
ExpExpExplosion:
Uniform Interpolation in General EL Terminologies

Nadeschda Nikitina and Sebastian Rudolph1

Abstract. Although EL is a popular logic used in large existing
knowledge bases, to the best of our knowledge no procedure has yet
been proposed that computes uniform EL interpolants of general EL
terminologies. Up to now, also the bounds on the size of uniform EL
interpolants remain unknown. In this paper, we propose an approach
based on proof theory and the theory of formal tree languages to com-
puting a finite uniform interpolant for a general EL terminology if it
exists. Further, we show that, if such a finite uniform EL interpolant
exists, then there exists one that is at most triple exponential in the
size of the original TBox, and that, in the worst-case, no shorter inter-
polants exist, thereby establishing the triple exponential tight bounds
on their size.

1 Introduction

With the wide-spread adoption of ontological modeling by means of
the W3C-specified OWL Web Ontology Language [16], description
logics [2, 17] have developed into one of the most popular family of
formalisms employed for knowledge representation and reasoning.

For application scenarios where scalability of reasoning is of ut-
most importance, specific tractable sublanguages (the so-called pro-
files [12]) of OWL have been put into place, among them OWL EL
which in turn is based on DLs of the EL family [3, 1].

In view of this practical deployment of OWL and its profiles, the
importance of non-standard reasoning services for supporting knowl-
edge engineers in modeling a particular domain or in understanding
existing models by visualizing implicit dependencies between con-
cepts and roles was pointed out by the research community [4, 15].
An example of such reasoning services supporting knowledge engi-
neers in different activities is that of uniform interpolation: given a
theory using a certain vocabulary, and a subset of “relevant terms”
of that vocabulary, find a theory that uses only the relevant terms
and gives rise to the same consequences (expressible via relevant
terms) as the original theory. In particular for the understanding and
the development of complex knowledge bases, e.g., those consisting
of general concept inclusions (GCIs), the appropriate tool support
would be beneficial.

In our paper, we consider the task of uniform interpolation in the
very lightweight description logic EL. An existing approach [7] to
uniform interpolation in EL is restricted to terminologies containing
each atomic concept at most once on the left-hand side of concept
inclusions and additionally satisfying sufficient, but not necessary
acyclicity conditions. Lutz and Wolter [11] propose an approach to
uniform interpolation in expressive description logics such as ALC
featuring general terminologies, which, however does not solve the
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problem of uniform interpolation in EL. Recently, Lutz, Seylan and
Wolter [9] proposed an ExpTime procedure for deciding, whether a
finite uniform EL interpolant exists for a particular general termi-
nology and a particular set of relevant terms. However, the authors
do not address the actual computation of such a uniform interpolant.
Up to now, also the bounds on the size of uniform EL interpolants
remain unknown.

In this paper, we propose a worst-case-optimal approach based on
proof theory and the theory of formal tree languages to computing a
finite uniform EL interpolant for a general terminology. For this pur-
pose, we introduce regular tree grammars representing subsumees
and subsumers of atomic concepts, which, after a sequence of non-
terminal replacements, can be transformed into a uniform EL inter-
polant of at most triple exponential size, if such a finite uniform EL
interpolant exists for the given terminology and a set of terms. Fur-
ther, by the means of an example we show that, in the worst-case, no
shorter interpolants exist, thereby establishing the triple exponential
tight bounds on the size of uniform interpolants in EL.

The paper is structured as follows: In Section 2, we recall the
necessary preliminaries on EL and regular tree languages/grammars.
Section 3 formally introduces the notion of inseparability, defines the
task of uniform interpolation and provides an example that demon-
strates that the smallest uniform interpolants in EL can be triple ex-
ponential in the size of the original knowledge base. In Section 5, we
introduce regular tree grammars representing subsumees and sub-
sumers of atomic concepts, which are the basis for computing uni-
form EL interpolants as shown in Section 6. In the same section, we
also show the upper bound on the size of uniform interpolants. We
summarize the contributions in Section 7 and discuss some ideas for
future work. Detailed proofs are available in the extended version of
this paper [14].

