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Abstract. The paper introduces the notion of Temporal Multi-
Agent Plan (TMAP) and proposes a methodology, based on Simple
Temporal Problems (STP), for detecting and diagnosing action exe-
cution delays. Actions are characterized by a finite set of behavioral
modes, and each behavioral mode is a continuous interval of possible
durations of the action. Nominal modes represent the expected dura-
tions, whereas faulty modes represent delays.
Solving such diagnostic problems requires to find an assignment of
modes to the actions that is consistent with the received observations
and maximizes the likelihood of the delayed durations. An imple-
mentation of the approach and some preliminary experimental results
are also discussed.

1 INTRODUCTION

The diagnosis of the execution of a multi-agent plan (MAP) - i.e., a
plan assigned to a team of (cooperating) agents - has recently been
addressed in a number of works (see e.g., [6, 2, 5]), proposing differ-
ent notions of plan diagnosis and different diagnostic methodologies.
These works assume that the MAP is correct, but during its execution
action failures can happen as a consequence of unexpected events
such as faults in the functionalities of the agents, or unpredictable
changes in the environment.

All these works, however, do not consider the temporal dimension;
that is, action delays are never taken into account as possible sources
of plan execution anomalies. In many practical situations this ap-
pears to be a strong limitation since the MAP is often enriched with
a schedule, and hence intermediate deadlines and the temporal con-
straints between actions have to be satisfied at execution time.

To the best of our knowledge, only the work by Roos and Wit-
teveen [7] has addressed the diagnosis of delayed actions. In their
approach, each fault mode is a real number δ representing a specific
delay from the nominal duration interval, and observations are given
as uncertain time intervals. They propose a notion of preferred diag-
nosis (maximum confirmation) which is based on the uncertainty of
observations and, instead of trying to maximize the probability of ac-
tion delays, tries to maximize the coverage of the intervals associated
with observations.

In this paper we propose a different approach to the problem; our
main objective is to provide the user (i.e., a human supervising the
plan execution) with high-level explanations that directly mention
the delayed actions in the plan, and that maximize the probability of
such action delays.

To this end, following [6, 2], we map our multi-agent setting into
the Model-Based Diagnosis (MBD) framework: the MAP becomes
the model of the system to be diagnosed, the actions in the plan are
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the system components, and constraints between actions represent
the connections between the components.

As usual in MBD, we associate each action with a finite set of
behavioral modes. Since our interest is in diagnosing action delays,
behavioral modes are duration intervals: the nominal mode is a range
of acceptable durations for a given action; faulty modes, on the other
hand, are intervals of delayed durations of increasing order (and de-
creasing probability) that can affect the action.

In this paper we adopt the consistency-based notion of diagnosis:
a MAP diagnosis is a subset of actions whose non-nominal behavior
is consistent with the observations received so far; and we propose a
methodology to infer the set of all the diagnoses with minimal rank
[4], i.e., with the highest (order-of-magnitude) likelihood.

The general framework within which we situate the diagnostic task
is a loop of control including plan monitoring and diagnosis. The ob-
jective is to keep the system diagnosis updated along time; as soon
as new observations are available, the monitoring is in charge of ver-
ifying whether the current diagnostic hypothesis is still valid (detec-
tion). If not, new diagnostic hypotheses must be inferred.

The paper is organized as follows. In the next section we briefly
review some basic notions about Simple Temporal Problems and
Multi-Agent Plans. In section 3 we introduce our Temporal Multi-
Agent Plan (TMAP) framework and the notion of Delayed Action
Execution (DAX) diagnostic problem. In sections 4 and 5 we dis-
cuss how a DAX problem can be detected and solved, respectively.
In section 6 we discuss a possible implementation of the approach
supported by some preliminary results. Finally, the conclusions.

2 BACKGROUND

Simple Temporal Problems. A Simple Temporal Problem (STP) [3]
is a special case of TCSP (Temporal Constraint Satisfaction Prob-
lem), consisting of a set V of variables (which represent real-valued
time points), and a set of constraints C of the form:

aij ≤ Xj −Xi ≤ bij (1)

which can be expressed as the pair of inequalities:

Xj −Xi ≤ bij ; Xi −Xj ≤ −aij (2)

where Xi, Xj ∈ V and aij , bij denote the lower and the upper
bound, respectively, of the time interval between the events Xi, Xj .

