
On computing correct processes and repairs
using partial behavioral models

Wolfgang Mayer 1 and Gerhard Friedrich 2 and Markus Stumptner 3

Abstract. Diagnosis and repair of failed process executions is an
important task for almost any process oriented application. Because in
practice complete specifications of process activities are not available,
diagnosis and repair methods for partial behavior models are of great
importance. We show that if the assumption of complete behavioral
models is lifted, basic diagnosis and repair problems reside on the
second level of the Polynomial Hierarchy.

1 INTRODUCTION

The rising adoption of orchestrated execution of complex software
processes, such as Web Services, has led to increased flexibility in
application deployment, but also highlighted that isolating and repair-
ing problems in such systems remains a challenging, predominantly
manual task. This is exacerbated by the distributed and dynamic na-
ture of such systems that would profit significantly from autonomous
diagnosis and repair after runtime failures.

In such open environments, the correct control flow is specified but
precise models of individual services and their possible behaviors are
often challenging to build and hence are unavailable, in particular if
stateful and data-dependent services are considered. However, in the
absence of specifications, information can be gathered from execu-
tions: the sequence of activity executions along with their individual
input/output values can be captured automatically in commercial ser-
vice and process platforms and exploited for diagnosis. If a failure is
detected, e.g. if a service raises an exception, a repair-enabled execu-
tion engine needs the ability to execute and re-execute activities in any
order for achieving a successful process execution despite the fault.
Diagnosis must decide which activity executions can be assumed
either as correct or faulty.

Several diagnosis and repair approaches have been proposed [4,
1, 11], with varying reasoning methods and degree of formalization.
However, to date, the predominant diagnosis (and repair) approaches
require detailed formal specifications of activities in a process, need
a large number of observed executions to be effective, or exhibit
weak discriminatory power. In this paper we investigate the properties
of the diagnosis model proposed by Friedrich et al. [5] which aims
to overcome these limitations. It showed that path-specific behav-
ior must be considered, which means that purely dependency-based
representations are insufficient. We investigate the computational com-
plexity of the approach, which is of general interest for constructing
model-based diagnosis and repair systems. In particular, standard
model-based diagnosis systems exploit propositional SAT solvers for
checking if a set of fault (or correctness) assumptions (i.e. a diagnosis

1 University of South Australia, Australia, email: mayer@cs.unisa.edu.au
2 Universität Klagenfurt, Austria, email: Gerhard.Friedrich@aau.at
3 University of South Australia, Australia, email: mst@cs.unisa.edu.au

candidate) is a diagnosis. Consequently, for applying such techniques
it is important to investigate if diagnosis candidate checking can be
reduced efficiently to propositional SAT problems. Grastien et al. [6]
have shown that various diagnostic problems for discrete event sys-
tems (DES) can be translated to propositional SAT problems, but the
question remained open whether this method is applicable to diag-
nose process trajectories in case the process behavior is only partially
known. Our results demonstrate that this is not efficiently possible in
general, unless the Polynomial Hierarchy collapses.

Recent work in diagnosis of process and service execution has
made great strides in studying how faults, once isolated, can be re-
paired. This can be expressed as a planning problem [4], but requires
a planning language with sufficient expressivity. Dealing with incom-
plete information requires that any such approach must incorporate
means to describe actions that are only partially specified, to restrict
the set of plausible worlds and plausible diagnoses.

Effective repair formalisms must also allow one to perform state
classification; that is, assess if, after the execution of a sequence of
repair actions, the new process state (or a part thereof) is correct, or if
some repair actions have failed. We consider a state to be correct if it
is equivalent to one that can be reached in some correct execution of
the original process originating in the same input values.

In this paper, we show that checking whether a set of fault assump-
tions is indeed a diagnosis is ΣP

2 -complete if the process behavior is
only partially known. Furthermore, we show that verifying if a process
state is correct is ΠP

2 -complete in general. These results even hold for
processes which contain just a sequence of activities (although our rep-
resentation captures parallelism), and for diagnosis/repair cases where
the only repair action is re-execution of activities and the number of
repair action executions is limited.

There are multiple consequences of this finding.

(i) Diagnosis candidate checking and state classification cannot
be efficiently reduced to propositional SAT problems for the
described problem domain. No encoding of the problem which
is polynomially translated to propositional logic and checked by
a SAT solver can provide a sound and complete characterization
of the faults in arbitrary processes (unless P=NP).

(ii) There is no efficient reduction of diagnosis of process trajecto-
ries to standard diagnostic reasoning in discrete event systems
if the behavior of activities is only partially known.

(iii) The result underlines the importance of expressive knowledge
representation for diagnosis and repair planning, and indicates
the need for further research in finding effective reasoning frame-
works for such situations, for example, by further developing
the basis laid down in [5].