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of
concept symbols and role symbols. An EL concept C is defined as

C ::= A|�|C � C|∃r.C

where A and r range over NC and NR, respectively. In the following,
we use symbols A, B to denote atomic concepts and C, D to denote
arbitrary concepts. A terminology or TBox consists of concept in-
clusion axioms C � D and concept equivalence axioms C ≡ D
used as a shorthand for C � D and D � C. While knowledge
bases in general can also include a specification of individuals with
the corresponding concept and role assertions (ABox), in this paper
we abstract from ABoxes and concentrate on TBoxes. The signature
of an EL concept C or an axiom α, denoted by sig(C) or sig(α),
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respectively, is the set of concept and role symbols occurring in it.
To distinguish between the set of concept symbols and the set of
role symbols, we use sigC(C) and sigR(C), respectively. The sig-
nature of a TBox T , in symbols sig(T ) (correspondingly, sigC(T )
and sigR(T )), is defined analogously. Next, we recall the seman-
tics of the above introduced DL constructs, which is defined by the
means of interpretations. An interpretation I is given by the domain
ΔI and a function ·I assigning each concept A ∈ NC a subset AI

of ΔI and each role r ∈ NR a subset rI of ΔI × ΔI . The in-
terpretation of � is fixed to ΔI . The interpretation of an arbitrary
EL concept is defined inductively, i.e., (C � D)I = CI ∩ DI and
(∃r.C)I = {x | (x, y) ∈ rI , y ∈ CI}. An interpretation I satisfies
an axiom C � D if CI ⊆ DI . I is a model of a TBox, if it satis-
fies all of its axioms. We say that a TBox T entails an axiom α (in
symbols, T |= α), if α is satisfied by all models of T .

Tree Languages and Regular Tree Grammars

A ranked alphabet is a pair (F , Arity) where F is a finite set and
Arity is a mapping from F into N. T (F) denotes the set of ground
terms over the alphabet F . Let Xn be a set of n variables. A term C ∈
T (F , Xn) containing each variable from Xn at most once is called a
context. We denote by C(F) the set of contexts containing a single
variable. A regular tree grammar G = (S, N , F , R) is composed
of a start symbol S, a set N of non-terminal symbols (non-terminal
symbols have arity 0) with S ∈ N , a ranked alphabet F of terminal
symbols with a fixed arity such that F ∩ N = ∅, and a set R of
derivation rules of the form X → β where β is a tree of T (F ∪ N )
and X ∈ N . Given a regular tree grammar G = (S, N , F , R) , the
derivation relation →G associated to G is a relation on pairs of terms
of T (F ∪ N ) such that s →G t if and only if there is a rule X →
α ∈ R and there is a context C such that s = C[X] and t = C[α].
The language generated by G, denoted by L(G) is a subset of T (F)
which can be reached by successive derivations starting from the start
symbol, i.e. L(G) = {s ∈ T | S →+ s} with →+ the transitive
closure of →. We write → instead of →G when the grammar G is
clear from the context. For further details, we refer the reader, for
instance, to [5].

3 Uniform Interpolation

Formally, the term uniform interpolation is defined based on the no-
tion of inseparability. Two TBoxes, T1 and T2, are inseparable w.r.t.
a signature Σ if they have the same Σ-consequences, i.e., conse-
quences whose signature is a subset of Σ. Depending on the par-
ticular application requirements, the expressivity of those Σ conse-
quences can vary from subsumption queries and instance queries to
conjunctive queries. In this paper, we investigate uniform interpo-
lation based on concept inseparability of general EL terminologies
defined analogously to previous work on inseparability, e.g., [8] or
[7], as follows:

Definition 1 Let T1 and T2 be two general EL TBoxes and Σ a
signature. T1 and T2 are concept-inseparable w.r.t. Σ, in symbols
T1 ≡c

Σ T2, if for all EL concepts C, D with sig(C) ∪ sig(D) ⊆ Σ
holds T1 |= C � D, iff T2 |= C � D.

Given a signature Σ and a TBox T , the aim of uniform interpolation
is to determine a TBox T ′ with sig(T ′) ⊆ Σ such that T ≡c

Σ T ′. T ′

is also called a uniform EL Σ-interpolant of T . In practise, uniform
interpolants are required to be finite, i.e., expressible by a finite set of

finite axioms using only the language constructs of EL. As demon-
strated by the following example, in the presence of cyclic concept
inclusions, a finite uniform EL Σ-interpolant might not exist for a
particular TBox T and a particular Σ.

Example 1 Consider uniform interpolants of the TBox T = {A′ �
A, A � A′′, A � ∃r.A, ∃s.A � A}. w.r.t. Σ = {s, r, A′, A′′}.
We obtain an infinite chain of consequences A′ � ∃r.∃r.∃r....A′′

and ∃s.∃s.∃s....A′ � A′′ containing nested existential quantifiers
of unbounded depth.