A solution of an STP is an assignment to the variables in V that
does not violate any constraint in C. A consistent STP is an STP with
at least one solution. The consistency of an STP can be checked by
translating it into a distance graph G = 〈V,E〉, where V is the set
of time point variables as before, and E is a set of directed edges
between the variables in V . For each constraint in (2), a weighted
edge from Xi to Xj (resp. from Xj to Xi) with weight bij (resp.
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−aij) is added to E. A special node z is added to V and represents
the event from which time starts. The STP is consistent iff its as-
sociated distance graph has no negative cycles [3]. This condition
can be checked by exploiting well-known algorithms, such as the
Floyd-Warshall algorithm which has time complexity O(|V |3), or
(for sparse graphs) the Johnson algorithm which has time complex-
ity O(|V |2 · log(|V |) + |V | · |E|).
Multi-Agent Plans. In this paper we consider a simplified notion of
Multi-Agent Plan (MAP) in order to better focus on the time exten-
sions; a MAP P is a tuple 〈T , A,R〉 where:

- T is the team of agents;
- A is a set of action instances; each action is assigned to a specific

agent in T ;
- R is a partial order relation over A; each p ∈ R is a pair 〈a, a′〉,
a, a′ ∈ A, meaning that the execution of a must precede the ex-
ecution of a′; we say that a is a predecessor of a′, and a′ is a
successor of a.

The synthesis of a MAP is out of the scope of the paper; see e.g., [1].

3 DIAGNOSING DELAYED ACTIONS:
FRAMEWORK

In this paper we are interested in detecting and explaining delays in
the execution of the actions in a given MAP. Thus we extend the
MAP formalization with temporal information. Note that we are not
just interested in modeling durative actions; in our diagnostic pro-
cess, in fact, we aim at identifying the (possibly anomalous) behav-
ioral modes of the actions performed so far. For this reason, we first
formalize the notion of Temporal MAPs (TMAP), and then we for-
malize the Delayed Action Execution (DAX) diagnostic problem.

3.1 Temporal MAPs

A Temporal MAP (TMAP) is a tuple 〈T , A,R,M,modes〉 where
〈T , A,R〉 is the embedded MAP, and:

- M is the set of all the possible behavioral modes that can be as-
sociated with the action instances in A. Each mode m ∈ M is a
triple of the form 〈label, range, rank〉:
* label is the mode name;

* range is an interval of time corresponding to the possible du-
rations of the action when it behaves like this mode. The lower
and upper bounds of the interval are denoted as m.range.l and
m.range.u, respectively; for the sake of readability, we will
use m.l and m.u as shortcuts. The interval can be closed, open,
or half-open according to the modeler’s needs; possibly, m.u
can be +∞, but m.l is always a finite value in �;

* rank is a non-negative integer value representing the order-of-
magnitude probability of the mode [4]: lower ranks correspond
to higher probabilities. Rank zero is associated with all and only
the nominal modalities.

Given a modality m ∈ M, we use the dot notation to retrieve its
fields (e.g., m.rank).

- modes ⊆ A ×M is a relation that associates each action in A
with a set of modes. In particular we assume that such a relation
satisfies the following conditions:

1. ∀a ∈ A modes(a) 
= ∅
2. ∀a ∈ A ∃!m ∈ modes(a)|m.rank = 0

Figure 1. An example of TMAP.

3. ∀a ∈ A, ∀ml,mk ∈ modes(a),ml 
= mk,
ml.range ∩mk.range = ∅

4. ∀a ∈ A, let a.L be the lowest bound of the modes in
modes(a), and let a.U be the highest bound of the modes in
modes(a); then, [a.L, a.U ] =

⋃
m∈modes(a)

m.range

Condition 1 simply states that each action must have at least one
behavioral mode, and condition 2 specifies that each action must
always be associated with at least one, and no more than one, nom-
inal mode (i.e., the interval of expected possible durations of the
action). Condition 3 requires that the modes of an action a do not
overlap with one another, and condition 4 imposes the continuity
of the intervals of the modes. In short, the modalities associated
with action a represent a partition of the interval [a.L, a.U ]. In
the next sections we will refer to such an interval as the relaxed
interval of action a.