We provide an introductory example in Section 2. In Section 3 we
summarize the process model that forms the basis for our diagnosis

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-582

582

SEC1

SEC2

SAMPLE

REM

GUARD

X

X

R

S

J1

J2

no

no

SPEC

E C1 C2 C3
C4

C5

C6

C7

C8

C10

C11

C9

SAMPLE SEC1 X SEC2 X GUARD

t1 t2 t3 t4 t5 t7 t8 t6 Time

REM

t9

regular execution repair

Figure 1. Example process (top) and observed execution (bottom)

model described in Section 4. The algorithmic complexity of diagnosis
and state classification is investigated in Section 5.

2 EXAMPLE

As an example we use a simplified version of the example given in [5]
depicted in Figure 1. The upper part shows the process definition,
the lower part depicts the executions of activities. The process def-
inition includes processing activities (e.g. SAMPLE) connected by
a control-flow using XOR-splits (i.e. X) and OR-joins (i.e. J1 and
J2) as control activities. Activities read from and output to process
variables. Inputs and outputs of the process are defined by sets of
process variables. In our example the input to the process is a speci-
fication of a test sample (variable SPEC) which is used by activity
SAMPLE to generate a sample placed at S. S is inspected by security
checks SEC1 and SEC2 outputting their results to decision variable
R. Depending on the outcomes of SEC1 and SEC2, activity REM
is executed to remove some parts of the sample. Before ending the
process a guard examines the sample for a final quality control. This
guard can decide that the process failed by assigning true to the fault
indicator E thus stopping the execution.

Assume a process execution as shown in the lower part of Figure 1.
Time points mark the end of an executed activity. The completion
of activity executions are observed. GUARD raises an exception
by assigning true to E at time t8. We assume that only activities
SAMPLE, SEC1, SEC2, REM could be faulty. Given the flow of
execution, activity executions SAMPLEt1 and SEC2t4 are the only
ones that could have failed. 〈SAMPLEt1, SEC2t4〉 is the only minimal
conflict so far. In particular, a correctness assumption of SEC1t2

is not needed to predict the exception raising of the guard. If we
assume both SAMPLEt1 and SEC2t4 to behave correctly, S will
not be changed regardless the branching of the first execution of X .
However, we know that on the value assigned to S, the guard will
raise an exception. Consequently, the exception is independent of the
value SEC1t2 assigns to R.

For repairing, let us assume that a failure of SAMPLEt1 is unlikely,
so {SEC2t4} is the only leading diagnosis. It follows that SEC2 must
output to R a value such that the second occurrence of X takes the
upper branch because otherwise an exception is raised. REM has to
be executed to avoid the exception. If we assume that REMt9 works
correctly then the output S will receive the correct value, no further
repair actions are needed; that is, no action for faulty SEC2t4 is need.

The fundamental decision problem for diagnosis in this case is to
decide which activity executions can be consistently assumed either
to be correct or faulty. Based on a set of leading diagnoses, repairs can
be performed where one of the basic repair actions is to (re-)execute

activities preceded by a potential replacement. For repair the funda-
mental question is if after the executions of repair actions the output
variables hold a correct value for all leading diagnoses. In this case
the faulty process execution is assumed to be repaired.

3 PROCESS MODEL

We adopt the process model proposed by Friedrich et al. [5] for our
purposes. A process is defined by discrete activities and their control-
and data dependencies connecting the occurrences of activities in the
process. The setting covers the middle ground between full formal
models of each activity, which are not usually available, and purely
dependency-based models, which suffer from imprecision [5]. Instead,
the approach relies on a partial model of activities, where the behavior
of each activity is gathered from execution logs and is restricted by
constraints.

This process model is based on the assumption that the execution
of each activity is totally observable from the outside. Activities are
treated as “black boxes” and only little knowledge about the internal
structure or behavior of an activity is utilized.

Each type of activity in our process is modeled as a finite state
transition system over a set of variables. The entire process is modeled
by composition of the transition systems representing the individual
activities. Constraints on valid process behavior govern the overall
execution of the process. For brevity, we omit the formal algorithm
describing the construction of a finite state model (polynomial in the
size of the process) from a process model and illustrate the idea based
on the example of XOR activity X from Figure 1.

Gateway X in Fig. 1 determines if the flow of control proceeds
along the yes or the no branch of the process, based on a data input
R. For any given value of R, either branch can be activated, but not
both. We assume that the decision outcome is a function of R, and
all instances of X must behave consistently in any execution of the
process, unless faulty. A process state comprises the values of data
elements and activation of branches.

The execution of each activity is captured in terms of events that
constitute transitions between system states. We assume that the pre-
conditions and state changes corresponding to each event are known
and events are observable. However, our model rests on the assump-
tion (which lies at the core of debugging a software system) that the
partitioning of all events into normal and faulty events is not known.

