
Optimizations for the Boolean Approach to Computing
Minimal Hitting Sets

Ingo Pill and Thomas Quaritsch1

Abstract. The Boolean approach to computing minimal hitting sets
proposed by Lin and Jiang is known to offer very attractive general
performance, but also has its issues, specifically with a cardinality-
restricted search. In this paper we propose optimizations regard-
ing the refinement rules, also offering a revised decision strategy as
well as optimized termination criteria that exploit cardinality bounds.
Our experiments including artificial and real-world samples for the
bounded and unbounded case show the potential of our work, where
we could achieve speed-ups of up to two orders of magnitude.

1 INTRODUCTION

When describing a problem as a set of structures, minimal hitting
sets that contain at least one element per structure often encode im-
portant aspects, and may even provide the solutions to essential prob-
lems. For instance, in model-based diagnosis, the minimal hitting
sets for a set of unsatisfiable cores (conflict sets) provide the diag-
noses [4, 9, 5], AI planning may profit from minimal hitting sets for
a set of landmarks [2], and in software debugging hitting sets of pro-
gram slices are used to identify program faults [12]. Even such low-
level tasks as transforming conjunctive and disjunctive normal forms
may draw on minimal hitting sets. The widespread application op-
tions entailed the development of many competing approaches, e.g.
[9, 5, 4, 11, 1], where some more recent ones [10, 3] may trade per-
formance with completeness. That is, aiming at some minimal so-
lution, they might shed others during optimization stages, as long as
the derived one is in fact a minimal one. For some applications, one’s
attention might be however on complete approaches, that is those
that can deliver the entire set of subset-minimal hitting sets. Lin and
Jiang proposed in [7] such an approach considering the sets to hit in
a structured way, and showed how to efficiently implement their idea
using bits for components. This Boolean approach is well-known to
offer very good performance, but also has its limitations. That is, if
we establish cardinality limits on the the desired solutions (due to re-
source limits, or if too complicated solutions are not of interest), the
Boolean approach, unlike the approaches of Reiter [9, 5] (HS-DAG)
and Wotawa [11] (HST), might struggle with exploiting these search
space limitations. In this paper we focus on such issues and propose
optimizations that help to tackle them.

We organized our paper as follows. We give a formal introduction
of the minimal hitting set problem and the Boolean approach in Sec-
tion 2. Section 3 offers an analysis of the issues at hand and provides
the details of our optimizations. In Section 4, we discuss our test sce-
narios, with Section 4.1 focusing on the test platform and our results.
Finally, we draw our conclusions in Section 5.

1 Institute for Software Technology, Graz University of Technology, Inf-
feldgasse 16b/2, 8010 Graz, Austria, email: {ipill,quaritsch}@ist.tugraz.at

2 THE MINIMAL HITTING SET PROBLEM
AND THE BOOLEAN ALGORITHM

According to Reiter [9], a hitting set and a minimal hitting set are
formally defined as follows:

Definition 1 Given a set of sets SCS, a set h ⊆ ⋃
CSi∈SCS CSi ⊆

COMP is a hitting set for SCS, iff for any set CSi ∈ SCS the inter-
section with h is non-empty, i.e. h ∩ CSi �= ∅.

Definition 2 Given a hitting set h for some SCS, h is said to be min-
imal with respect to subset inclusion, iff there exists no other hitting
set h′ for SCS, such that h′ ⊂ h.

While from here on we assume subset-minimality when referring
to minimal hitting sets (MHSs) there are also other attractive dimen-
sions for minimality. Let us consider the following example.

Example 1 Let SCS be the set {{1, 2, 5}, {2, 4}, {2, 3}}. Then, the
sets {2}, {1, 4, 3}, and {5, 4, 3} are (subset-)minimal hitting sets for
SCS, while obviously the first one is much smaller than the latter two.

Thus, when an MHS’s cardinality correlates with a problem so-
lution’s complexity, one might actually consider cardinality restric-
tions on the search space, specifically as some algorithms such as
HS-DAG [9, 5] and HST [11] tend to profit greatly from such restric-
tions via the resulting depth limits on their internal trees. Sometimes
also limits on computation resources require us to focus only on the
most attractive (in the current context smallest) solutions.

