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Abstract. In disaster situation a quickly obtained and regularly up-
dated overview image of an area provides essential information for
the rescue mission planning. Such an overview image can be com-
posed from the individual pictures taken by a fleet of Unmanned
Aerial Vehicles (UAVs). However, currently drones are remotely
controlled by humans during such missions. To the best of our knowl-
edge, no research has been conducted on the problem of UAV routing
for such task. Therefore, we propose a method based on the well-
known metaheuristic Variable Neighborhood Search. In particular,
we developed two new heuristics to construct the initial solution and
an additional neighborhood operator. Computational experiments in-
dicate that solutions obtained by our metaheuristic do not exceed the
optimum by more than 26.9% on small scenarios. For the large in-
stances with hundreds of points (where no optimal solution is known)
the proposed method constructs feasible solutions in less than one
second.

1 INTRODUCTION

Unmanned aerial vehicles (UAVs) are gaining popularity in various
areas such as disaster management [13], agricultural surveillance [7],
urban terrain surveillance [4], military operations [14], construction
site monitoring, etc. In particular, the employment of micro UAVs,
i.e. drones that can be carried by a human, achieved high attention in
research and applications because of their simple handling and low
costs.

The goal of our project is to develop a system employing a team
of micro UAVs for aerial sensing in disaster situations. A fast first
overview image of a target area is very useful for first responders
who need to know the current situation. In order to track possible
changes of the situation, an overview image should be regularly up-
dated during the whole rescue operation. In this paper we consider
the problem of UAVs routing for obtaining these overview images.

The use of micro UAVs in a rescue scenario has several restrictions
that have to be taken into account. The energy storage (e.g. a battery)
of the UAVs has limited capacity (approximately 10 – 45 minutes
flight time depending on environmental conditions). Additionally,
there may be a single or multiple base stations with loaded spare
batteries where the UAVs depart from, return to and can change their
energy storage. Due to legal restrictions, drones cannot fly above a
certain altitude. Finally, micro UAVs have a limited payload.

Due to the reasons mentioned above, drones cannot fly high
enough or use sophisticated cameras with wide-angle lenses to take
an overview picture of the whole area with one shot. Therefore, an
overview image of an area is generated by stitching a set of individual
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images of parts of this area [13]. We will refer to the locations where
these pictures have to be taken as picture points. In our application
scenarios we have to deal with several hundred such points.

Despite the fact that during the last decade many research projects
were dedicated to UAV route planning, to the best of our knowledge,
all of the related problems differ significantly from the described
specification. One related problem, Multi-Depot Multiple UAV Rout-
ing Problem [12], does not consider multiple trips by a single vehi-
cle. Problems such as Patrolling Task [9] and Multi-Depot Multi-trip
Vehicle Routing Problem [3] do not take into account limitation on
battery capacity. In addition, mentioned UAV and Vehicle Routing
Problems require exactly one visit at every target point. Since none
of the related problems consider all the requirements we have, the
existing algorithms cannot be directly applied here.

Due to the problem complexity, complete methods (methods that
always find the optimal solution) exploited by mixed-integer pro-
gramming, constraint-based programming or logic programming are
not applicable for the real-life scenarios that contain several hundred
picture points. To underline this assertion we provide run times for
employing constraint-based programming to our problem specifica-
tion. As a consequence, only a heuristic approach, that does not guar-
antee the optimum but is sufficiently efficient, should be used for this
new type of problem.

In this paper we propose two different construction heuristics to
obtain an initial feasible solution and a metaheuristic approach to
improve the initial solution iteratively. The construction heuristics
exploit the basic ideas of the Solomon’s insertion heuristic [15] and
Clarke and Wright savings algorithm [2]. The metaheuristic is based
on the well-known Variable Neighborhood Search (VNS) introduced
by Mladenovic et al. [10] which was successfully applied to a number
of vehicle routing problems, e.g. the Periodic Vehicle Routing Prob-
lem [6]. Computational results show that a solution obtained within
ten seconds by our method is at most 26.9% far away from the opti-
mum. Additionally, feasible solutions were obtained in less than one
second for the problem instances with over 400 points.

This paper is organized as follows. A problem description is given
in Section 2. Sections 3–6 contain detailed explanations of the devel-
oped algorithms. Section 7 presents computational results. Finally, in
Section 8 we summarize the achievements and provide ideas for the
future research.