Example: Let eACTi,o represent the event of executing activity
ACT which takes value i as input and outputs value o. In the example
we assume all domains of variables to be binary. Four different events
may be observed from the execution of X in Fig. 1: eXt,y , eXt,n ,
eXf,y , eXf,n . Event eXt,y activates the yes branch if R is true. The
other events are defined analogously. As exactly one of the alternative
branches must be selected, events eXt,y and eXt,n (nor eXf,y and
eXf,n) may not occur simultaneously in any execution. From the
execution in Fig. 1 we obtain an observation that event eXt,y has
occurred. While we know with certainty that the event has occurred,
it is not known if this event indeed describes a valid decision for the
entire process. We must assess if eXt,y can steer the process towards
a faulty state, and if changing the decision to eXt,n can avoid all such
states while maintaining behavioral consistency of all executions.

A salient feature of this model is that the events specifying the
possible executions for each activity are usually not known in full.
Therefore, any diagnostic reasoner cannot assume that a unique behav-
ior model is given for each activity. Instead, a suitable behavior model
must be derived by exploring different assumptions about which
events may be included or excluded in the description of a correct

W. Mayer et al. / On Computing Correct Processes and Repairs Using Partial Behavioral Models 583

behaving activity. However, not every activity behavior is possible
w.r.t. the domain and therefore the assumptions may be constrained.
For example, although the branch choice of an XOR with respect to
a specific data input value is unknown, either of the control outputs
must be true whereas the other one must be false. Furthermore, some
activities may produce different results for the same input upon re-
peated execution. Such non-deterministic behaviors occur frequently
in processes where human input is involved.

This assumption is particularly suited to software-driven processes,
where recording data is usually easily accomplished but detailed
models of the executed software processes are not usually available.
Events that occur throughout one or more executions will be collected
in a set called the “observations”. We consider acyclic processes where
loops have been expanded into sequential iterations. This assumption
is common in this domain, where executions are usually short.

4 SYSTEM MODEL

We base our process model on the formal framework of Discrete-
Event System (DES), where the system states are characterized by the
values of a finite set of variables with finite domains. Events govern
which transitions between system states are permitted. We adapt the
formal model of Grastien et al. [6] for our purposes. For simplicity,
we describe the system model for the boolean domain where 1 and 0
represent truth and falsity, respectively. However, our model extends
to other finite domains. Let L denote the language of propositional
boolean expressions over alphabet A.
Definition 1 (Generic System Model) The system model is a tuple
SD = 〈A,Σ, δ, S0,Ω, BC〉 where A is a finite set of propositional
variables; Σ is a finite set of events; δ : Σ �→ L × 2L assigns to
each event a pair 〈φ, c〉; S0 is the set of initial states and Ω is the set
of faulty states. BC ⊆ 2Σ is a behavior constraint, which may be
specified as a logic formula over symbols in Σ.

Each event e represents a transition from a system state s to a
successor state s′. Each event is specified by a pair δ(e) = 〈φe, ce〉.
Expression φe ∈ L specifies the activation condition for e, and ce
expresses the effects of the event on the system state in terms of added
and deleted propositions in L.

An event e may happen in a state s only if s |= φe. The successor
state s′ is obtained from s by applying the effects in ce. Let ce be a
consistent subset of literals in L such that for all a ∈ A at most one
of a and ¬a are in ce. Let s′(v) = 1 if v ∈ ce, s′(v) = 0 if ¬v ∈ ce,
and s′(v) = s(v) for all remaining variables. We write succ(s, ce)
for the successor obtained from s by applying ce.

In this model, multiple events may occur simultaneously. A set of
events E = {e1, . . . , en} may happen in state s if (i) for all e ∈ E, e
may happen in s, and (ii) no two e1, e2 ∈ E interfere with each other.
Events ei and ej are said to interfere if complementary literals are
present in ci ∪ cj . We define the successor state s′ of s under a set of
events E as succ(s,

⋃
e∈E ce).

The dynamic evolution of the system proceeds as follows. Ini-
tially the transition system is in a state s0 ∈ S0. As events hap-
pen, the system exercises a trajectory along a sequence of states.
A trajectory is a sequence s0, E1, s1, . . . , En, sn where the Ei are
sets of non-interfering events, all e ∈ Ei may happen in si−1, and
si = succ(si−1,

⋃
e∈Ei

ce). In the remaining paper we restrict our
attention to non-interfering trajectories.

Not all possible combinations of assumed-faulty events may be
admissible, as restrictions on the behavior of system components
may prohibit certain system trajectories. For example, a component
representing a choice between two alternatives based on the current

system state could be modeled as two transitions, each representing
an alternate outcome. Whereas each individual transition reflects an
alternative system behavior, no valid system model may include both
transitions unless their preconditions are mutually exclusive.

We introduce a constraint BC that describes the allowed sets of
events in a DES. Satisfying this constraint ensures that each diagnosis
admits only system evolutions consistent with all necessary condi-
tions imposed by the system components and process structure. It is
assumed that BC 	= ∅; otherwise no diagnosis exists.

Although the normal behavior of X in Fig. 1 is not known precisely,
necessary conditions for its behavior can be stated. For example, BC
for a deterministic decision node excludes all sets that include either
{eXt,y , eXt,n} or {eXf,y , eXf,n}.