Another option in the same direction is to exploit probabilities
(weights). That is, in the context of model-based diagnosis, de Kleer
and Williams define the probability of an MHS (a diagnosis Δ) [4]
as

∏
x∈Δ pF (x) ·∏x∈COMP\Δ (1− pF (x)), where COMP is the set

of components, and pF defines the probability of c ∈ COMP’s ap-
pearance in Δ while assuming stochastic independence between the
components’ involvement. While in this paper we take cardinality
limits into account, our findings can be extended to consider other
metrics like probabilities.

As mentioned earlier, in 2003 Lin and Jiang proposed the Boolean
approach [7] using bits (propositions) for components e ∈ COMP in
order to derive all minimal hitting sets for a given SCS. They encode
SCS as a Boolean formula in disjunctive normal form (DNF), with
the conjuncts encoding the individual CSi ∈ SCS and consisting of
the corresponding (negated) element bits. A recursive function H(C)
containing five rules (considered in ascending order) derives from
this SCS formula another formula encoding the MHSs. That is, the
result still needs some subset-checks (or the use of Boolean laws)
in order to derive a canonical DNF where the conjuncts represent
the individual MHSs. Assuming C a Boolean formula, e an atomic

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-648

648

proposition with ē denoting its negation, and False/True referring to
e ∧ ē/e ∨ ē, H(C) is defined as:

R1: H(False) = True, H(True) = False;
R2: H(ē) = e;
R3: H(ē ∧ C) = e ∨H(C);
R4: H(ē ∨ C) = e ∧H(C);
R5: H(C) = e ∧ H(C1) ∨ H(C2) for some arbitrary atomic

proposition e present in C, with C1 = {ci | ci ∈ C ∧ ē �∈ ci}
and C2 = {ci | ē �∈ ci ∧ (ci ∈ C ∨ ci ∪ {ē} ∈ C)}.

Please note that like Lin and Jiang we consider a conjunction also
as a set of elements. R5 encodes the algorithm’s general strategy of
how to conquer the search space. That is, splitting on some proposi-
tion e ∈ COMP, the algorithm forks two branches; the “left” one that
considers those solutions containing e (and thus subsequently focus-
ing on those CSis not hit so far), while the “right” one assumes that e
is not part of the solution (with a further focus on all sets, but with ē
removed from the problem description – C is replaced by C2). R1 to
R4 resolve specific situations, that is, R4 covers the situation when
there is a CSi with only one element (there is one obvious choice
then), R3 and R2 those situations where |SCS |=1, and R1 resolves
True and False.

Obviously, the decision heuristic choosing the split element e in
R5 has a significant impact on the actual traversal of the search
space. A common heuristic (which we will refer to as H1) is to
use one of those e’s that hit the most CSis. This ensures that the
left branch has to deal only with a minimum of conjunctions/sets
(|C1| is minimized), and for the right branch a maximum of con-
junctions/sets shrink by one element. In practice, in the unbounded
case, this heuristic offers very good general performance (see also
Figure 1). But there are issues with H1 in the bounded case (see
Figures 2 and 3), that is, when we establish cardinality limits, the
performance is not that attractive.

3 THE BOOLEAN APPROACH: ON ISSUES
AND OPTIMIZATIONS

Figures 1, 2 and 3 compare the Boolean approach’s performance with
that of HS-DAG [9, 5] for a test scenario composed of random con-
flict sets (see Section 4 for a detailed description). While the stan-
dard Boolean approach (Bool-Rec-V1-R4) easily outperforms HS-
DAG in the unbounded case, it does so only for small |SCS | in the
bounded case. This fact motivated us to consider options for improv-
ing the Boolean approach’s performance.

As R1 to R3 offer little to no room for improvements2, let us have
a closer look at Rule 4 (R4). This rule considers the situation, where
SCS contains some CSi of size one (CSi = {e}). In this case, the
algorithm makes the obvious decision of including element e in the
current branch. However, the recursion still includes also those CSis
hit by e, so that we propose a new variant R4’.