Finally, given an action a, we denote as m〈a, lab〉 the mode m ∈
modes(a) such that m.label equals lab.

Example 1 Let us consider the simple TMAP depicted as a graph in
Figure 1; it involves two agents, A and B; the first is in charge of
actions A1 and A2, the second of actions B1 and B2. Actions are
nodes, whereas edges between nodes are precedence links between
the actions; e.g., action A2 can be executed only after the completion
of actions A1 and B1. The triplets near each node represent the
modalities associated with the corresponding action. For example,
A1 is considered to have fault F1 (with rank 1) if its duration is more
than 2 and up to 4.

3.2 Delayed Action Execution (DAX) Problems

Timed observations. We define a timed observation as a pair 〈e, t〉,
where e is the observed event, and t is the time when e occurred.
In our TMAP framework, observable events are the start as and the
completion ae of any action a in A; for instance, 〈as, t〉 means that
action a started its execution at time t. Of course, during the execu-
tion of P , only a few of these events will be observed.

It is important to note that, since the agents share the same envi-
ronment and resources, it is possible that the misbehavior of an agent
causes cascade delays in other agents’ activities. As a consequence,
in solving a diagnostic problem, one has to consider that the delay
observed in the completion of an action can be a consequence of a
delay occurred in a previous action.
Delayed Action Execution problem. A DAX problem is a tuple
〈P,Δcur, O〉 and arises when, given a TMAP P , a sequence of timed
observations O = 〈o1, . . . , on〉, and a hypothesis Δcur (which maps
each action a in P with a behavioral mode in modes(a)), we get an
inconsistency. Intuitively, this happens when at least one timed ob-
servation 〈e, t〉 ∈ O is in conflict with the estimations about e that
can be inferred by using P and Δcur . In section 4 we address this
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Figure 2. An outline of the proposed methodology.

problem more formally, and we discuss how inconsistencies can be
detected by means of STPs.

A solution of a DAX problem, i.e., a DAX diagnosis, is a new
mapping Δ : a→ m(a), a ∈ A such that:

1. P ∪Δ ∪O 
� ⊥
2. the rank Δ.rank =

∑
a∈A

Δ(a).rank is minimal, i.e. for each
Δ′ satisfying the previous conditions, Δ.rank ≤ Δ′.rank

Condition 1 states that the diagnosis is correct, i.e. consistent with the
timed-observations that have been received. Condition 2 is a prefer-
ence criterion: we are not interested in any possible diagnosis, but in
a diagnosis whose rank is minimal. Note that, since we are assum-
ing that failures (i.e., non-nominal modes) are independent of one
another, the rank of a diagnosis is the summation of the ranks associ-
ated with the assumed modes [4]. Thus we look for the diagnosis, in
fact for all the diagnoses, with the highest (qualitative) probability.

4 SOLVING A DAX PROBLEM: DETECTION

The basic idea of the methodology we propose, outlined in Figure 2,
is to solve a DAX problem by combining the techniques developed
to solve STPs with those developed within Model-Based Diagnosis.
More precisely, our methodology consists of four main steps:
1) encoding: given a TMAP P and a hypothesis Δ, representing the
current (assumed) diagnosis of P , the encoding phase produces an
STP S〈P,Δ〉. Of course, at the beginning of the plan execution phase,
Δ maps each action to its nominal behavior; that is, all the actions
are expected to be on-time.
2) detection: verifies the validity of hypothesis Δ at plan execution
time: whenever new observations become available these observa-
tions are asserted within S〈P,Δ〉. If S〈P,Δ〉 results to be consistent,
then Δ is still valid. Otherwise, a new diagnosis has to be inferred.
3) diagnosis: infers a set MinDiag of minimal rank diagnoses; as we
will discuss, also this step relies on a translation of the TMAP into
an STP.
4) selection: the final step consists in the selection of a new current
diagnostic hypothesis out of MinDiag; then the process starts again
with the encoding until the plan execution phase terminates.

In the rest of this section we discuss the encoding and the detection
phases; the diagnosis is presented in section 5, while we leave the
selection phase to a future work.