4.1 Diagnosis Model

Our diagnosis model departs significantly from “conventional”
discrete-event models for diagnosis, such as that of Grastien et al. [6],
which assume that all events are either known correct or known faulty,
and that the faulty and some of the correct events may not be observ-
able precisely. The difficulty of diagnosis in such a model usually
stems from the fact that the presence of events and their ordering in
a trajectory consistent with an observed event sequence may not be
known in full.

In contrast, our model rests on the assumption that the presence
and absence of events in a set of traces is known precisely, yet the
partitioning of all observed events in normal and faulty is not known.
Therefore, calculating a diagnosis in our model amounts to choosing
a label (either normal or faulty) for each (observed and unobserved)
transition such that the successful completion of all possible process
executions is guaranteed. In contrast, “conventional” diagnosis models
seek to infer the presence or absence of any of a set of unobservable
(fault) events in a trajectory. Instead of their preassigned “fault” states,
we need to infer the normal or faulty nature of events from the process
execution (a faulty event eventually leads to a faulty state).

Definition 2 (Diagnosis Instance) A Diagnosis Instance
is a tuple 〈SD,O〉 comprised of system description
SD = 〈A,Σ, δ, So,Ω, BC〉, and a set of observed events O ⊆ Σ.

We assume that we can unambiguously observe events. The ob-
servations are a subset of events that occur throughout at least one
observed trajectory of the system. We record only the presence of
individual events in the trace, and ignore the relative order of events
and timing information.

We consider only finite evolutions of our system. A trajectory
T = s0, E1, . . . , En, sn is said to be faulty if it contains a state
si ∈ Ω, and normal otherwise.

Computing a diagnosis for a given set of trajectories amounts
to separating the observed events into those that reflect the intended
behavior of the system from those that reflect the abnormal behavior of
the corresponding process element. Any such partition is a diagnosis
if the assignment of normal and faulty labels is consistent with the
behavior constraints BC and each trajectory admitted by the resulting
transition system completes successfully.
Definition 3 (Diagnosis) Let DI = 〈SD,O〉 be a diagnosis in-
stance. A set Δ ⊆ O is a diagnosis for DI iff there exists a set
Σ′ ⊆ Σ such that

(i) O \Δ ⊆ Σ′ and Σ′ ∩Δ = ∅;
(ii) Σ′ ∈ BC; and

(iii) no trajectory s0, E1, . . . , Ek, sk with s0 ∈ S0 and all Ei ⊆ Σ′

(i ∈ {1, . . . , k}) includes a state si ∈ Ω.

W. Mayer et al. / On Computing Correct Processes and Repairs Using Partial Behavioral Models584

Diagnosis Δ is minimal if there is no Δ′ ⊂ Δ that is a diagnosis.
The first condition ensures that all observed events that are assumed

normal are included and none of the assumed-faulty events are in-
cluded in the transition system implied by the diagnosis. The second
condition ensures that the selection of normal and faulty transitions
obeys all behavioral constraints. The third condition ensures that each
possible normal evolution of the system cannot reach a faulty state.
That is, each trajectory comprises only normal events and avoids all
states Ω.

Example: For the example process, Ω includes all states where
the fault indicator E is true. For the observation set O =
{eSAMPLEt,t , eSEC1t,t , eXt,y , eSEC2t,f , eXf,n , eGUARDt,t}, hy-
pothesis Δ = ∅ is not a diagnosis, since all corresponding system
models comprise O and therefore admit a trajectory ending in a faulty
state. Likewise, Δ = {eSEC1t,t} is not a diagnosis since all system
models include O \ {eSEC1t,t} and therefore SAMPLE with value t
is not changed by REM in all possible models and the guard raises
an exception. Diagnosis Δ = {eSEC2t,f } is indeed valid, as there
exists a system model where the behavior of SEC2 may activate
REM on S = t which in turn may avoid the failure signaling of
GUARD by changing the value of S.

Without loss of generality, we consider only acyclic trajectories in
condition (iii) in Def. 3. This does not result in the loss of diagnosis
candidates: any cyclic trajectory that falsifies condition (iii) of Def. 3
has an acyclic sub-trajectory that also falsifies it. Conversely, if an
acyclic trajectory falsifies condition (iii), returning to one of its states
cannot result in a trajectory without faulty states.

Furthermore, it is sufficient to restrict our attention to trajecto-
ries of length n, where n is the maximum number of events in any
acyclic trajectory of SD. Grastien et al. [6] showed that such an
over-approximation yields correct results. Intuitively this is the case
because shorter trajectories can be extended to the desired number of
time steps by appending empty event sets that preserve the state.