Lemma 1 Replacing R4 with R4’ as follows does not affect the al-
gorithm’s correctness. Let R4’ be H(ē ∨ C) = e ∧ H(C1) with
C1 = {ci | ci ∈ C ∧ ē �∈ ci}
Proof. By replacing C with those CSi ∈ C not hit by e, we loose
those elements e′ for future choices in H(C) which are in C \ C1.
This has no ill effect at all, as for any element e′′ in C, we have that

2 R3 considers the case of SCS containing a single CSi, so an implementation
might use a direct loop in R3 instead of recursive calls to H leading to some
intermediate checks whether R1 or R2 would apply.

• if e′′ could hit some CSi in C1, it would have to be present in C1.
• if e′′ cannot hit some CSi in C1, then it cannot hit any further

set in C not hit so far. Remember that e was chosen in this step
and hits exactly those CSi ∈ C \ C1. Thus choosing such an el-
ement e′′ would result in non-minimal conjunctions in the hitting
set formula to be removed later.

Intuitively, R4’ implements the same idea to remove unnecessary
input-data from future consideration as the left branch of R5.

In the prior section we described a common heuristic H1 that of-
fers very good performance in the unbounded case. In the bounded
case, however, the Boolean performance using H1 is not that attrac-
tive. That is, while for rule R5 any “left” branch adds an element to
the solution and thus increases cardinality, with H1 the amount of
right branches that have to be considered is limited only by the num-
ber of components in C. Considering the case when we limit |MHS |
to 1, and we could stop after considering all the elements in some
CSi (any CSi has to be hit), H1 seems rather unattractive. We thus
propose to use the following heuristic H2 that chooses elements in a
minimal-sized CSi.

Definition 3 Let R5, C1, and C2 be as defined above, but instead of
some arbitrary e, use heuristic H2, that is some e ∈ CSi ∈ C such
that there is no CSj ∈ C with |CSj | < |CSi|.

Like for H1, the validity of H2 follows from the fact that as
allowed by the original paper we could have chosen any e ∈
elements(C), and we choose some e ∈ CSi ⊆ elements(C).

Intuitively, H2 strives to “clear” some (minimal) CSi as fast as
possible, where for the last element in CSi R4 takes over. When
discussing the options for cardinality-limit related breaks in the al-
gorithm later on, it will become clear that this effectively limits the
amount of right branches to be considered. If there are multiple sets
of minimal length, we might encounter some (non-harming) non-
determinism resulting in “hopping” between those sets. For any re-
cursive call of H(C) removing another element from a minimal CSi,
we also have the checks whether R1 to R4 would apply (even when
|CSi| > 1 and |SCS | > 1, which requires R5). Thus we propose the
following variant of R5 that loops on a single CSi directly.

Lemma 2 Adapting R5’ as follows does not affect the algorithm’s
correctness:

H

(
C ∨

n∧
i=1

ēi

)
=

n−1∨
i=1

(
ei ∧H(Ci

1)
)
∨H(Cn−1)

where C0 = C, ∀ck ∈ C : |ck| ≥ n, and the sets Ci and Ci
1 are

defined as

Ci = {cj | ēi �∈ cj ∧ (cj ∈ Ci−1 ∨ cj ∪ {ēi} ∈ Ci−1)},
Ci

1 = {cj | cj ∈ Ci−1 ∧ ēi �∈ cj}.
Proof. An essential pre-condition for the correctness is our focus on
some cardinality-minimal CSi as ensured by the prerequisites. Thus,
when removing the n − 1 elements from CSi in the sequence of the
sets Ci

1, there exists no other CSj such that its refinements could trig-
ger R1 to R4. Intuitively, and implementing the general split mecha-
nism of R5, the disjunction of terms ei ∧H(Ci

1) offers those terms
established by the left branches of each recursion of the original R5,
when choosing the same sequence of elements in CSi for H2 as split
elements (the right branch acting as interface between the recursive
calls). H(Cn−1) is the last missing right branch, i.e. the one that
triggers R4 in order to deal with the n-th element in CSi.