4.1 Encoding

Given a TMAP P = 〈T , A,R,M,modes〉 and the current diagnos-
tic hypothesis Δ, the associated STP S〈P,Δ〉 includes the following
set of constraints:

⋃

a∈A

Δ(a).l ≤ ae − as ≤ Δ(a).u (3)

These constraints state that each action in the plan has an expected
duration which depends on its mode assumed in Δ. Further con-
straints, however, need to be added in order to model the precedence
relations existing among the actions in P . To add these constraints
one has to reason about the topology of the precedence links in R.
Three configurations of precedence links have to be considered:

- split: let us consider the precedence links 〈a, a′〉, 〈a, a′′〉 ∈ R;
action a is a direct predecessor of both a′ and a′′; we impose that
as soon as a terminates a′ and a′′ start their execution by adding
to S〈P,Δ〉 the constraints:

a′
s − ae = 0; a′′

s − ae = 0 (4)

- pipe: is a special case of split where an action a′ has only one
direct predecessor a; thus a′

s − ae = 0 is added to S〈P,Δ〉;
- join: for any pair of precedence links 〈a′, a〉, 〈a′′, a〉 ∈ R, we

would like to say that a can start only after the completion of both
a′ and a′′; that is, as soon as the latest of them terminates. At this
stage, however, we cannot say which of them will terminate last,
so we add to S〈P,Δ〉 two very relaxed constraints:

0 ≤ as − a′
e ≤ +∞; 0 ≤ as − a′′

e ≤ +∞ (5)

These two constraints only impose that a starts after the comple-
tion of both a′ and a′′, but the amount of “waiting time” elapsing
between the completion of the two actions and the start of a varies
from 0 to +∞. In the next subsection we describe how these re-
laxed intervals are restricted during the detection phase. Note that
a join configuration represents a synchronization point: the agent
in charge of performing a cannot go further unless the actions pre-
ceding a (even when they are assigned to different agents), have
been completed. In the rest of the paper we denote with SYNC
the sequence of all the synchronization points in A chronologi-
cally ordered. When there is not an order relation between two
synchronization points, they are non-deterministically serialized
in SYNC by putting one before the other.

4.2 Validating the current hypothesis

To validate the current diagnostic hypothesis Δ against a given set
O of timed observations, we consider the STP S〈P,Δ〉 resulting from
the encoding phase, and translate it into the associated distance graph
G〈P,Δ〉=〈V,E〉, as usual. The validation process we propose involves
two basic steps:

1. Updating G〈P,Δ〉 by asserting the observations in O; the result is
a new graph G〈P,Δ,O〉;

2. Reducing in G〈P,Δ,O〉 the expected waiting times for the synchro-
nization points to validate Δ.

Step 1. The assertion of the observations is a simple task. For each
observation 〈e, t〉 ∈ O, we add in G〈P,Δ,O〉 the two following
weighted edges:

〈z, t, e〉; 〈e,−t, z〉 (6)

meaning that the event e (either the starting or ending of an action)
must necessarily happen at time t: the distance between z and e is t.
Step 2. The second step takes the distance graph G〈P,Δ,O〉, and val-
idates the current hypothesis Δ against O. To reach this result, it
is necessary to restrict the waiting times before the synchronization
points. Without this step, in fact, any observation coming after a syn-
chronization point would always be consistent due to the relaxed
constraints (5). This step is outlined in Algorithm 1. First of all, we
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Algorithm 1 ValidateHypothesis
Require: G〈P,Δ,O〉 distance graph;

SYNC sequence of synchronization points
Returns: true when Δ is consistent with O, false otherwise;

1: G〈P,Δ,O〉 ←Johnson(G〈P,Δ,O〉)
2: if G〈P,Δ,O〉 has a negative cycle return false
3: for each synchronization point a ∈ SYNC do

4: let MWT (a) be the maximal waiting time for a
5: let mwt(a) be the minimal waiting time for a
6: G〈P,Δ,O〉 ← G〈P,Δ,O〉 ∪ {〈z,MWT (a), as〉}
7: G〈P,Δ,O〉 ← G〈P,Δ,O〉 ∪ {〈as,−mwt(a), z〉}
8: G〈P,Δ,O〉 ←Johnson(G〈P,Δ,O〉)
9: if G〈P,Δ,O〉 has a negative cycle return false

10: end for

11: return true

invoke Johnson algorithm 2 to minimize the distances between any
pairs of vertices in G〈P,Δ,O〉; if a negative cycle exists, we have dis-
covered that the predictions made by means of Δ are inconsistent
with the observations, and the algorithm terminates returning false.