4.2 Logical Model

Each diagnosis instance DI can be encoded into logical form as
follows. We construct a formula Φ whose satisfying assignments
represent the feasible trajectories of the system model SD =
〈A,Σ, δ, S0,Ω, BC〉. Let T = s0, E1, . . . , En, sn be an arbitrary
sequence of states and sets of events of SD such that the indexes
denote time steps. For each state si ∈ T we introduce variables ai for
all a ∈ A, and for each event e ∈ Σ we introduce variables ei that
indicate whether e is in Ei. Given a formula ψ, we denote by ψi the
result of replacing each variable a in ψ by its indexed variant ai. For
state s, let [s] denote the conjunction

(∧
s(a)=1 a ∧∧

s(a)=0 ¬a
)

.
The models of T describe a trajectories of SD if the following

conditions are true for all i ∈ {1, . . . , n}:

(1) Each event e ∈ Σ is applicable in state si−1 only if its precondi-
tion φe is true in si−1: ei → φei−1.

(2) Each event may affect its successor state: ei → ∧
l∈ce li

(3) State variables change their valuations only as a consequence of
events:

¬ai−1 ∧ ai →
∨

e∈Effa

ei and ai−1 ∧ ¬ai →
∨

e∈Eff¬a

ei

where Effl denotes the set of events that include literal l in their
effect set.

(4) Two events cannot occur simultaneously if they interfere:
¬(e1i ∧ e2i) for all pairs e1, e2 of mutually interfering events.

(5) State s0 must be an initial state:
∨

s∈S0
[s]0

Note that these formulas are direct counterparts to the components of
Grastien et al.’s definition [6], except that we do not follow their dis-
tinction between events and event instances (which may have different
pre- and postconditions even if they correspond to the same event).
Without restriction of generality we simply assume that different event
instances are encoded as different events.

The diagnosis criteria in Def. 3 can be related to this definition as
follows: We use a set of hypothesis variables H to associate diagnostic
hypotheses about events with transitions in the system model. Each
particular choice of values for variables in H defines a particular
specification of acceptable processes. H is disjoint from the set of
variables in Φ. For each event e ∈ Σ we introduce a proposition he

in H that reflects whether a transition for e is enabled. For observed
events e ∈ O, he expresses a fault assumption (normal or faulty).
If e is assumed to be normal, he is true, and if e is assumed to be
faulty, ¬he is true. For events that have not been observed, he is
true iff event e may take part in a possible unseen system evolution.
We partition H into variables that correspond to observed events
Ho = {he ∈ H|e ∈ O} and those that correspond to unobserved
events Hu = {he ∈ H|e /∈ O}. Any truth assignment H̄o to Ho

corresponds to a diagnosis candidate: Δ = {e ∈ Σ|he ∈ Ho, H̄o |=
¬he}. We will use Δl =

∧
{he|e∈Δ} ¬he ∧ ∧

{he|e∈(O\Δ)} he to
refer to the logical encoding. By construction, any set Σ′ induced by
an assignment to Δ and Hu satisfies Def. 3(i).

The system behavior must satisfy its behavioral constraints
(Def. 3(ii)). We construct a behavior compliance formula ρ over
variables in H such that ρ is satisfiable for a truth assignment H̄ to
H iff {e|he ∈ H, H̄ |= he} ∈ BC.

An event is applicable only if its corresponding hypothesis vari-
able is true. We enforce this adding the following requirement to the
construction of Φ above:

(6) For each event e ∈ Σ, ei → he

This encodes the Ei ⊆ Σ′ part of Def. 3(iii).
The logical system model Φ representing all trajectories of length

up to n time steps is given by the conjunction of the formulas (1)–(6).
Def. 3(iii) quantifies over all trajectories and therefore cannot be ex-

pressed concisely as a pure satisfiability problem. Instead, we express
the diagnosis criterion as an all-quantified boolean formula.

Intuitively, a set Δ is a diagnosis for a diagnosis instance DI
iff the events in Δ are blocked in the system model, and a set of
unobserved transitions Hu can be selected in addition to the remaining
observed events O \ Δ such that all trajectories generated by this
revised system model avoid all faulty states in Ω. We express the
selection of transitions using existential quantification, whereas the
path exploration over all trajectories requires universal quantification.

Proposition 1 Let DI be diagnosis instance with system model SD
and logical encoding Φ using variables V . A set Δ ⊆ O is a diagnosis
for DI iff there exists an assignment H̄u to variables in Hu such that

(1) Δl ∧ H̄u ∧ ρ is satisfiable, and
(2) Δl ∧ H̄u ∧ (∀V : Φ → ¬∨

i=1...n,s∈Ω[s]i) is consistent

Remember that ρ is the behavior compliance formula that states that
the assignments in H must satisfy the behavior constraint BC.

5 COMPLEXITY

For each time step, the construction of the logical model is polynomial
in the size of the given diagnosis instance. Overall, the size of Φ and
the diagnosis criteria depends on the length n of traces that can be

W. Mayer et al. / On Computing Correct Processes and Repairs Using Partial Behavioral Models 585

represented. Assuming a polynomial bound on the length n, the size
of the entire logical model is polynomial in size of the underlying
diagnosis instance.