It is interesting that, while deciding the existence of uniform inter-
polants in EL [9] is one exponential less complex than the same de-
cision problem for the more complex logic ALC [11], the size of
uniform interpolants remains triple-exponential due to the unavail-
ability of disjunction. We demonstrate that this is in fact the lower
bound by the means of the following example (obtained by a slight
modification of the corresponding example given in [10] originally
demonstrating a double exponential lower bound in the context of
conservative extensions).

Example 2 The EL TBox Tn for a natural number n is given by

A1 � X0 � ... � Xn−1 (1)

A2 � X0 � ... � Xn−1 (2)

�σ∈{r,s}∃σ.(Xi � X0 � ... � Xi−1) � Xi i < n (3)

�σ∈{r,s}∃σ.(Xi � X0 � ... � Xi−1) � Xi i < n (4)

�σ∈{r,s}∃σ.(Xi � Xj) � Xi j < i < n (5)

�σ∈{r,s}∃σ.(Xi � Xj) � Xi j < i < n (6)

X0 � ... � Xn−1 � B (7)

If we now consider sets Ci of concept descriptions inductively de-
fined by C0 = {A1, A2},Ci+1 = {∃r.C1 � ∃s.C2 | C1, C2 ∈ Ci},
then we find that |Ci+1| = |Ci|2 and consequently |Ci| = 2(2i).
Thus, the set C2n−1 contains triply exponentially many different con-
cepts, each of which is doubly exponential in the size of Tn (in-
tuitively, we obtain concepts having the shape of binary trees of
exponential depth, thus having doubly exponentially many leaves,
each of which can be endowed with A1 or A2, which gives rise to
triply exponentially many different such trees). Then it can be shown
that for each concept C ∈ C2n−1 holds Tn |= C � B and that
there cannot be a smaller uniform interpolant w.r.t. the signature
Σ = {A1, A2, B, r, s} than the one containing all these GCIs (for a
proof, see [14]).

Hence we have found a class Tn of TBoxes giving rise to uniform
interpolants of triple-exponential size in terms of the original TBox.
In the following, we show that this is also an upper bound by pro-
viding a procedure for computing uniform interpolants with a triple-
exponentially bounded output.

4 Normalization

Similarly to other proof-theoretic approaches [1, 6, 7], we will make
use of normalizations that restrict the syntactic form of TBoxes.
We decompose complex axioms into syntactically simpler ones. The
decomposition is realized recursively by replacing sub-expressions
C1 � ... � Cn and ∃r.C by fresh concept symbols until each axiom
in the TBox T is one of {A � B, A ≡ B1 � ... � Bn, A ≡ ∃r.B},
where A, B, Bi ∈ sigC(T ) ∪ {�} and r ∈ sigR(T ). For this pur-
pose, we introduce a minimal required set of fresh concept symbols
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ND and the corresponding definition axioms {A′ ≡ C′ | A′ ∈ ND}
for each A′ ∈ ND and the corresponding concept C′ replaced by A′.

In what follows, we assume that knowledge bases are normalized
and refer to sigC(T ) ∪ ND as sigC(T ). Since concept symbols in
ND are fresh, they do not appear in Σ. W.l.o.g., in what follows we
assume that EL concepts do not contain any equivalent concepts in
conjunctions and that equivalent concept symbols have been replaced
by a single representative of the corresponding equivalence class.
The following lemma postulates the close semantic relation between
a TBox and its normalization.

Lemma 1 Any EL TBox T can be extended into a normalized TBox
T ′ such that each model of T ′ is a model of T and each model of T
can be extended into a model of T ′.

Proof Sketch. All concepts in ND are defined, i.e., their meaning is
uniquely determined by the meaning of subconcepts (concepts that
occur in T ) of the original TBox T . �

The following lemma motivates the usefulness of the normaliza-
tion for the computation of uniform interpolants. In particular, it al-
lows us to restrict the information necessary for the uniform interpo-
lation to the sets of subsumers and subsumees of all atomic concepts
in the TBox.

Lemma 2 Let T be normalized EL TBox and C, D two EL con-
cepts with sig(C) ∪ sig(D) ⊆ sig(T ) such that T |= C � D.
For any A ∈ sigC(T ), let Pre(A) = {M ⊆ sigC(T ) | T |=�

Bi∈M Bi � A}. W.l.o.g., assume that

C =
�

1≤j≤n

Aj �
�

1≤k≤m

∃rk.Ek

for Aj ∈ sigC(T ) and rk ∈ sigR(T ), Ek EL concepts with
sig(Ek) ⊆ sig(T ) for 1 ≤ k ≤ m. For all conjuncts Di of D,
the following is true: If Di ∈ sigC(T ), there is a set M ∈ Pre(Di)
of atomic concepts such that for each element B of M holds at least
one of the conditions [A1]-[A2]:

(A1) There is an Aj in C such that Aj = B.