2 PROBLEM SPECIFICATION

Given a set of waypoints W partitioned in a set of picture points
P = {p1, ..., pm} and a set of base stations B and a matrix D of dis-
tances between waypoints. This matrix is symmetric, i.e. di j = d ji.
Additionally, between all triples of waypoints the triangular inequal-
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ity has to be satisfied, i.e. for any three waypoints i, j,k it holds that
di j +d jk ≥ dik.

A set of energy storage units E (also known as batteries) and a
fleet of UAVs V = [v1, ...,vn] of possibly different types T are initially
located at various base stations. Every drone of a particular type has a
certain speed and a limited maximum time of flight with one battery.
Both of these parameters can be different for different types of UAVs.
Additionally, time intervals needed to take one picture tT P and to
change battery tChB are known. Finally, time of the whole mission is
restricted to a given value mT .

A solution is a set of routes R = {r1, ...,rn} for all available UAVs.
A route ri is a sequence of waypoints [wi,1, ...,wi,lasti ], for all avail-
able UAVs. A solution is feasible if it satisfies the following con-
straints:

1. A drone v should start and finish its route at the base station bv
where it was initially placed, i.e. wv,1 = wv,lastv = bv.

2. A drone v may change its battery only at its initial base station
bv. As consequence, its route can contain only picture points or an
initial base station, i.e. wv,1, ...,wv,lastv ∈ P∪bv.

3. A vehicle cannot fly with one battery longer than its maximum
flight time tmax.

4. The time of the whole mission should not exceed the limit mT .
5. Every picture point is visited at least once.
6. At every base station the number of battery changes should not

exceed the number of spare batteries of the correspondent type.
7. The number of routes is equal to the number of drones.

As it was mentioned in the introduction, our problem consists of
two tasks. The first task is to obtain the first overview image of an
area as quickly as possible. The second task is regularly repeated vis-
its of picture points which we call continuous monitoring. Therefore,
the objective is split in two parts with different priorities:

Top priority Within the first coverage, the objective is to minimize
the last arrival time at picture point.

Second priority For the continuous monitoring, a goal function
aims at maximizing number of visits and making the frequency
of these visits at all picture points more equal. It is calculated as
follows:

∑
p∈P

∑
visit∈Visitsp

Δt2
visit → min,

where Visitsp is a set of all visits at picture point p; Δtvisit is a time
interval from the current visit till the next visit (or till the mission
time mT in case of the last visit).

3 VARIABLE NEIGHBORHOOD SEARCH

As any metaheuristic, VNS starts with an initial solution obtained
by using a construction heuristic and iteratively improves the found
solution. A a set of operators Nk (k = 1, . . . ,kmax) can be applied
to the current state (current solution) resulting in a set of successor
states. The set of successor states generated by applying an operator
Ni is called a neighborhood. From such a neighborhood a state is
randomly selected and improved by local search techniques. If no
improvement can be found, the neighborhood is switched to the next
one, i.e. another operator is applied. An acceptance phase evaluates
whether the current solution is accepted or not. In short, the basic
VNS steps are as follows:

1. Obtain an initial solution xi by exploiting a heuristic which can
generate a feasible solution. Select a set of operators with cardi-
nality kmax which will be applied to modify a solution. Choose a

stopping condition (e.g. a limit on computational time or on the
number of iterations).

2. Set current solution x ← xi. Repeat the following steps until the
stopping condition is met:

(a) Set index of operator k ← 1;

(b) Repeat the steps below until k = kmax:

i. Shaking. Generate a new solution x′ by applying kth operator
to a current solution;

ii. Local search. Apply some local search method to x′ which
outputs x′′ as a local optimum;

iii. Acceptance phase. If the local optimum x′′ is better than so-
lution x or some acceptance criterion is met, set x ← x′′ and
continue to search starting with the first operator (k ← 1); oth-
erwise, set k ← k+1.

In the following subsections these steps will be described in more
detail for the tasks of obtaining the first coverage and performing
continuous monitoring.