We show that deciding whether Δ is a diagnosis for a diagnosis
instance is equivalent to deciding the validity of a specific class of
Quantified Boolean Formula (QBF). We further prove that deciding if
an output is correct can be phrased as the complement of deciding if
a Δ is a diagnosis.

Definition 4 (Quantified Boolean Formula, QBF) A QBF is a sen-
tence of the form Q1x1 . . . Qrxrγ(x1, . . . , xr), r ≥ 0 where
γ(x1, . . . , xr) is a propositional formula whose propositional vari-
ables are x1, . . . , xr and where each Qi, 1 ≤ i ≤ r is one of the
quantifiers ∀, ∃ ranging over {true, false}.

Such a sentence has quantifier alterations for each s > 1 such
that Qs 	= Qs+1 and for Q1 itself. Then the set of QBFk,∃ of true
sentences with k quantifier alternations and Q1 = ∃ is a language in
ΣP

k . That is, QBF1,∃ corresponds to propositional SAT-problems. If
Q1 = ∀ then this is a language in ΠP

k . ΣP
2 corresponds to the lan-

guages recognizable by a non-deterministic Turing machine exploit-
ing an NP oracle (NPNP). Furthermore, NP = ΣP

1 , co-NP = ΠP
1 ,

ΔP
2 = PNP, and co-ΣP

2 = ΠP
2 .

Theorem 1 Deciding whether Δ is a diagnosis for a diagnosis in-
stance DI is ΣP

2 -hard. The decision problem is complete for this
class if only trajectories of length polynomial in the size of DI are
considered.

Proof: Membership: By Prop. 1, deciding whether Δ is a diagnosis
for DI can be done by establishing satisfiability of a propositional
formula (Prop. 1 (1)), which is in class NP , and deciding the validity
of a QBF2,∃ (Prop. 1 (2)), which is ΣP

2 -complete. Therefore, deciding
the diagnosis problem clearly is a member of ΣP

2 .
Hardness: We show that deciding the truth of a QBF2,∃ can be

reduced (using a polynomial reduction) to deciding whether ∅ is a
diagnosis for a diagnosis instance.

Let ψ = ∃x1, . . . , xm∀u1, . . . , unγ be a QBF where γ is a propo-
sitional formula containing only variables from X = {x1, . . . , xm}
and U = {u1, . . . , un}. Let DI = 〈SD,O〉 be a diagnosis in-
stance constructed from ψ and let SD = 〈A,Σ, δ, S0,Ω, BC〉 be
its system model depicted in Fig. 2. Let A = X ∪ U ∪ {q0, q1, q2},
Σ = {ex, eu, eγ |x ∈ X,u ∈ U}, So = {s0} such that s0(q0) = 1
and s0(a) = 0 for a ∈ A, a 	= q0, and Ω = {s3} where s3(a) = 0
for a ∈ A. Let BC be unconstrained. Events are defined as follows:

δ(ex) = 〈q0, {¬q0, q1, x}〉 for all x ∈ X

δ(eu) = 〈q1, {¬q1, q2, u}〉 for all u ∈ U

δ(eγ) = 〈q2 ∧ ¬γ, {¬a|a ∈ A}〉
We show that ψ is true if Δ = ∅ is a diagnosis for O = {eu, eγ |u ∈
U}. By construction of SD, it is sufficient to consider trajectories
over 3 time steps. Formula ∃H̄u(H̄u ∧Δl ∧ ∀AΦ → [s3]3) must be
true by Prop. 1. Here, Hu denotes the set of hypothesis variables for
events that have not been observed: Hu = {hex |x ∈ X}. As before,
we write H̄u for an assignment to variables in Hu. By construction of
the events, this implies that there is an assignment to variables X1 =
{x1|x ∈ X} determined by H̄u such that for all assignments to the
remaining variables, Φ implies ¬[s3]3. Since Δ = ∅, all events in O
and hence in Eu = {eu|u ∈ U} must be considered. By construction
of the events, all combinations of events in Eu are explored, and
therefore all possible assignments to variables in U2 = {u2|u ∈ U}
are explored. By the definition of diagnosis, each such state must
prohibit the transition to the faulty state, which is enabled only if ¬γ

q0 q1 q2 q3

ex1

...
exm

eu1

...
eum

eγ

Figure 2. System model for ∃X̄∀Ūγ

is satisfied. Therefore, ¬γ must be false for each assignment to U
given the chosen assignment to variables in X , and ψ must be true.

Conversely, assume that Δ = ∅ is not a diagnosis. Since BC is
unconstrained, the first part of Prop. 1 is trivially satisfied, and the
second part must be false. This implies that there exists an assignment
to hypothesis variables in Hu such that there is a trajectory from q0
that reaches q3. Reaching q3 is possible only via eγ , which implies that
there is an assignment to variables in U2 that satisfies ¬γ. Therefore,
the assignments to X1 and U2 witness unsatisfiability of ψ.