(A2) There are rk, Ek and there exists B′ ∈ sigC(T ) such that T |=
Ek � B′ and B ≡ ∃rk.B′ ∈ T .

If Di = ∃r′.D′ for r′ ∈ sigR(T ) and D′ an EL concept , at least
one of the conditions [A3]-[A4] holds:

(A3) There are rk, Ek such that rk = r′ and T |= Ek � D′.

(A4) There is a B ∈ sigC(T ) such that T |= B � ∃r′.D′ and
T |= C � B.

Proof. The proof is based on a Gentzen-style calculus for EL com-
plete for subsumptions between arbitrary EL concepts shown in Fig.
1. We consider all rules, that could have been the last rule applied in
order to derive the above sequent and show the lemma by induction
on the length of the proof. �

Lemma 2 allows us, on the one hand, to prove the completeness
of grammars introduced in the next section, and, on the other hand,
to show that the TBox computed in Section 6 by combining sub-
sumees and subsumers into subsumption axioms indeed entails all
Σ-consequences of T .

5 Grammar Representation of Subsumees and
Subsumers

In order to obtain a finite uniform interpolant from the infinite sets
of subsumees and subsumers, a finite representation for these sets is

C � C
(AX)

C � � (AXTOP)

D � E

C � D � E
(ANDL)

C � E C � D

C � D � E
(ANDR)

C � D

∃r.C � ∃r.D
(EX)

C � E E � D

C � D
(CUT)

Figure 1. Gentzen-style proof system for general EL terminologies.

required. In this section, we show how, for a signature Σ, the sets of
Σ-subsumees and Σ-subsumers of each atomic concept in a normal-
ized EL TBox T can be described as languages generated by regular
tree grammars on ranked unordered trees with finite sets of deriva-
tion rules later on transformed into a finite uniform interpolant. For
the definition of the grammars, we uniquely represent each atomic
concept A ∈ sigC(T ) by a non-terminal nA (and denote the set
of all non-terminals by N T = {nx|x ∈ sigC(T ) ∪ {�}}). In
what follows, we use the ranked alphabet F = (sigC(T ) ∩ Σ) ∪
{�} ∪ {∃r | r ∈ sigR(T ) ∩ Σ} ∪ {�i | i ≤ n}, where atomic
concepts in sigC(T ) ∩ Σ are constants, ∃r for r ∈ sigR(T ) ∩ Σ
are unary functions and �i are functions of the arity i bounded by
n = |sigC(T )| · (|sigR(T )| + 1), i.e., the number of all possible
simple concepts in T (atomic concepts and all existential restrictions
on atomic concepts). The restriction to the maximum arity of n is
w.l.o.g., since we can always split longer conjunctions into a nested
conjunction with at most n elements in each sub-expression. In the
following, it will be convenient to simply write � if the arity of the
corresponding function is clear from the context. Clearly, every EL
concept C with sig(C) ⊆ Σ and at most n conjuncts in each sub-
expression has a unique representation by the means of the above
functions. We denote such a term representation of C using F by tC .

In what follows, we use a substituting function σT ,F :
{C | sig(C) ⊆ sig(T )} → T (F , N T ) by σT ,F (C) =
tC{n�/�, nB1 /B1, ..., nBn /Bn}, where B1, ..., Bn are all atomic
sub-expressions of C. Note that σT ,F is injective, therefore, its in-
verse is also a function. If the TBox and the set of non-terminals are
clear from the context, we will denote such a representation of a con-
cept C simply by σ(C), and its inverse by σ−(t) for t ∈ T (F , N T ).
In the following we will assume σ−(t) to be extended to partially
ground terms and ground terms.

Since concepts are represented as terms, we extend the generated
languages by associative variants of concept expressions. For this
purpose, in addition to the TBox axioms and classification results,
we include in our grammars the subsumees and subsumers of each
atomic concept having the form of simple conjunctions, i.e., conjunc-
tions of simple concepts. As we will see in the next section, to obtain
a uniform interpolant and derive the corresponding upper bound, in
the case of subsumees, it is sufficient to capture all associative vari-
ants of subsumees not being obtained by adding arbitrary conjuncts
to arbitrary sub-expressions (rule ANDL in Fig. 1). In fact, in gen-
eral, adding arbitrary conjuncts to arbitrary sub-expressions allows
us to obtain subsumees being conjunctions of unbounded size, which
would cause the corresponding language to contain terms with �-
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functions of unbounded arity and make the definition of the grammar
unnecessary complex. Therefore, we do not include such subsumees
into our grammars. For this reason, it is sufficient in the case of sub-
sumees to consider conjunctions of atomic concepts only, denoted by
Pre(A) = {M ⊆ sigC(T ) | T |=

�
Bi∈M Bi � A}.