4 INITIAL SOLUTION

4.1 Task of Obtaining the First Coverage

To obtain a set of routes for the first coverage we used slightly
modified standard approaches such as the parallel Clarke and
Wright savings algorithm [2] and clustering in combination with the
Christofides algorithm [1]. For clustering a hybrid method was cre-
ated based on the k-means [8] and the k-medoids clustering [11] al-
gorithms. In this method, the centre of a cluster is the picture point
the closest to the Euclidian centre. The obtained solution is an input
for the planning problem of continuous monitoring.

4.2 Task of Continuous Monitoring

Whereas for the previous task we can use existing approaches, to the
best of our knowledge, no method exists for the problem of continu-
ous monitoring. However, successful heuristics introduced for related
problems are first-choice candidates for the adaptation to this task. In
particular, we focused on two different approaches; the Clarke and
Wright saving strategy and the Solomon’s insertion heuristic. Their
adaptations are presented in this section and evaluated in Section 7.

Modified Clarke and Wright savings algorithm (CW) This sav-
ings algorithm was originally developed for the Travelling Salesman
Problem (TSP) [2]. It starts from the infeasible solution that con-
sists of routes of type b− pi −b for all target points (picture points)
pi, i ∈ [1,m], and a single given depot (base station) b, B = {b}.
Then all possible pairs of points pi and p j (i, j ∈ [1,m]; i �= j) are
sorted in descending order by the savings value s(pi, p j) calculated
as: s(pi, p j) = dpib +dbp j −dpi p j . Connections are established itera-
tively between points with highest saving values, where such a con-
nection does not violate the TSP constraints.

Since the problem of continuous monitoring differs significantly
from the TSP, the savings algorithm was modified to deal with the ex-
tensions shown in Table 1. The resulting CW Algorithm is described
in Algorithm 1.

Two routes ri and r j are joined by connecting the “savings” points
pi and p j. Therefore, two last conditions in the line 12 in Algorithm 1
define that for the successful connection these points should be at the
beginning or in the end of these routes.
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Table 1. Modifications applied to the original savings algorithm

Extensions Modifications
Multiple base sta-
tions

Savings values are calculated for every pair of
picture points and a base station closest to these
points.

Multiple vehicles
with possibly mul-
tiple trips

During the computational process a drone is as-
signed to a route. Routes with two assigned UAVs
from different base stations cannot be connected.

Several visits at
every picture point

The modified algorithm is applied to the same set
of picture points, as long as there are spare batter-
ies.

The function connect(ri,rj) returns true if two routes ri and r j were
successfully connected into route ri∪ r j and return false otherwise.
They are connected if they do not start at different base stations and
the resulting route will not violate battery capacity limitation.

The function assignUAV(ri∪ r j) assigns a UAV and its initial base
station to the route ri∪r j. If any UAV v ∈V was assigned with either
ri or r j then select v. If both ri and r j had no assigned vehicle then
such drone is chosen which has a spare battery, can start following
the route ri∪ r j earlier than others and is close. On choosing a UAV
the available batteries E are decremented.

Finally, function join(R,Rc) inserts points from routes rc ∈ Rc to
routes r ∈ R of the correspondent UAVs.

Algorithm 1: Modified savings algorithm
input : problem specification and a set of routes

R1 = {r11, ...,r1n} for the first coverage, where n is a
number of vehicles

output: a set of routes R for both tasks: first coverage and
continuous monitoring

1 set R ← R1; set a list of savings S ←{};
2 for pi, p j ∈ P(pi �= p j do

3 calculate s(pi, p j,b), where

b = arg minbi∈B

(
dbi pi +dpjbi

)
;

4 set S ← S∪ s(pi, p j,b);
5 end

6 sort S in descending order;
7 repeat

8 assign a set of routes for current coverage
Rc ← [[pi] |pi ∈ P];

9 for s(pi, p j,b) ∈ S do

10 set ri ← r ∈ Rc, where pi ∈ r;
11 set r j ← r ∈ Rc, where p j ∈ r;
12 if (ri �= r j) and (wri,1 = pi or wri,lastri = pi) and

(wr j,1 = p j or wr j,lastr j = p j) then

13 if connect(ri,rj) then

14 assignUAV(ri∪ r j);
15 end

16 end

17 end

18 join(R,Rc);
19 until E = /0;

Queue-based insertion heuristic (QI) This heuristic is based on
Solomon’s insertion heuristic [15] which was first introduced for the
Vehicle Routing Problem with Time Windows. The algorithm inserts

points one after another at more profitable positions in the best routes
chosen by an evaluation value. Since our problem deviates in several
aspects from [15], such as no time windows but multiple coverage, a
new insertion heuristic has to define a more suitable evaluation value
and an order in which picture points will be inserted.