Theorem 1 has a number of interesting implications. First, diagnosis
of parallel systems is no harder than sequential systems:
Corollary 1 Deciding whether Δ is a diagnosis for a diagnosis in-
stance DI encoding a purely sequential trajectory model without
parallelism is ΣP

2 -complete.
Each trajectory in the proof of Th. 1 can be expanded into a se-

quence of at most polynomially many individual transitions and states.
Therefore the result holds for the sequential instance.
Corollary 2 Deciding whether Δ is a diagnosis for a diagnosis in-
stance DI without external input is ΣP

2 -complete.
External input can be simulated by non-deterministic activities. The

same holds for restricting the model to a single initial state.
Corollary 3 Deciding whether Δ is a diagnosis for a diagnosis in-
stance DI is in NP if for all assignments H̄o, H̄u in each state at most
one event is applicable, i.e. the process behaves deterministically.

For each initial state there is single trajectory, hence the second
condition in Prop. 1 reduces to satisfiability.

Once diagnosis has been performed and a likely root cause has been
identified, it is desirable to “repair” the execution. Building a repair
plan to bring the execution into a state that corresponds to a fault-free
execution of a sub-process is a common strategy. While selecting
appropriate root causes and devising a repair plan is application-
specific and not covered here, we investigate the problem of deciding
if a state obtained after a repair plan has been executed is correct.

Definition 5 (Correct Output Assumption) Let Δ be a diagno-
sis for a diagnosis instance DI = 〈SD,O〉 with SD =
〈A,Σ, δ, S0,Ω, BC〉. Let s0 ∈ S0 be a distinct initial state and
let ψ be a formula over variables in A. Formula ψ is a correct output
assumption iff for all Σ′ that satisfy conditions Def. 3(i)–(iii), it holds
that there exists a trajectory s0, E1, . . . , En, sn such that [sn] |= ψ.

For example, for diagnosis Δ = {eSEC2t,f }, ¬S ∧R is a correct
output assumption.

Theorem 2 Deciding if ψ is a correct output assumption for a given
DI , Δ, and s0 is ΠP

2 -complete.

Proof: Membership: Deciding the property of Def. 5 corresponds to
verifying that for all Σ′ ⊆ Σ condition (i) or (ii) of Def. 3 are not
satisfied or there exists a trajectory T of DI with events in Σ′ which
includes a faulty state (condition (iii) of Def. 3 is not satisfied) or ψ is
satisfied in the final state of T . This can be decided by a QBF2,∀ thus
proving membership in ΠP

2 .
Hardness: We show that deciding whether a Δ is a diagnosis can

be formulated as the complement of an output classification instance.

W. Mayer et al. / On Computing Correct Processes and Repairs Using Partial Behavioral Models586

By Theorem 1, solving the diagnosis question is ΣP
2 -complete; this

implies that deciding output correctness is ΠP
2 -hard.

We construct from DI an output classification instance OS =
〈SD′, O〉 where SD′ = 〈A ∪ {a},Σ ∪ {eψ}, δ′, S0,Ω, BC〉,
s(a) = 0 for all s ∈ S0, δ′(e) = δ(e) for e ∈ Σ, and δ′(eψ) =〈∨

s∈Ω[s] ∨ a, {a}〉. Let ψ = a and let s0 be chosen arbitrarily from
S0. We show that Δ is a diagnosis for DI iff ψ is not a correct output
assumption for DI ′,Δ,s0.

Assume that Δ is a diagnosis for DI . By Def. 3, any Σ′ such that
no state in Ω is reached is a suitable witness for Δ. In any such Σ′,
eψ cannot apply and s |= ¬a for each state reachable from s0 under
Σ′. Therefore, ψ is not a correct output assumption for OS.

Conversely, assume that ψ is not a correct output assumption for
OS. By Def. 5, there exists a Σ′ that satisfies the conditions of a
diagnosis (Def. 3) yet no state satisfying s(a) = 1 is reachable. By
construction of δ′, this implies that no state in Ω is reachable, and
therefore Σ′ is a witness for Δ being a diagnosis.

6 RELATED WORK

Dependency tracking techniques have been applied to diagnosis of
programs [10] and Web Services [1, 11]. States and communication
events of services are expressed as automata, and diagnosis is con-
ducted by automaton composition and tracing dependencies. While
such dependency tracking approaches provide efficiency, precision
often suffers compared to methods exploiting partial knowledge [5].

Zhao et al. [12] account for incomplete discrete-event systems
(DES) models by allowing transitions which are not justified by the
system model. The fraction of trajectories that may not be fully jus-
tified by the nominal model is controlled by a numeric parameter.
Variations of this parameter have influence on the number of spurious
diagnoses. For any given parameter value, the approach corresponds
to traditional diagnosis employing DES and therefore can be reduced
to SAT. Consequently, no additional expressivity is added.