I. Pill and T. Quaritsch / Optimizations for the Boolean Approach to Computing Minimal Hitting Sets 649

The following example illustrates Lemma 2, where we abbreviate
b̄ ∧ c̄ ∧ ḡ with b̄ c̄ ḡ, and loop on the underlined CSi.

Example 2 H(C0) = H(b̄ c̄ ḡ ∨ ā f̄ ḡ ∨ ā c̄ d̄ ē ∨ b̄ ē f̄)

= b H(C1
1) ∨ e H(C2

1) ∨H(C2), where
C1

1 =����b̄ c̄ ḡ ∨ āf̄ ḡ ∨ ā c̄ d̄ ē ∨����b̄ ēf̄ , C2
1 = c̄ ḡ ∨ āf̄ ḡ ∨������ā c̄ d̄ ē ∨����̄ef̄ ,

C1 =�	̄b c̄ ḡ ∨ āf̄ ḡ ∨ ā c̄ d̄ ē ∨�	̄b ēf̄ , C2 = c̄ ḡ ∨ āf̄ ḡ ∨ ā c̄ d̄
�̄e ∨
�̄ef̄ .

R5’ makes the connection between our strategy as implemented in
both H2 and R5’ with the tree-construction used in HS-DAG most
obvious, as we capture all the essential details that allow HS-DAG
to cut the depth of the internal tree. Thus, specifically for scenarios
with |MHS |=1, we expect a huge performance benefit.

Other options for performance gains are unveiled when focusing
on restriction-related termination criteria in the algorithm. That is, in
contrast to simply discarding larger solutions, the computation will
focus only on branches that can produce viable MHSs. Explicitly
keeping track of an intermediate solution’s cardinality enables the
following intuitive, trivial adaptions of H(C):

Lemma 3 Given a bound b, H(C, 0, b) using the following adapted
rules (termination criteria variant I) derives a Boolean formula en-
coding all MHSs with 1 ≤ |MHS | ≤ b:

RB1: H(False, �, b) = True, H(True, �, b) = False;
RB2: H(ē, �, b) = False if � ≥ b, else e;
RB3: H(ē ∧ C, �, b) = False if � ≥ b, else e ∨H(C, �, b);
RB4: H(ē ∨ C, �, b) = False if � ≥ b, else e ∧H(C, �+ 1, b);
RB5: H(C, �, b) = False if � ≥ b, else e ∧H(C1, �+ 1, b)∨

H(C2, �, b).

Proof. The correctness follows from that of the original algorithm
and the following considerations regarding a branch’s potential for
adding elements to the intermediate solution possibly resulting in vi-
olations of the new postcondition regarding bound b. Obviously, �
corresponds exactly to the size of a branch’s intermediate solution,
and returning False in some rule would remove the current branch
from consideration. R1 cannot add to the solution, so it is left un-
changed for RB1. For R2 that adds an element, any � ≥ b would
result in a breach of bound b, so that we return False then in RB2.
Also R3 would add at least one element in any case (the recursion
would be in RB3 or RB2), so that we return False in RB3 for � ≥ b.
The same is obvious for RB4 and RB5 (where for R5 the right branch
would add at least one element in the recursion to RB2-RB5). Thus
only those branches leading to solutions violating the post-condition
are removed from the original computation.

Intuitively, if the length of an intermediate solution has reached
the bound b, only R1 has to be considered for refinement. Any other
rule would result in adding at least one further element to the current
branch. Therefore, then only e1 ∧ e2 ∧ · · · ∧ eb ∧H(False, b, b) may
lead to an MHS of length b.

Taking a closer look at situations H(C, b − 1, b) (i.e. we can add
only one further element), unveils the potential for another optimiza-
tion, as then only those elements present in all CSis are of interest.

Lemma 4 Let RB1’ to RB4’ be as RB1 to RB4, and RB5’ as follows
(termination criteria variant II). Then H(C, 0, b) derives a Boolean
formula encoding all MHSs with 1 ≤ |MHS | ≤ b.