Otherwise, for each synchronization point in SYNC , taken in the
order, we compute two measures: the Maximal Waiting Time (MWT),
and the minimal waiting time (mwt).

The maximal waiting time of a synchronization point a is the max-
imal time span between z and as; i.e., it is the longest absolute time
before the start of action a. Similarly, the minimal waiting time of a
is the shortest absolute time after which a can start. These two mea-
sures can be easily computed as:

- MWT (a)= maxa′∈dPred(a) longest makespan(a′)
- mwt(a)= maxa′∈dPred(a) shortest makespan(a′)

where dPred(a) is the set of direct predecessors of a, while
longest makespan(a′) is the longest distance between the nodes z
and a′

e in G〈P,Δ,O〉 and shortest makespan(a′) is the shortest dis-
tance between z and a′

e in G〈P,Δ,O〉. It is worth noting that, thanks to
the distances computed by Johnson algorithm, such makespans can
be obtained in linear time.

Thus we can predict that, according to hypothesis Δ, the starting
time of action a falls within the interval [mwt(a),MWT (a)]. To
verify whether this prediction is correct, we update the distance graph
by imposing that as ∈ [mwt(a),MWT (a)] (see lines 6 and 7).

Then, we invoke again Johnson algorithm on G〈P,Δ,O〉 to propa-
gate the new constraints and check whether the distance graph con-
tains negative cycles. If we find an inconsistency we return false;
otherwise, the current hypothesis is still consistent and the subse-
quent synchronization point is considered. After having considered
all the synchronization points without discovering an inconsistency,
the algorithm terminates returning true meaning that Δ is still valid.

Example 2 Let us consider the TMAP in Figure 1; it is easy to see
that nodes B1 and B2 are in pipe, while nodes A1, B1, and A2
form a join with synchronization point A2. Figure 3 shows the cor-
responding distance graph when all the actions behave nominally.

To exemplify the detection, let us suppose that after a while we
receive the observation O={〈A2e, 6〉}. To validate the nominal hy-
pothesis, we first assert this observation into the distance graph by

2 We use Johnson algorithm instead of Floyd-Warshall because, for typical
TMAPs, G〈P,Δ,O〉 is relatively sparse; the algorithm operates just on the
portion of the distance graph relevant for O; namely, those nodes preceding
the observations in O.
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Figure 3. Distance graph of the sample TMAP with all nominal actions.

adding the following edges: 〈z, 6, A2e〉 and 〈A2e,−6, z〉. After ap-
plying Johnson to this graph, it is possible to infer that event A2s
must be in the interval [4, 5] (because the nominal duration of A2
is [1, 2] and A2e = 6). However, when we minimize the wait-
ing time of synchronization point A2 (see Algorithm 1), we pre-
dict that A2s must be in the interval [2, 3] (indeed, MWT (A2) =
3 and mwt(A2) = 2); by asserting the edges 〈z, 3, A2s〉 and
〈A2s,−2, z〉 in the graph and invoking Johnson algorithm, we de-
tect an inconsistency since the intersection between the predicted and
inferred intervals is empty.

5 SOLVING A DAX PROBLEM: DIAGNOSIS

In the previous section we have discussed how a DAX problem is
detected; now we discuss how it is actually solved. Indeed, solving a
DAX problem means finding all the (preferred) possible explanations
which are consistent with the observations received so far.

To solve the problem we propose a variant of the conflict-directed
A* algorithm (cd-A*) discussed in [8]. In cd-A* there is a distinction
between decisional variables, among which soft constraints are de-
fined, and non-decisional variables, among which hard constraints
are defined; the algorithm efficiently solves a CSP defined on both
decisional and non-decisional variables in an optimized way. In fact,
cd-A* is proven to find all and only the optimal solutions; namely,
solutions that minimize the cost associated with the violation of the
soft constraints. In our problem, non-decisional variables correspond
to the real-valued start/end events of actions (as, ae), with hard con-
straints encoded in the distance graph. Decisional variables, instead,
model the behavior of the actions in A; more precisely, for each
action a in A, we have a decisional variable adec whose domain
dom(adec) is given by {m.label : m ∈ modes(a)}; that is, the
decisional variable assumes values in the set of mode labels associ-
ated with a. We denote with D the set of all the decisional variables.