In contrast to that, to be able to derive the upper bound, we have to
include all subsumers into our grammars. Since weakening of sub-
sumers (see rule ANDR in Fig. 1) does not require �-functions of
unbounded arity, this can be done by the means of a minor extension:
in addition to conjunctions of atomic concepts, we take into account
existential restrictions with atomic concepts, formed from the ele-
ments of the set PostBase(A) = {A′ ∈ sigC(T ) ∪ {�} | T |= A �
A′} ∪ {∃r.A′ | A′ ∈ sigC(T ) ∪ {�}, T |= A � ∃r.A′, r ∈ Σ} and
Post(A) = 2PostBase(A). Thereby, we obtain the following definition.

Definition 2 Let T be a normalized EL TBox, Σ a signature. Fur-
ther, let Pre(A) = {M ⊆ sigC(T ) | T |=

�
Bi∈M Bi � A},

PostBase(A) = {A′ ∈ sigC(T ) ∪ {�} | T |= A � A′} ∪ {∃r.A′ |
A′ ∈ sigC(T ) ∪ {�}, T |= A � ∃r.A′, r ∈ Σ} and Post(A) =
2PostBase(A). Further, for each B ∈ sigC(T ), let R� be given by

(GL1) nB → B if B ∈ Σ,
(GL2) nB → nB′ for all {B′} ∈ Pre(B),
(GL3) nB → �(nB′

1
, ..., nB′

n
) for all {B′

1, ..., B′
n} ∈ Pre(B) with

n ≥ 1,
(GL4) nB → ∃r(nB′ ) for all B′ with B ≡ ∃r.B′ ∈ T and r ∈

sigR(T ) ∩ Σ.

Let R� be given for all B ∈ sigC(T ) ∪ {�} by

(GR1) nB → B if B ∈ Σ ∪ {�},
(GR2) nB → σ(C) for all {C} ∈ Post(B),
(GL3) nB → �(nC′

1
, ..., nC′

n
) for all {C′

1, ..., C′
n} ∈ Post(B)

with n ≥ 1.

For each A ∈ sigC(T ), the regular tree grammar G�(T , Σ, A)
is then given by (nA, N T , F , R�), and the regular tree grammar
G�(T , Σ, A) is given by (nA, N T , F , R�).

We denote the set of tree grammars {G�(T , Σ, A) | A ∈ sigC(T )}
by G

�(T , Σ) and the set {G�(T , Σ, A) | A ∈ sigC(T )} by
G

�(T , Σ).
Since sig(T ) is finite, all elements of Pre and Post can be ef-

fectively computed. For the construction of grammars the following
result holds.

Theorem 1 Let T be a normalized EL TBox, Σ a signature.
G

�(T , Σ) and G
�(T , Σ) can be computed from T in exponential

time and are exponentially bounded in the size of T .

Proof Sketch. The exponentially bounded size and time hold basi-
cally due to the exponential number of elements in Pre and Post and
tractable reasoning in EL[1]. �

The following example demonstrates the grammar construction.

Example 3 For T and Σ from Example 1, we obtain a
normalized TBox T ′ = {A′ � A, A � A′′, A �
B, B ≡ ∃r.A, B′ ≡ ∃s.A, B′ � A}, which yields
Pre = {(A, {A′, B′}), (A′′, {A′, B′, A}), (A′, {}), (B, {A′, A}),
(B′, {})}, PostBase = {(A, {A′′, B, �, ∃r(nA), ∃r(n�)}),
(A′, {A, A′′, B, �, ∃r(nA), ∃r(n�)}), (B, {�, ∃r(nA), ∃r(n�)}),
(A′′, {�}), (B′, {A′′, A, �, ∃s(nA), ∃s(n�)})} and the following
set of transitions for R�:

nB→nA

nA′′ →nA′ nA→nB′

nA′′ →nA nA→nA′

nA′′ →nB′ nB→nA′

nA′′ →A′′ nA′ →A′

nB′ →∃s(nA) nB→∃r(nA)
nA→ � (nA′ , nB′ ) nB→ � (nA′ , nA)
nA′′ → � (nA′ , nA) nA′′ → � (nA, nB′ )
nA′′ → � (nA′ , nB′ ) nA′′ → � (nA, nA′ , nB′ )