A good solution for the continuous monitoring problem is a solu-
tion where frequencies of visits at points are close to equal. Con-
sequently, our algorithm should eliminate a situation where some
points have significantly more visits than others and first insert those
points which were visited long time ago. Therefore, all picture points
are ordered in a queue Q = {q1, ...,qm} in ascending order by their
first arrival time. In every insertion iteration we take the first point of
the queue Q.

Our new evaluation value must choose a route (1) which ends with
a picture point located as close as possible to the insertion point q1
and (2) whose vehicle can arrive at the insertion point earlier. The
first parameter aims at optimizing the distance travelled by every ve-
hicle whereas the second parameter tries to shorten the time between
visits at the insertion point. Thus, this evaluation value for the route
r =

{
w1, ...,wlastr

}
is calculated as follows:

f (q1,r) = α1 ·dwlastr ,q1 · scale+α2 · twlastr ,q1 .

Variable twlastr ,q1 is a possible arrival time to a point q1 if it is in-
serted in the route r. The scale coefficient is set to a value so that the
orders of magnitude of arrival time and distance between points are
the same. The weights α1 and α2 = 1−α1 reflect how much every
parameter (distance and arrival time) influences the final decision.
Value α1 = 0.7 showed the best results for our problem.

All steps of the queue-based insertion heuristic are shown in Al-
gorithm 2. Eb,r refers to batteries suitable for the vehicle associated
to route r and located at base station b.

Algorithm 2: Queue-based insertion heuristic
input : problem specification and a set of routes

R1 = {r11, ...,r1n} for the first coverage, where n is a
number of vehicles

output: a set of routes R for both tasks: first coverage and
continuous monitoring

1 set R ← R1;
2 set a queue Q ← [q1, ...,qm] s.t.

tqi ≤ tqi+1 , qi,qi+1 ∈ P, i ∈ [1,m−1];
3 repeat

4 set a chosen route r ← arg minri∈R f (q1,ri);
5 if f (q1,r) = ∞ then

6 set Q ← Q\{q1};
7 else

8 if r∪{q1} does not violate energy constraint then

9 set r ← r∪q1;
10 else

11 set r ← r∪b∪q1, where b ∈ B;Eb,r �= /0;
12 end

13 set Q ←{q2, ...,qm,q1};
14 end

15 until Q = /0;

5 SHAKING PHASE AND LOCAL SEARCH

The purpose of the shaking step (see Section 3, Step 2(b)i) is to mod-
ify the current solution with retaining those parts contained in an
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optimal solution in order to give way for improvements and escape
from the local optimum. After the shaking step, changed routes are
optimized by local search (see Section 3, Step 2(b)ii). In the fol-
lowing we describe these steps for the first coverage and continuous
monitoring.

5.1 Task of Obtaining the First Coverage

Cross-exchange and move operators are the most widely used inter-
route operators [6]. The cross-exchange operator exchanges two
equally long segments of two routes. For instance, in Figure 1 seg-
ments {x1, ...,y1} and {x2, ...,y2} are removed from their routes r1,r2
and are inserted in the other routes r2,r1. The move operator relo-
cates a segment of one route to another. Segment {x1, ...,y1} is re-
moved from its current route and is added to another route as shown
in Figure 2. Both operators choose routes, segments and their length
randomly. The segment length can take any values up to the max-
imum segment length shown in Table 2 for every applied operator.
Variable n is the shortest length of the two chosen routes; k is the
sequential number of an operator (see Section 3).

Figure 1. A cross-exchange operator for routes r1 (black) and r2 (grey)

Figure 2. A move operator for routes r1 (black) and r2 (grey)

For the local search phase we apply the commonly used 2-opt and
3-opt strategies that are special cases of the general k-opt [5] algo-
rithm. This algorithm reconnects every combination of k arcs in the
route in all possible ways so that the result is a solution to a TSP.
If a new route has a better cost value it is accepted. This procedure
is applied as long as no more improvements can be achieved. The
obtained solution is called k-optimal.