Kwong et al. [8] extend DES to incomplete models, with problem
solving based on abduction. However, it is still assumed that an almost
correct model of the system is available where only few transitions
are missing. Multiple faults must be encoded as single states which
may exponentially increase the number of states.

Planning for diagnosis and repair [9] has been concerned with
analyzing sequences of actions and events that lead to a particular
set of observations. This approach is predominantly concerned with
devising an explanatory process trace while assuming that the opera-
tions (but not states) are fully known. In contrast, we assume that the
process structure is given but the definitions of each activity are not
entirely known.

Eiter et al. [3] showed that various problems of logic-based abduc-
tion reside on the second level of the Polynomial Hierarchy. Their
results apply to diagnosis frameworks which assume complete fault
models. One of the first studies on the incompleteness of models in
diagnosis was given in [2], where the anonymous cause was intro-
duced to cope with incomplete models. Kuhn et al. [7] developed an
approach to reason about incomplete models due to hidden structural
faults in circuits. While causes (fault modes) can be classified into
correct and faulty in this (and indeed in most) classical model-based
diagnosis frameworks, partial knowledge approaches dispense with
that fixed assumption and infer this information from observations.

7 CONCLUSION

In this paper we introduced a formal model for the analysis of di-
agnosing process executions in situations where the existence of a
pre-specified complete model cannot be assumed. Such circumstances
can be found in many diagnosis problems related to software, for
example, embedded systems or orchestration scenarios in Service-
Oriented Architectures [5]. We showed that checking whether a set of
assumptions is a diagnosis is ΣP

2 -complete in general if the possible
behaviors of individual activities are only partially known.

This result is particularly significant because current diagnosis
frameworks have usually assumed that diagnosis candidate checking
can be reduced to propositional satisfiability checking (or constraint
satisfaction). As we have shown that this does not apply in partial
knowledge circumstances, traditional diagnostic modeling and rea-
soning approaches cannot produce sound and complete results in
important emerging application domains for diagnosis systems, such
as the service or embedded systems domains.

Moreover, deciding if the values in a process state could be obtained
by a correct execution is ΠP

2 -complete under the same assumptions.
This questions the common use of simple satisfiability-based methods
to predict the correctness of output values obtained from the execution
of repair activities. Our results underline the practical necessity of
further work in the area of expressive reasoning frameworks, such
as Answer Set Programming, for diagnosis and repair. Our results
indicate that there is a need both for sufficiently powerful representa-
tion mechanisms for diagnosis and repair problems and for improved
reasoning mechanisms that can operate effectively in environments
where complete models cannot be attained, as well as for further
studies into which types of systems, for examples with limited num-
ber of inputs or outputs might result in problem subclasses of lesser
complexity, or which additional assumptions (such as restrictions on
observability) would make the problem harder.

REFERENCES

[1] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan,
and D. Theseider Dupré, ‘Enhancing web services with diagnostic capa-
bilities’, in European Conference on Web Services, (2005).

[2] L. Console, D. Theseider Dupré, and P. Torasso, ‘A theory of diagnosis
for incomplete causal models’, in IJCAI, pp. 1311–1317, (1989).

[3] T. Eiter and G. Gottlob, ‘The complexity of logic-based abduction’, J.
ACM, 42(1), 3–42, (1995).

[4] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni, ‘Exception
handling for repair in service-based processes’, IEEE TSE, (2010).

[5] G. Friedrich, W. Mayer, and M. Stumptner, ‘Diagnosing process trajecto-
ries under partially known behavior’, in ECAI, pp. 111–116. IOS Press,
(2010).

[6] A. Grastien, Anbulagan, J. Rintanen, and E. Kelareva, ‘Diagnosis of
discrete-event systems using satisfiability algorithms’, in AAAI, pp. 305–
310. AAAI Press, (2007).

[7] L. Kuhn and J. de Kleer, ‘Diagnosis with incomplete models: Diagnos-
ing hidden interaction faults’, in Proc. DX-10 Workshop, pp. 225–232,
(2010).

[8] Raymond H. Kwong and David L. Yonge-Mallo, ‘Fault diagnosis in
discrete-event systems: Incomplete models and learning’, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B, 41(1), 118–130,
(2011).

[9] S. A. McIlraith, ‘Explanatory diagnosis: Conjecturing actions to explain
observations’, in KR, pp. 167–179, (1998).

[10] F. Wotawa, ‘On the relationship between model-based debugging and
program slicing’, Artif. Intell., 135(1-2), 125–143, (2002).

[11] Y. Yan, P. Dague, Y. Pencolé, and M.-O. Cordier, ‘A model-based ap-
proach for diagnosing fault in web service processes’, Int. J. Web Service
Res., 6(1), (2009).

[12] X. Zhao and D. Ouyang, ‘Model-based diagnosis of discrete event
systems with an incomplete system model’, in ECAI, volume 178, pp.
189–193. IOS Press, (2008).

W. Mayer et al. / On Computing Correct Processes and Repairs Using Partial Behavioral Models 587