The idea is that the assignment of a non-nominal mode to a de-
cisional variable corresponds to the violation of a soft constraint;
the rank of such a mode represents the violation cost. Algorithm cd-
A* can therefore be used to infer minimal rank diagnoses by finding
assignments of modes to the decisional variables that minimize the
global cost. The diagnoses we look for are therefore expressed in
terms of the decisional variables in D.
Search Space Due to lack of space we cannot describe the search
process in detail, and we focus on the most important aspects only.
First of all, we specify which pieces of information are maintained
within a node of the search graph; each node contains:

- H, a (partial) assignment of label modes to decisional variables;
it is a set of pairs 〈adec, label〉 where adec ∈ D and label ∈
dom(adec) is the value assigned to adec in this node;

- Doms is a set of pairs of the form 〈adec, dom(adec)〉 where
adec ∈ D and dom(adec) is the domain of adec in the current
node; note that as the search for a solution proceeds the domain of
a decisional variable is progressively reduced to just one specific
value;
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- G〈P,H,O〉 is the distance graph encoding the current hypothesisH
and observations O; it is analogous to graph G〈P,Δ,O〉 described
in section 4 for encoding a complete diagnosis Δ;

- fnode = g(H)+h(Doms) is the heuristic evaluation of the node;
more precisely, g is the sum of the ranks associated with the label
assignments already made in H; while h sums the minimal ranks
that can still be assigned to the variables mentioned in Doms; in
this way, heuristic h is admissible and cd-A* is guaranteed to find
optimal solutions. Of course, a decisional variable can either be
mentioned inH or in Doms, but not in both sets.

Search Strategy At the beginning of the search process, the
Open list (used to store the nodes on the frontier of the search
graph in increasing value of fnode) is initialized with the node
〈∅,Doms,G〈P,∅,O〉, 0〉. InitiallyH is empty, and therefore G〈P,∅,O〉
contains constraints of the form:

a.L ≤ ae − as ≤ a.U (7)

for the duration of each action a, i.e. the relaxed intervals, according
to which each mode is possible for a. At this stage, all the decisional
variables are mentioned in Doms; in particular, for each decisional
variable adec, dom(adec) contains all the possible mode labels asso-
ciated with a. Finally, fnode equals zero, in fact g(∅) is zero because
no assignment has already been made, and h(Doms) is zero because
the nominal mode (whose rank is zero) is possible in each decisional
variable domain.

The search continues by extracting the top element from the Open
list and by expanding that node; this step is outlined in Algorithm 2
and discussed in detail afterwards; for the time being we just say that
the expansion of a node returns the node itself, possibly modified,
and tagged with a label which can either be solution or partial.

If the label is solution, the node contains a solution, that is, a com-
plete assignment of values to the decisional variables in D, which
represents a minimal rank diagnosis consistent with O; in this case,
the solutionH is extracted from the current node and stored in the set
of all minimal diagnoses MinDiag. If this is the first solution that has
been found, the value of the node fnode is the rank of the solution
solutionRank; any other minimal solution will have the same rank.

If the label is partial, the node does not contain a complete solu-
tion; in this case the search strategy iterates by picking up the new
node at the top of the Open list. The search terminates either when
the list becomes empty, or when the value fnode of the top node in
Open is greater than solutionRank, that means that all the minimal
rank diagnoses have been found.

At the end of the search process, the set MinDiag contains all the
minimal rank diagnoses with rank solutionRank.
Node Expansion This step generates the children of the node ex-
tracted from the top of the Open list (see Algorithm 2). Before that,
however, it is necessary to minimize the node in order to be sure that
it is the best one in Open. Thus, from line 1 to line 12, the current
node is updated with minimization (line 2, see later). Note that as an
effect of this step, the algorithm can discover a solution and hence
terminate by returning the current node labeled as solution (line 5).
Otherwise, the node is not a solution and it is heuristically evaluated
(line 7); in case the new value fnew is worse than the previous es-
timated value fnode, the node is put again in the Open list, and the
expansion terminates returning the updated node and the label par-
tial, meaning that the node does not contain a solution.