The computational time increases exponentially as the value of k
increments. However, benefits from using larger values of k usually
do not increase significantly. Therefore, it is common practice to ap-
ply only 2-opt and 3-opt.

5.2 Task of Continuous Monitoring

Monitoring is more efficient if picture points are visited more often.
Therefore, in addition to the cross-exchange and move operators we

Table 2. Neighborhood operators for the first coverage and continuous
monitoring problems

First coverage Continuous monitoring
k Operator Max. segment

length
k Operator Max. segment

length
1 cross min(1, n) 1 move min(1, n)
2 cross min(2, n) 2 move min(2, n)
3 cross min(3, n) 3 move min(3, n)
4 cross min(4, n) 4 cross min(1, n)
5 cross min(5, n) 5 cross min(2, n)
6 cross min(6, n) 6 cross min(3, n)
7 move min(1, n) 7 cross min(4, n)
8 move min(2, n) 8 cross min(5, n)
9 move min(3, n) 9 cross min(6, n)

Max. number
of points

10 insert min(1, n)
11 insert min(2, n)
12 insert min(3, n)

introduce an insert operator which inserts points at random positions
into a randomly chosen route. Table 2 shows the maximum possible
number of insertion points for this operator. The chosen order was
determined by our experiments described in Section 7.

As in the previous task, 2-opt and 3-opt are used as local search
strategies. Their changes are accepted if the flight time of a route
decreases since this allows additional revisits of picture points and
reduces the goal function of continuous monitoring.

6 ACCEPTANCE PHASE

The purpose of the acceptance phase is to determine whether the cur-
rent solution should be chosen. Various strategies can be exploited
(e.g. simulated annealing) where a non-improved solution is accepted
with a certain probability, which decreases over time. Simulated an-
nealing did not give reasonable improvements for our real-life sce-
narios. Therefore, we use a strategy where only improved solutions
are accepted.

7 COMPUTATIONAL RESULTS

In order to find routes for the first coverage of an area, existing algo-
rithms were used. Therefore, this task is not considered in this sec-
tion.

Conversely, methods developed for the problem of continuous
monitoring should be evaluated in a number of aspects. First of all,
the deviation from the optimum is estimated, since the presented
methods are not complete and do not necessarily find optimal so-
lution. However, due to complexity this estimation cannot be per-
formed on real-world scenarios. Therefore, the proposed QI and CW
heuristics are compared with each other on the large scenarios. Fi-
nally, additional tests are conducted on estimation of the best neigh-
borhood structure.

We ran all the tests on an Intel Core i7 2.67 GHz system with 4GB
RAM. Results of all mentioned tests will be presented below.

Comparison of the VNS, QI and CW heuristics with optimum

on small-scale scenarios For this test we generated 9 benchmarks
with 6 picture points and 2 base stations. Locations of points were
chosen randomly so that the first coverage is feasible. Every base sta-
tion stores 1 drone and 2 – 4 batteries. Mission time is limited by the
longest possible mission of a drone. In addition, routes from the first
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coverage obtained by the standard Clarke and Wright algorithm are
given for all cases since we compare methods for continuous moni-
toring.

In order to compute the optimum, we developed a model employ-
ing the constraint modelling language MiniZinc and solved the prob-
lem instances with the constraint-based programming solver Gecode.

Figure 3 presents the performance of the VNS with and without
the improvement phase where initial solutions were found with ei-
ther the QI or CW heuristics. The improvement phase was stopped
after 104 iterations (less than 1 millisecond) for every benchmark. In
contrast, finding the optimal solutions took 4832.72 seconds on the
average.

Figure 3. Deviation from the optimum of QI and CW heuristics and their
combinations with VNS

According to the results, solutions returned by QI and CW do not
exceed the optimum by more than 26.9% and 50.3% respectively.
Moreover, the solutions obtained by a combination of our VNS mod-
ification and QI or CW are at most 26.9% and 39.07% off from the
optimum. It is important to mention, that the QI heuristic outper-
formed CW on most instances.