For R�, we obtain n→n� for all n ∈ N and

nA′′ →A′′ n� → �
nA′ →A′ nA′ →nB

nA→nA′′ nA′ →nA

nA→nB nA′ →nA′′

nB′ →nA nB′ →nA′′

nB′ →∃s(nA) nB→∃r(nA)
nA→∃r(nA) nA′ →∃r(nA)
nB′ →∃s(n�) nB→∃r(n�)
nA→∃r(n�) nA′ →∃r(n�)

Additionally, R� contains rules for conjunctions of all elements of
PostBase corresponding to (GR3), which we do not give for space
reasons.

By applying the rules nA→nB′ , nB′ →∃s(nA) contained in R� n
times, we obtain a term ∃s(∃s(...∃s(A))) of depth n, which repre-
sents the corresponding subsumee of A of the same depth.

5.1 Grammar Properties

The following theorem states that the grammars derive only terms
representing Σ-subsumees and Σ-subsumers of the corresponding
atomic concept.

Theorem 2 Let T be a normalized EL TBox, Σ a signature and
A ∈ sigC(T ).

1. For each t ∈ L(G�(T , Σ, A)), there is a concept C with tC = t
and sig(C) ⊆ Σ such that T |= C � A.

2. For each t ∈ L(G�(T , Σ, A)), there is a concept C with tC = t
and sig(C) ⊆ Σ such that T |= A � C.

Proof Sketch. The theorem is proved by an easy induction on the
maximal nesting depth of functions in t using the rules given in Def-
inition 2. �

As discussed above, for the completeness of the grammar generating
subsumees, we only guarantee to capture all associative variants of
concepts not being obtained by adding arbitrary conjuncts to arbi-
trary sub-expressions.

Theorem 3 Let T be a normalized EL TBox, Σ a signature and
A ∈ sigC(T ).

1. For each C with sig(C) ⊆ Σ such that T |= C � A
there is a concept C′ such that C can be obtained from C′

by adding arbitrary conjuncts to arbitrary sub-expressions and
tC′ ∈ L(G�(T , Σ, A)).

2. For each D with sig(D) ⊆ Σ such that T |= A � D holds:
tD ∈ L(G�(T , Σ, A)).

Proof Sketch. The theorem is proved by induction on the role depth
of C using the properties of the normalization, for instance, stated in
Lemmas 2, in addition to Definition 2. �

N. Nikitina and S. Rudolph / ExpExpExplosion: Uniform Interpolation in General EL Terminologies 621



6 From Grammars to Uniform Interpolants

For the construction of a uniform interpolant, we make use of the
results stated in Lemma 2, which, in combination with the introduced
normalization imply that, knowing the subsumees and subsumers of
atomic concepts in normalized terminologies is sufficient to derive
all subsumptions between any complex concepts. In order to obtain
a corresponding TBox from a pair of grammars, for all nB occurring
on the right-hand sides of the transition rules must hold: B ∈ Σ ∪
{�}. If the latter is the case, we can apply the inverse substitution
σ−(t) to obtain axioms defining subsumers and subsumees of atomic
concepts. Otherwise, we first need to eliminate all non-terminals not
from N Σ = {nB | B ∈ Σ ∪ {�}} within the right-hand sides
of the corresponding rules. In principle, we can substitute any such
non-terminal n �∈ N Σ by the right-hand sides of the corresponding
rules for n without any change to the generated language. However,
in the general case, such a sequence of substitutions does not have to
be finite. In the following, we investigate the bounds for the number
of such substitution steps required to obtain a uniform interpolant.

For a concept C, let d(C) denote the maximal role depth within
C. For a TBox T , d(T ) = max{d(C) | C is a sub-expression of
T }. The following lemma postulates a bound on the role depth of
minimal uniform EL interpolants:

Lemma 3 Let T be a normalized EL TBox, Σ a signature. Let
def(T ) be the number of definitions in T . The following statements
are equivalent:

1. There exists a uniform EL Σ-interpolant of T .
2. There exists a uniform EL Σ-interpolant T ′ of T and d(T ′) ≤

24·(|sigC (T )|+def(T )) + 1.