RB5’: H(C, �, b) =

⎧⎪⎨
⎪⎩

False if � ≥ b ∨ I = ∅,∨
ej∈I ej if � = b− 1,

else e ∧H(C1, �+ 1, b) ∨H(C2, �, b)

with I =
⋂

CSi∈C

CSi and C1 and C2 as defined previously.

Proof. This lemma’s correctness follows directly from that for vari-
ant I and the fact that for � = b− 1 only and exactly those elements
in the intersection of all CSi in C can complete the current decisions
to encode further MHS candidates.

Corollary 1 No combination of the proposed modifications in the
form of Lemmas 1 to 4 and adopting H2 does affect the correctness
of the algorithm.

Proof. The corollary’s correctness directly follows from the individ-
ual proofs and the absence of preconditions.

4 EVALUATION

In our experiments, we evaluated both run-time and memory con-
sumption of the Boolean approach in various configurations imple-
mented in Python (cf. [8] for an evaluation of some MHS algorithm
implementations in Java and Python), comparing it against Reiter’s
HS-DAG [9, 5] which we also implemented in Python. We inves-
tigated whether any advantages would manifest only under certain
conditions, and report a conclusive selection of our results.

Regarding an implementation, there is the obvious option of a re-
cursive approach, but one might also consider an iterative implemen-
tation that maintains a list of intermediate work-packages (contain-
ing tuples of intermediate Cs (SCSs) and established solution parts)
to be iteratively resolved. Some advantage would be the option to be
able to (stop and) continue the computation (i.e. with an increased
cardinality limit). For our evaluation we implemented both options.

Test Scenario TS1: Artificial random CSis ∈ SCS. In this sce-
nario, an SCS contains elements drawn randomly from a set of com-
ponents, i.e. every component is included in a CSi with a probability
of 0.5. For this random setting we evaluated the bounded and un-
bounded case, with a well-sized sample set in order to avoid any bias
from a specific random pattern.

Test Scenarios TS2 to TS4 : Real-world scenarios based on IS-

CAS benchmarks. To evaluate whether our findings from TS1
would transfer to real applications, for TS2 to TS4 we constructed
SCSs as they would occur in logic circuit diagnosis for the ISCAS’85
benchmark suite [6]. This suite provides ten circuits such as inter-
rupt controllers, modules for single-error-correction (SEC), double-
error-detection (DED) and arithmetic logic units (ALU) with 160
to 3512 gates. Our test scenarios were constructed from the circuits
c499.isc (32bit SEC, TS2), c880.isc (8bit ALU, TS3), and c1355.isc
(32bit SEC, TS4) having 41/60/41 inputs, 32/26/32 outputs, and
202/383/546 gates respectively. Equipping every gate g with a behav-
ioral assumption AB(g) that encodes whether it operates correctly or
not, we defined a SAT Problem P of the form

P =
∧

gi∈G

(¬AB(gi)⇒ outgi := fgi(in
1
gi , in2

gi , . . .)
)

where G is the set of gates, and outgi , inj
gi and fgi are a gate gi’s

output-/input signals and its Boolean function. The CSis are those
unsatisfiable cores of these assumptions that violate the original, con-
tradicting input-output observations. For our scenarios, we purpose-
fully injected a single fault by altering the logic function of a gate
and computed SCS as the set of CSis derived during a cardinality-
restricted (|MHS | ≤ 3) on-the-fly diagnosis run using HS-DAG and
Yices (http://yices.csl.sri.com) as theorem prover.

I. Pill and T. Quaritsch / Optimizations for the Boolean Approach to Computing Minimal Hitting Sets650

http://yices.csl.sri.com

-4

-3

-2

-1

0

1

2

1 10 102 103 104 105 106

ru
n-

tim
e

(1
0
y

se
c.

)

|SCS|
Bool-Rec-V1-R4
Bool-Rec-V3-R4

Bool-Rec-V1-R4’
Bool-Rec-V2-R4’
Bool-Rec-V3-R4’

1

2

3

1 10 102 103 104 105 106

m
ax

.R
SS

in
1
0
y

M
iB

|SCS|
Bool-It-V1-R4’
Bool-It-V2-R4’
Bool-It-V3-R4’

HS-DAG

Figure 1. Run-times for TS1, |COMP |=20, and an unbounded MHS search.

