from our algorithm represent mean-
ingful biological correlations between miRNAs and mRNAs. In par-
ticular, the comparison of extracted co-clusters with data reported in
the literature (especially on known miRNA families) confirms that
the algorithm may represent an effective and efficient tool for dis-
covering unknown functional synergies among miRNAs belonging
to different families at higher levels of the hierarchy. This would give
the biologists the opportunity of discarding meaningless hypotheses
whose (in-lab) validation is expensive and, on the other hand, to con-
centrate on the verification of potentially valid ones.

Although the proposed method has been motivated by specific
needs in the biological domain, the application to artificially gener-
ated data proves that it is general enough to be used in other domains.
In the future, we plan to explore this opportunity. We also plan to
embed an algorithm for the automatic determination of the merging
threshold α. Finally, we intend to extend the qualitative evaluation to
higher levels of the hierarchy.
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