Proof Sketch. In a normalized TBox T , the number of sub-
expressions2 is |sigC(T )| + def(T ). Therefore, we can replace the
last statement of Condition 2 by d(T ′) ≤ 22·n + 1, where n is twice
the number of sub-expressions within T . Then, the lemma follows
from Conditions (1) and (4) of Lemma 55 in [9]. �

We can eliminate all non-terminals not from N Σ within the given
role depth by replacing them in each rule by the corresponding right-
hand sides, thereby obtaining a set of grammars that can be trans-
formed into a uniform EL Σ-interpolant using the inverse substitu-
tion σ−(t).

Definition 3 For a normalized EL TBox T and a signature Σ, let

• R�
0 = R� and R�

0 = R�.
• R��

i+1 = {n → t(t′
1, ..., t′

n) | n → t(n1, ..., nn) ∈ R��
i , 1 ≤ j ≤

n, t′
j = nj if nj ∈ N Σ and t′

j ∈ {t′ | nj → t′ ∈ R��
0 } for

nj �∈ N Σ} with ��∈ {�, �}.

For an A ∈ sigC(T ), let G�
i = (nA, N T , F , R�

i ) and G�
i =

(nA, N T , F , R�
i ). G�

i (T , Σ) is then given by {G�
i (T , Σ, A) | A ∈

sigC(T )} and G
�
i (T , Σ) by {G�

i (T , Σ, A) | A ∈ sigC(T )}.

Let N = 24·(|sigC (T )|+def(T )) + 1. Given a pair of grammar sets
G

�
N (T , Σ),G�

N (T , Σ) for a TBox T and a signature Σ, we can com-
pute a uniform EL Σ-interpolant of T as follows.

2 In a conjunction, only the concepts not being a conjunction itself are consid-
ered as proper sub-expressions. Therefore, a conjunction with n elements
has n proper sub-expressions.

Definition 4 Let T be a normalized EL TBox, Σ a signature and
N = 24·(|sigC (T )|+def(T )) + 1. Further, let G1 = G

�
N (T , Σ),G2 =

G
�
N (T , Σ) with R1 = R�

N and R2 = R�
N . Then, UI(G1,G2, Σ) =

{σ−(t) � A |A ∈ Σ, nA → t ∈ R1, t ∈ T (F , N Σ)}∪
{A � σ−(t) |A ∈ Σ, nA → t ∈ R2, t ∈ T (F , N Σ)}∪

{σ−(t1) � σ−(t2) |n �∈ NΣ, n → t1 ∈ R1, n → t2 ∈ R2,

t1, t2 ∈ T (F , N Σ)}.

Clearly, the construction terminates, if G1 and G2 are finite. The size
of the resulting TBox UI(G1,G2, Σ) is bounded polynomially by
the size of G1,G2. Moreover, sig(UI(G1,G2, Σ)) ⊆ Σ, since each
t, t1, t2 ∈ T (F , N Σ), σ−(t) ⊆ sig(T ) and F ∩ (sig(T ) \ Σ) = ∅.
We obtain the following result concerning the size of uniform EL
Σ-interpolants of T .

Theorem 4 Let T be an EL TBox and Σ a signature. The following
statements are equivalent:

1. There exists a uniform EL Σ-interpolant of T .
2. UI(G1,G2, Σ) ≡c

Σ T
3. There exists a uniform EL Σ-interpolant T ′ with |T ′| ∈

O(222|T |
).

Proof. The non-trivial parts of the proof are implications 1 ⇒ 2 and
2 ⇒ 3.

1 ⇒ 2: By Definition 1, the statement UI(G1,G2, Σ) ≡c
Σ T con-

sists of two directions: (1) for all EL concepts C, D with sig(C)∪
sig(D) ⊆ Σ holds UI(G1,G2, Σ) |= C � D ⇒ T |= C � D
and (2) for all EL concepts C, D with sig(C)∪sig(D) ⊆ Σ holds
UI(G1,G2, Σ) |= C � D ⇐ T |= C � D.

(1) The first direction follows from Theorem 2 and Definition 4,
which does not introduce any consequences not being conse-
quences of T .

(2) For the second direction, assume that there exists a uni-
form EL Σ-interpolant of T . Then, by Lemma 3, there ex-
ists a uniform EL Σ-interpolant T ′ of T with d(T ′) ≤ N .
It is sufficient to show that for each C � D ∈ T ′ holds
UI(G1,G2, Σ) |= C � D. Assume that C � D ∈ T ′. Then,
T |= C � D and we prove by induction on maximal role
depth of C, D that also UI(G1,G2, Σ) |= C � D. W.l.o.g., let
D =

�
1≤i≤l Di and

C =
�

1≤j≤n

Aj �
�

1≤k≤m

∃rk.Ek

with Aj ∈ Σ ∩ sigC(T ) for 1 ≤ j ≤ n, rk ∈ Σ ∩ sigR(T ) for
1 ≤ k ≤ m and Ek with 1 ≤ k ≤ m a set of EL concepts such
that sig(Ek) ⊆ Σ. Clearly, T |= C � D, iff T |= C � Di for
all i with 1 ≤ i ≤ l.