4.1 Experimental results

Our experiments were executed on a 2011 generation MacBook Pro
(Intel Core i5 CPU, 2.3 GHz, 4GiB RAM, SSD, Mac OS X 10.6) us-
ing CPython 2.7.1. With swapping and the GUI disabled, each sam-
ple faced resource limits of 300 seconds and 2GiB RAM. Regarding
memory usage, we polled the process’ resident set size (RSS) from
the operating system in a separate process, and report its maximum.
We plot run-times and memory usage on logarithmic scales, with
approximately 120 points equally distributed on the x-axis (e.g. for
Figure1 we have |SCS | ≈ 106i/120 for 0 ≤ i ≤ 120).

Figure 1 shows run-time and maximum RSS averaged over 20
samples for TS1 in the unbounded case with |COMP | = 20 and a
varying |SCS |. V1 denotes using H1, while V2 amounts to using H2,
and V3 implements Lemma 2. R4 vs. R4’ should be self-explaining,
while Rec indicates a recursive implementation and It an iterative
one. The first thing to observe is that all Boolean variants are about
one order of magnitude faster than HS-DAG in the range [10, 300]
and also consume significantly less memory. While using R4’ en-
sures this also for larger SCS, the performance advantage diminishes
otherwise, so that HS-DAG can outperform the Boolean approach
when an SCS gets larger than approx. 6 · 104. While variants V2
and V3 suffer minor drawbacks for small |SCS |, they slightly gain
in performance for higher amounts of CSis. All variants using R4’
feature very similar memory characteristics. Using a recursive or it-
erative implementation does not result in huge differences, with the
recursive ones being a touch faster and the iterative ones a bit more
memory-effective. While we were motivated mostly by issues with
bounded computations, these results suggest that there is little to no
computation overhead in the unbounded case, and specifically R4’
can also help in an unbounded search. Please note that the missing
plot segments for HS-DAG stem from (run-time) limit violations.

Figure 2 shows our results for TS1 and |MHS |=1. Those variants
implementing variant II of the termination criteria are indicated by
the suffix “Stop”, all others use variant I. The graphs at the top plot
the recursive implementations’ performance and illustrate that, as ex-
pected, R4’ has no influence on time or memory usage at all (due to
the very small probability of SCS containing a CSi of size one). Com-
pared to V1 using termination criteria I, variants V2 and V3 already
allow a significant boost, surpassed however by that offered by ter-
mination criteria II. For the latter the strategy also does not play a
significant role, which is intuitive given the small amount of recur-

sions allowed by those criteria. Obviously, as in this case Rule 5 is
never really executed (in fact, only the intersection of all conflict sets
is computed), all heuristics share the same time- and memory char-
acteristics. Since our recursive and iterative implementations again
perform similarly, we will not plot the iterative ones for our further
figures due to space restrictions. Overall, while HS-DAG’s perfor-
mance is still superior for |SCS | larger than about 103, the original
threshold was below ten. Furthermore, we enhanced the performance
of the Boolean approach by up to two orders of magnitude.

A last evaluation of TS1 is shown in Figure 3, where we restricted
|MHS | to 3. Like for small samples in the unbounded case, we en-
countered a negative impact of R4’ (for the majority of the smaller
samples) when using the original heuristic V1. For the other variants
the impact of R4’ diminishes, specifically when using termination
criteria II. Again V3 outperforms V2, that in turn outperforms V1.
Also for these tests, we could significantly raise the border where
HS-DAG would take the lead from about 20 to approx. 200.