In case the current node is still the best node in the Open list, it can
be expanded. Among the decisional variables still to be assigned in
Doms, we select the one with the smallest domain size; this heuristic
is known as Minimum Remaining Values (MRV) and aims at reducing

the number of children to be generated (line 13). Having selected the
decisional variable adec, the algorithm generates as many children as
there are labels in its domain dom(adec). Each child is a new node
generated by updating the information of the parent node; the new
node is therefore enqueued in the Open list (see lines from 14 thru
19). Finally, the algorithm terminates returning the current node with
the status label partial.
Node Minimization Another important step of our solution is the
minimization of a node, outlined in Algorithm 3. The purpose of this
step is to reduce as much as possible the domains of the decisional
variables still to be assigned by propagating the implications of the
variables already assigned. First of all, Johnson algorithm is invoked
so that the assignment made during the expansion of the parent node
can be propagated into the distance graph of this node.

After that, it is possible to minimize the domains of all the de-
cisional variables in Doms. In particular, for each adec ∈ Doms,
function restrictDomain prunes out from dom(adec) the mode la-
bels referring to intervals which are no longer possible in the updated
distance graph. It is possible that after this pruning, the domain of
variable adec contains just one mode label; thus adec must be moved
from Doms to H (i.e., it becomes part of the current assignment).
If at the end of the iteration over the decisional variables in Doms,
Doms becomes empty, it means that a complete assignment has been
found and the algorithm terminates by returning the updated node
tagged as solution; otherwise, the algorithm returns the node tagged
as partial.

It is important to note that after the minimization of a node, each
decisional variable still in Doms is associated with a set of mode
labels that are all consistent with the distance graph kept in the node
itself. In other words, given a decisional variable adec ∈ Doms
there exists at least one consistent diagnosis for each mode label in
dom(adec). As a consequence, whenever we create a new child node
in Algorithm 2, we have the guarantee that the new node has a con-
sistent distance graph; for this reason, we never have to check its
consistency.

Example 3 Let us consider a very simple DAX problem where
the plan is the one in Figure 1 and the observation is
O={〈A2e, 6〉;〈B2e, 6〉}. From example 2, where we only considered
〈A2e, 6〉, we know that the nominal hypothesis is inconsistent. After
a few steps of cd-A*, the search node at the top of the Open list is:

〈H : {〈A1, N〉; 〈B2, N〉};
Doms : {(B1, 〈N,F1, F2〉); (A2, 〈N,F1, F2〉)}; G〈P,H,O〉; 0〉;
According to Algorithm 2 the node needs to be minimized before cre-
ating its children. The minimization (Algorithm 3) first invokes John-
son and then refines the domains of the variables in Doms; in par-
ticular, the observation on B2e prunes the nominal behavior from
dom(B1); this propagates through the join and since B1 cannot
be nominal and A2e is observed at time 6, the domain of A2 is re-
stricted to the nominal behavior only. Thus the node is updated by
the minimization as follows: 〈H : {〈A1, N〉; 〈B2, N〉; 〈A2, N〉};
Doms : {(B1, 〈F1, F2〉)}; G〈P,H,O〉; 1〉. Note that the heuris-
tic evaluation of the node has now changed since action B1 can
be qualified, in the best situation, with a rank 1 fault. The node
is not a solution yet, so its two children (B1 is either F1 or F2)
are created and enqueued into the Open list. The process iterates
and the new node on the top of Open has a complete hypothesis
H : {〈A1, N〉; 〈B2, N〉; 〈A2, N〉; 〈B1, F1〉}, which is consistent
with the observations, and hence is a solution. In this particular case,
this is the unique minimal rank diagnosis.
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Algorithm 2 NodeExpansion
Require: node: 〈H, Doms, G〈P,H,O〉,fnode〉
Returns: 〈node, solution〉 when the current node is a solution;

〈node, partial〉 when current node is still a partial solution
1: if node is not minimized then

2: node← NodeMinimize(node)
3: mark node as minimized
4: if Doms is empty then

5: return 〈node, solution〉
6: end if

7: fnew ← g(H) + h(Doms)
8: if fnew > fnode then

9: Open.enque(node : 〈H,Doms,G〈P,H,O〉, fnew〉)
10: return 〈node, partial〉
11: end if