• If Di = A ∈ Σ, then, it follows from Theorem 3 that there is
a concept C′ such that C can be obtained from C′ by adding
arbitrary conjuncts to arbitrary sub-expressions with tC′ ∈
L(G�(T , Σ, A)). Since d(C) ≤ N and C has been obtained
from C′ by weakening, also d(C′) ≤ N . Therefore, tC′ ∈
L(G�

N (T , Σ, A)), and UI(G1,G2, Σ) |= C � Di.
• If Di = ∃r.D′ for some r, D′, then, by Lemma 2, one of the

following is true:
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(A3) There are rk, Ek in C such that rk = r and T |= Ek � D′.
Since d(Ek) < N and d(D′) < N , by induction hypoth-
esis holds UI(G1,G2, Σ) |= Ek � D′. It follows that
UI(G1,G2, Σ) |= ∃rk.Ek � Di and UI(G1,G2, Σ) |=
C � Di.

(A4) There is B ∈ sigC(T ) of T such that T |= B � ∃r.D′ and
T |= C � B. Then,

– it follows from Theorem 3 that there is a concept C′

such that C can be obtained from C′ by adding arbi-
trary conjuncts to arbitrary sub-expressions with tC′ ∈
L(G�(T , Σ, B)). Since d(C) ≤ N and C has been ob-
tained from C′ by weakening, also d(C′) ≤ N . Therefore,
tC′ ∈ L(G�

N (T , Σ, B))
– it follows from Theorem 3 that t∃r.D′ ∈ L(G�(T , Σ, B)).

Since d(∃r.D′) ≤ N , it follows that t∃r.D′ ∈
L(G�

N (T , Σ, B)).
Therefore, by Definition 4, UI(G1,G2, Σ) |= C′ � ∃r.D′,
and UI(G1,G2, Σ) |= C � Di.

2 ⇒ 3: Observe that G1,G2 have |sigC(T )| non-terminals and at
most 22·n + |sigC(T )| outgoing transitions for each non-terminal,
n the maximal arity of �, each of which has at most n occur-
ring non-terminals. Let leavesi be the maximal number of non-
terminals n �∈ N Σ occurring in a transition after step i and trani

the maximal number of outgoing transitions for a non-terminal af-
ter step i. Then, tran0 = 22·n + |sigC(T )| and leaves0 = n.
Further, leavesi+1 = n · leavesi, i.e., leavesi = ni+1.
For each n �∈ N Σ, there are at most 22·n + |sigC(T )| pos-
sible replacing transitions, therefore, for each t ∈ Ri, there
are (22·n + |sigC(T )|)leavesi+1 possibilities to replace all non-
terminals n �∈ N Σ by the corresponding transitions from R0.
We obtain trani+1 = trani · (22·n + |sigC(T )|)leavesi+1 ,
i.e., trani ≤ (22·n + |sigC(T )|)i·ni+2

. For i = N , we ob-
tain leavesi = nN ∈ O(22|T | ) and trani ≤ (22·n +
|sigC(T )|)(N)·nN+2 ∈ O(222|T |

).

These complexity results correspond to the size and number of ax-
ioms in Example 2. �

7 Summary and Future Work

In this paper, we provide an approach to computing uniform inter-
polants of general EL terminologies based on proof theory and reg-
ular tree languages. Moreover, we show that, if a finite uniform EL
interpolant exists, then there exists one of at most triple exponential
size in terms of the original TBox, and that, in the worst-case, no
shorter interpolant exists, thereby establishing the triple exponential
tight bounds.

Due to the triple exponential blowup, algorithms for testing the
appropriate size of uniform interpolants in addition to their existence
would be of importance for applications in practice. While, in prin-
ciple, expressing uniform interpolants in EL extended with fixpoint
constructs [13] allows us to avoid both problems, the non-existence
and the triple exponential blowup, for practical scenarios, reducing
the forgotten signature in a reasonable way would be an interesting
alternative, for instance, for applications as visualization of depen-
dencies or ontology reuse.

Moreover, given the considerable effect of structure sharing elim-
ination on the size of a TBox, it would be interesting to investigate,
to what extent the structure sharing within existing large ontologies
can be intensified in order to make reasoning more efficient.
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