Finally, Figure 4 shows the performance of several implementa-
tions for 300 real-world samples (100 samples for each of TS2 to
TS4) with cardinality limits {1, 2, 3}. Due to random fault injec-
tion, samples with similar |SCS | may still have incommensurable
structural complexity, leading to a large variance in both run-time
and memory. In order to observe otherwise obscured trends, we ap-
plied a moving average filter that considers for any |SCS | x0 on the
x-axis all samples within the range

[
x0/
√
2, x0

√
2
]
. Considering

the graphs, we find that our conclusions from the artificial scenario
would also transfer to these SCSs as extracted from a real-world ap-
plication. While for the original heuristic (V1) R4’ results in a run-
time penalty, this drawback vanishes for termination criteria II. The
variant ranking V3–V2–V1 is confirmed, as, e.g., evident from the
graph for |MHS | ≤ 2. However, the most notable result follows from
the comparison with HS-DAG. While for |MHS |=1 and |SCS | ≥ 5,
HS-DAG is faster than the original Boolean variant, our termination
criteria II alone (then the variant has almost no impact) leads to an
average advantage of one order of magnitude compared to HS-DAG.
When raising the maximum cardinality to |MHS | = 2 and 3, more
and more Boolean variants catch up, until for max. |MHS |=3 only
one of them (V1-R4’) is slower than HS-DAG. Also the ranking V3-
V2-V1 becomes more apparent then. Summing up, with our opti-
mizations the Boolean approach is not only a performant contender
in the unbounded case, but also for a bounded MHS search.

I. Pill and T. Quaritsch / Optimizations for the Boolean Approach to Computing Minimal Hitting Sets 651

-5

-4

-3

-2

-1

0

1 10 102 103 104 105 106

ru
n-

tim
e

(1
0
y

se
c.

)

|SCS|
Bool-Rec-V1-R4
Bool-Rec-V3-R4

Bool-Rec-V1-R4’
Bool-Rec-V2-R4’
Bool-Rec-V3-R4’

1

2

3

1 10 102 103 104 105 106

m
ax

.R
SS

in
1
0
y

M
iB

|SCS|
Bool-Rec-V1-R4’-Stop
Bool-Rec-V2-R4’-Stop
Bool-Rec-V3-R4’-Stop

Bool-Rec-V3-R4-Stop
HS-DAG

-5

-4

-3

-2

-1

0

1 10 102 103 104 105 106

ru
n-

tim
e

(1
0
y

se
c.

)

|SCS|
Bool-It-V1-R4’
Bool-It-V2-R4’

Bool-It-V3-R4’

1

2

3

1 10 102 103 104 105 106

m
ax

.R
SS

in
1
0
y

M
iB

|SCS|
Bool-It-V1-R4’-Stop
Bool-It-V2-R4’-Stop

Bool-It-V3-R4’-Stop
HS-DAG

Figure 2. Results for TS1, |COMP |=20, |MHS |=1 with iterative versions in the bottom and recursive ones in the top graphs.

5 CONCLUSIONS

In this paper we showed how to improve the Boolean approach’s per-
formance by up to 2 orders of magnitude for artificial and real-world
scenarios for which it was known to perform badly before. That is,
we showed a new heuristic, a revised split strategy, as well as tight
termination rules that tackle earlier disadvantages when conquering
the search space for cardinality-bounded problems. Our experiments
suggest that our optimizations would not significantly hinder perfor-
mance in the unbounded case, and could sometimes also enhance
it. We also proposed a slightly improved Rule 4 that avoids some
duplicates and non-minimal solutions to be pruned anyway. Thus,
the Boolean algorithm now is also an attractive alternative for the
bounded case. In future work, we will try to tackle the Boolean algo-
rithm’s main drawback that it requires SCS to be known in advance,
providing an interesting option for our main research regarding en-
abling model-based diagnosis of formal temporal specifications.

ACKNOWLEDGEMENTS

This work has been funded by the Austrian Science Fund (FWF)
under grant P22959-N23. We would like to thank the reviewers for
their comments and Franz Wotawa for fruitful discussions.

REFERENCES

[1] R. Abreu and A. van Gemund, ‘A low-cost approximate minimal hitting
set algorithm and its application to model-based diagnosis’, in Sympo-
sium on Abstraction Reformulation, and Approximation, (2009).

[2] B. Bonet and M. Helmert, ‘Strengthening landmark heuristics via hit-
ting sets’, in Europ. Conf. on Art. Intelligence, pp. 329–334, (2010).