12: end if

13: 〈adec, dom(adec)〉 ←MRV (Doms)
14: for each mode label l ∈ dom(adec) do

15: H′ ← H∪ {〈adec, l〉}
16: Doms′ ← Doms \ {〈adec, dom(adec)〉}
17: G′

〈P,H′,O〉 ← update(G〈P,H,O〉, m〈a, l〉.range)
18: f ′

node ← g(H′) + h(Doms′)
19: Open.enque(newNode : 〈H′,Doms′,G′

〈P,H′,O〉, f
′
node〉)

20: end for

21: return 〈node, partial〉

Algorithm 3 NodeMinimize
Require: node: 〈H, Doms, G〈P,H,O〉, fnode〉

1: G〈P,H,O〉 ← Johnson(G〈P,H,O〉)
2: for each decision variable adec ∈ Doms do

3: dom(adec)← restrictDomain(G〈P,H,O〉, dom(adec))
4: if dom(adec) has just one label l then

5: H ← H∪ {〈adec, l〉}
6: Doms← Doms \ {〈adec, dom(adec)〉}
7: end if

8: end for

9: return node

6 IMPLEMENTATION AND TEST

We implemented the algorithms proposed in section 5 as a Perl pro-
gram; the C++ Boost Graph Library has been used for handling
STNs. We conducted a first set of tests to check the feasibility of the
approach; tests have run on a Intel i7 M640 processor at 2.80GHz
with 8GB of RAM.

We defined two test sets, 2Ag and 3Ag, each containing 25 DAX
problems with 2 and 3 agents, respectively. Each DAX problem con-
sists of a TMAP and a sequence of timed observations. Note that
TMAPs are not trivial plans: each of them contains 20 actions per
agent and 3 joins involving up to 5 actions.

We perturbed the simulated execution of each TMAP with up to
three randomly generated action delays. We assessed the approach by
using a very scarce observability rate: only three timed observations
per injected delay to infer all the minimal diagnoses.

#sols #nodes time all sols time/sol time first sol

2Ag 9 655 39.3 4.4 14.9
3Ag 12.6 700 60.2 4.8 33.2

Table 1. Preliminary results. Columns show: avg # of solutions, avg # of
visited nodes, avg time (sec), avg time per sol, and avg time for first sol.

Table 1 shows the main results of the experiments. We first note
that the cases with 3 agents expand (on average) more nodes than the
ones with 2 agents, and take more time to find all the minimal rank
diagnoses. The average time for finding a solution is also (slightly)
higher for 3 agents. Moreover, the average time for expanding each
node (not reported in the table) is 0.06sec for 2 agents and 0.09sec
for 3 agents.

We also note that for both test sets the computation of the first
solution takes significantly more time than the average. This can be
associated with the slow start behavior of cd-A*, which spends rela-
tively more search time at the beginning of the process [8].

These initial results show that the time spent in doing temporal
reasoning and propagation within each node is quite reasonable even
without optimized STN-manipulation techniques. On the other hand,
the results suggest that our version of cd-A* would benefit from a
stronger pruning of the search tree to reduce the number of expanded
nodes and consequently the computation time.

7 CONCLUSION

In this paper we have presented a novel approach to the diagnosis of
actions delays in the execution of Multi-Agent Plans. We have mod-
eled possible delays as duration intervals with an associated order-
of-magnitude likelihood expressed by a rank, and formally defined
diagnoses accordingly. To the best of our knowledge, the closest
work in the literature is [7] where, however, the authors develop
their approach specifically for uncertain observations and prefer di-
agnoses that maximize the coverage of such uncertainty intervals. In
our framework we assume that observations are (reasonably) precise,
and therefore we adopt a more classic criterion which prefers diag-
noses that maximize the probability of action delays.

We have developed our proposal in the context of a monitoring
process, where the system is in charge of detecting the inconsistency
of the current hypothesis, perform diagnosis and continue the process
with one or more updated hypotheses. In particular, we have focused
on detection and diagnosis, leaving the study of the iterative updates
of hypotheses to future work.

An implementation of the proposed algorithms has showed the
feasibility of the approach; a possible improvement may be the study
of a more sophisticated heuristic function in order to prune the cd-A*
search tree more effectively.
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