Evaluation of QI and CW heuristics on real-life scenarios A set
of 36 benchmarks representing real areas of interest were used for
this evaluation. Every benchmark contains 46 – 442 picture points
and 3 or 6 base stations. Since the whole area has to be covered
evenly, picture points are equally distributed over the area exclud-
ing obstacle areas. Additionally, a fleet of 3, 6 or 9 UAVs and a set
of 3 – 22 batteries are equally distributed between the base stations.
Parameters such as drone’s velocity and maximum flight duration are
set to the real values of the drones used in the project.

Figure 4 shows an instance with the name “442p 1” from our test
set . It represents an area around our university and neighbouring
buildings and contains 442 picture points marked with small circles
and 3 base stations displayed as large filled circles. Areas with no
picture points are no-fly zones due to the presence of the obstacles.

Figure 5 shows the results obtained by both CW and QI algo-
rithms. According to these results, on most of the smaller scenarios
(less than 251 picture points) QI heuristic achieved better results than
CW regardless of the number of vehicles, batteries or base stations
used. However, CW algorithm outperformed QI on larger instances.

QI and CW heuristics found the feasible solutions for all the in-
stances in 355 and 1323 milliseconds respectively. Due to the short
computational time, these heuristics are applicable in our domain
which requires a fast response.

In conclusion, we suggest to use QI for the problems with rela-
tively small number of picture points (≤ 251) and CW for all the
other instances.

Figure 4. An example of the real-world scenario

Evaluation of the neighborhood structure Every neighbourhood
operator influences the solution differently and, as consequence,
a correct order of the operators is significant for achieving im-
provements. Therefore, we evaluated various combinations of cross-
exchange (c), move (m) and insert (i) operators and estimated con-
tribution of the best combination to the final solution. In particular,
we considered four possible orders: m-c-i, c-m-i, i-m-c and c-i-m.
Table 3 contains the number of times when a particular operator
led to a better solution, the average percentage of improvement and
the final percentage of improvement for 104 iterations. Sequence m-
c-i achieved the best average and final improvement values. Since
the move and cross-exchange operators make routes shorter, there is
more space for inserting new points than in any other combination.
Consequently, this sequence decreases goal function the most due
to a larger number of visited picture points. These results prove that
sequence m-c-i is reasonable and the new insert operator is efficient.

Table 3. Evaluation of different sequencies of neighborhood operators

k m-c-i c-m-i i-m-c c-i-m
1 m 4 c 3 i 50 c 3
2 m 5 c 1 i 5 c 4
3 m 3 c 2 i 4 c 1
4 c 3 c 2 m 3 c 3
5 c 4 c 2 m 2 c 2
6 c 3 c 2 m 0 c 4
7 c 3 m 3 c 1 i 52
8 c 2 m 4 c 1 i 8
9 c 2 m 4 c 0 i 2

10 i 69 i 56 c 2 m 4
11 i 9 i 5 c 1 m 2
12 i 2 i 3 c 2 m 3

Average percentage
of improvement

0.00121 0.00111 0.00114 0.000999

Final percentage of
improvement

12.11268 11.13094 11.41604 9.989225
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Figure 5. Comparison of QI and CW heuristics on real-life scenarios

8 CONCLUSIONS

In this paper, we proposed a new method based on the standard meta-
heuristic Variable Neighborhood Search. We developed a new neigh-
borhood operator, i.e. the insert operator, and two new construction
heuristics, i.e. the modified Clarke and Wright algorithm (CW) and
the queue-based insertion heuristic (QI).

The heuristics CW and QI were compared with each other on 36
real-life problem instances which were solved in less than 2 seconds
by each algorithm. The CW algorithm outperformed QI on large in-
stances (with more than 251 picture points) whereas QI provided bet-
ter solutions for small-scale problems.

Since our method is not an exact method, it was evaluated regard-
ing its deviation from the optimum where the computation of the op-
timum was feasible. For these test cases our metaheuristic obtained
solutions at most 26.9% worse than the optimum.

Finally, several neighborhood structures with a new insert opera-
tor were analyzed for choosing the best order. An order with the best
final improvements (12.11% on large scenarios) was selected. Addi-
tionally, results indicate that the insert operator is efficient since it
improved the goal function value significant number of times.

In summary, the developed metaheuristic is fast, efficient and scal-
able for large scenarios. Further research will be conducted on en-
hancing the proposed method to solve extensions of the specified
problem such as no-drone base stations and dynamically changing
environments.
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