[3] J. de Kleer, ‘Hitting set algorithms for model-based diagnosis’, in Int.
Workshop on the Principles of Diagnosis, pp. 100–105, (2011).

[4] J. de Kleer and B. C. Williams, ‘Diagnosing multiple faults’, Artificial
Intelligence, 32(1), 97–130, (1987).

[5] R. Greiner, B. A. Smith, and R. W. Wilkerson, ‘A correction to the alg.
in Reiter’s theory of diagnosis’, Art. Intelligence, 41(1), 79–88, (1989).

[6] M. Hansen, H. Yalcin, and J. P. Hayes, ‘Unveiling the ISCAS-85 bench-
marks: A case study in reverse engineering’, IEEE Design and Test, 6,
72–80, (1999). (http://www.cbl.ncsu.edu/benchmarks/ISCAS85).

[7] L. Lin and Y. Jiang, ‘The computation of hitting sets: review and new
algorithms’, Information Processing Letters, 86, 177–184, (2003).

[8] I. Pill, T. Quaritsch, and F. Wotawa, ‘From conflicts to diagnoses: An
empirical evaluation of minimal hitting set algorithms’, in 22nd Int.
Workshop on the Principles of Diagnosis, pp. 203–210, (2011).

[9] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32(1), 57–95, (1987).

[10] L. Shi and X. Cai, ‘An exact fast algorithm for minimum hitting set’,
in Int. Joint Conference on Computational Science and Optimization -
Vol. 01, pp. 64–67, (2010).

[11] F. Wotawa, ‘A variant of Reiter’s hitting-set algorithm’, Information
Processing Letters, 79, 45–51, (2001).

[12] F. Wotawa, ‘On the relationship between model-based debugging and
program slicing’, Artificial Intelligence, 135, 125–143, (2002).

I. Pill and T. Quaritsch / Optimizations for the Boolean Approach to Computing Minimal Hitting Sets652

-4

-3

-2

-1

0

1 10 102 103 104 105 106

ru
n-

tim
e

(1
0
y

se
c.

)

|SCS|
Bool-Rec-V1-R4
Bool-Rec-V3-R4

Bool-Rec-V1-R4’
Bool-Rec-V2-R4’
Bool-Rec-V3-R4’

1

2

3

1 10 102 103 104 105 106

m
ax

.R
SS

in
1
0
y

M
iB

|SCS|
Bool-Rec-V1-R4’-Stop
Bool-Rec-V2-R4’-Stop
Bool-Rec-V3-R4’-Stop

Bool-Rec-V3-R4-Stop
HS-DAG

Figure 3. Results for TS1, |COMP |=20, max. |MHS |=3.

-4

-3

-2

-1

0

m
ax

.|M
H

S|
=

1
ru

n-
tim

e
(1
0
y

se
c.

)

1

2

m
ax

.R
SS

(1
0
y

M
iB

)

-3

-2

-1

0

1

m
ax

.|M
H

S|
=

2
ru

n-
tim

e
(1
0
y

se
c.

)

1

2

m
ax

.R
SS

(1
0
y

M
iB

)

-1

0

1

2

1 10 100

m
ax

.|M
H

S|
=

3
ru

n-
tim

e
(1
0
y

se
c.

)

|SCS|
Bool-Rec-V1-R4
Bool-Rec-V2-R4
Bool-Rec-V3-R4

Bool-Rec-V1-R4’

1

2

1 10 100

m
ax

.R
SS

(1
0
y

M
iB

)

|SCS|
Bool-Rec-V1-R4’+Stop
Bool-Rec-V2-R4’+Stop
Bool-Rec-V3-R4’+Stop

Bool-Rec-V1-R4+Stop
HS-DAG

Figure 4. Results for TS2 to TS4 with varying max. |MHS |.

I. Pill and T. Quaritsch / Optimizations for the Boolean Approach to Computing Minimal Hitting Sets 653

	INTRODUCTION
	THE MINIMAL HITTING SET PROBLEM AND THE BOOLEAN ALGORITHM
	THE BOOLEAN APPROACH: ON ISSUES AND OPTIMIZATIONS
	EVALUATION
	Experimental results

	CONCLUSIONS

